CN111170374A - 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法 - Google Patents

一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法 Download PDF

Info

Publication number
CN111170374A
CN111170374A CN202010024139.5A CN202010024139A CN111170374A CN 111170374 A CN111170374 A CN 111170374A CN 202010024139 A CN202010024139 A CN 202010024139A CN 111170374 A CN111170374 A CN 111170374A
Authority
CN
China
Prior art keywords
sulfide
preparation
precursor
foamed nickel
phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010024139.5A
Other languages
English (en)
Inventor
唐少春
宋洋洋
张晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010024139.5A priority Critical patent/CN111170374A/zh
Publication of CN111170374A publication Critical patent/CN111170374A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提出了一种制备方法,在保持硫化物片状阵列结构的基础上,引入高导电性的磷化物,获得了泡沫镍担载硫化物/磷化物复合亚微米管电容材料;在水浴加热的条件下,通过机械搅拌制得Fe‑Co前驱体,然后对其依次进行磷化、硫化反应制得最终产物;该材料可直接应用于固态超级电容器的电极,兼具高比电容、高循环稳定性,在30mA/cm2的高电流密度下,经过10000次充放电循环后,电极的质量比电容仍有91.98%的保持率;本发明为高性能超级电容器电极提出了新方法,无需任何添加剂或模板,原材料便宜,环境友好,且易于控制。

Description

一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其 制备方法
技术领域:
本发明涉及一种具有高比电容、高循环稳定性的超级电容器材料的制备方法,其特征为,在水浴加热的条件下,通过机械搅拌制得Fe-Co前驱体,然后对其依次进行磷化、硫化反应。该制备方法具有原料便宜,制备方法简单,对环境友好,易于控制的优点。
背景技术:
随着社会的发展,能源需求不断增加,再加上石油等能源的不可再生性,能源紧缺已经成为全球性问题。对环境友好型、清洁能源的探索,是目前研究的热点。超级电容器有着高功率密度、高循环稳定性及使用寿命长、安全等优点,是一种新型储能器件,而电极材料的选择、设计和制备是高性能超级电容器研发的重点。
超级电容器电极材料主要有:碳材料、金属化合物和导电聚合物。其中金属化合物的研究已经有了长足的发展,过渡金属氧化物已被广泛研究用于赝电容超级电容器,但其弱导电性导致了器件能量密度低和循环稳定性差,因此,探索兼具高导电性和高稳定性的赝电容电极材料是当前该领域一直追求的目标。
国际上大量研究报道,通过硫代替金属氧化物中的氧,可得到更柔性、稳定的结构;硫元素有着低于氧元素的电负性,并且阴离子交换使得材料带隙变窄,有助于性能地提升。过渡金属磷化物有着金属般的导电性,并且磷元素有着更多地价态,保证了储能过程中有着更多种的氧化还原反应。因此,如何综合利用磷化物和硫化物的优势,成为了我们研究的重点。另一方面,管状纳米结构因具有内外表面,可提供高活性比表面积,更有利于电荷的储存;且管状阵列形成的多孔结构缩短了离子的扩散距离,有利于电解液离子及电荷的转移。
本发明提出,在保持硫化物片状阵列结构的基础上,引入高导电性的磷化物,提出了一种制备方法,获得了兼具高比电容、高循环稳定性的硫化物/磷化物复合亚微米管电容材料。
发明内容:
本发明的目的:提出了一种新型硫化物/磷化物复合亚微米管电容材料及其制备方法。设计并制备了由纳米片交织构建的亚微米管,兼具高比表面积和高力学稳定性的优点,同时将高导电性的金属磷化物引入,从而保证了较高的电化学储能性能;在30mA/cm2的高电流密度下,经历10000次充放电循环后,该电极的质量比电容值仍有91.98%的保持率。
本发明的技术方案是:本发明在水浴加热的条件下,通过机械搅拌的方法,制得Fe-Co前驱体,然后对其进行磷化和硫化反应,从而获得具有高比电容、高循环稳定性的硫化物/磷化物复合亚微米管电容材料。将三价铁盐、二价钴盐溶于去离子水中,配成混合溶液和泡沫镍一起放入三颈瓶中,在35~45℃恒温水浴、40~50r/min机械搅拌下,滴加草酸溶液,之后再搅拌1~4h,得到泡沫镍担载Fe-Co前驱体;然后,将前驱体和次磷酸盐分别置于两个瓷舟中,在氮气保护下进行磷化;将得到的中间产物放入配置好的硫化钠溶液中,在100~120℃水热反应釜中硫化反应6~9h,待反应釜冷却,取出样品,用去离子水反复洗涤后在40~60℃空气中烘干,得到最终产物。
上述方案中,制备Fe-Co前驱体过程所使用混合溶液中,三价铁盐Fe(NO3)3的浓度为8~12mM,二价钴盐Co(NO3)2的浓度为8~12mM,泡沫镍基底的尺寸为3cm×1cm。
上述方案中,制备Fe-Co前驱体过程中,草酸溶液浓度为8~12mM,体积为40~50mL,采用滴加的方式加入,滴加时间为8~10min。
上述方案中,制备中间产物磷化过程中所使用的次磷酸盐用量为0.03~0.06g,反应温度为280~320℃,升温速率为2~4℃/min,反应时间为2~4h。
上述方案中,硫化反应采用硫化钠溶液的浓度为9~14mM,反应条件为100~120℃,反应时间为6~9h。
本发明在最优化条件下制得的这种独特新型电极材料,它是泡沫镍担载硫化物/磷化物复合亚微米管电容材料,其特征在于,单根管的外径为1μm,管壁厚度为320nm,由硫化物片状阵列构成的多孔表层结构,磷化物位于纳米片的顶端;纳米片的厚度约为15nm。
所制得的泡沫镍担载硫化物/磷化物复合亚微米管材料,可直接应用于固态超级电容器的电极,无需粘结剂,其兼备高比电容、高循环稳定性的特点;与其它方法相比,本发明提出的制备方法无需任何添加剂或模板,原材料便宜,环境友好,且易于控制。
有益效果:
(1)本发明提出了在保持硫化物片状阵列结构的基础上,引入高导电性的磷化物,获得了兼具高比电容、高循环稳定性的硫化物/磷化物复合亚微米管电容材料。
(2)本发明提出一种制备新方法本:水浴加热的条件下,通过机械搅拌的方法,制得Fe-Co前驱体,然后对其进行磷化和硫化反应。
(3)与其他方法相比,该制备方法具有以下优点:
①制备过程简单,操作方便,重复性高;
②环境友好,整个制备过程不对环境造成污染;
③成本较低,具有良好的工业化应用前景。
附图说明:
图1为实施例1制备产物的(a)SEM图和(b)TEM图。
图2为实施例1制备产物的XRD图谱。
图3为实施例1制备产物的XPS图谱。
图4为实施例1制备产物的(a)循环伏安曲线;(b)恒电流充放电曲线;(c)不同电流密度下的质量比电容值;(d)重复充放电循环后的比电容保持率。
具体实施方式:
本发明中制备泡沫镍担载硫化物/磷化物复合亚微米管电容材料,具体实施方式如下:
实施例1
泡沫镍担载硫化物/磷化物复合亚微米管电容材料:将包含三价铁盐Fe(NO3)3和11mM的二价钴盐Co(NO3)2的混合溶液(两种浓度均为11mM)和长方形泡沫镍(3cm×1cm)一起放入三颈瓶中,在35℃恒温水浴、45r/min速度持续机械搅拌情况下,滴加11mM的草酸溶液,之后再搅拌3h,得到泡沫镍担载Fe-Co的前驱体。然后,将前驱体和0.05g次磷酸钠分别置于两个瓷舟中,在氮气保护下进行磷化;将得到的中间产物放入配置好的11mM硫化钠溶液中,在100℃水热反应釜中硫化反应6h,待反应釜冷却,取出样品,用去离子水反复洗涤后在50℃空气中烘干,得到最终产物。
图1a是实施例1制备产物的SEM图。可以看到,亚微米管均匀的分布在泡沫镍的骨架上,并且各个管之间相互独立。放大的SEM图像显示,单根管的外径为1μm,表面由相互连接的纳米片构成,片与片之间形成了多孔形貌,纳米片的厚度约为15nm。图1b为制备产物的TEM图,证明单根管内部为中空结构,管壁厚度为320nm。
图2是实施例1制备产物的XRD图谱,衍射峰分别对应于FeCo2S4和Fe2P,CoP,证实了最终产物为硫化物/磷化物复合材料。
图3是实施例1制备产物的产物XPS谱图。Fe 2p的高分辨XPS图谱(图3a)表明,两个主峰的位置分别位于709.6eV和723.5eV处,由此得知Fe元素的价态为二价Fe;Co 2p的高分辨XPS图谱(图3b)表明,两个主峰的位置分别位于779.2eV和794.9eV处,由此得知Co元素的价态为二价Co和三价Co;对于P元素的XPS测试结果(图3c),峰位主要出现在128.9,131.8和133.9eV三个位置。128.9和131.8eV处的峰分别对应于P 2p3/2和P 2p1/2,这证明样品中存在金属-磷化学键;而S 2p3/2和S 2p1/2的峰值主要位于157.8和160.8eV处(图3d),这表明S元素以S2-状态存在。
图4是实施例1制备产物电化学性能测试图。图4a为样品在不同扫描速率下的循环伏安CV曲线(5到40mV/s),可以观察到明显的氧化峰和还原峰,这表明硫化物/磷化物复合材料具有赝电容特性。图4b是硫化物/磷化物复合材料在不同电流密度下的恒流充放电曲线,放电阶段中存在着明显的放电平台,这与循环伏安曲线的氧化还原峰相对应,表明该材料具有良好的可逆性。图4c为不同电流密度下的比电容值,电极在电流密度为5mA/cm2时达到了3692F/g的面电容值;在电流密度升高至20mA/cm2时,电容保持率达到70%。图4d为硫化物/磷化物复合材料在30mA/cm2的扫描电流速率下,充放电10000圈的循环性能。经过10000次充放电过程后,电极材料的电容保持率高达91.98%,在最后2000圈中,电容值仅下降了0.61%,库伦效率也始终保持在90%左右,这证明了其优越的循环稳定性。
实施例2
在制备泡沫镍担载Fe-Co的前驱体过程中,将混合溶液中三价铁盐、二价钴盐、草酸溶液的浓度都改变为8mM,其他条件和实施例1相同。
实施例3
在制备泡沫镍担载Fe-Co的前驱体过程中,将混合溶液中三价铁盐、二价钴盐、草酸溶液的浓度都改变为9mM,其他条件和实施例1相同。
实施例4
在制备泡沫镍担载Fe-Co的前驱体过程中,将混合溶液中三价铁盐、二价钴盐、草酸溶液的浓度都改变为12mM,其他条件和实施例1相同。
实施例5
制备中间产物磷化过程中,将次磷酸盐用量改为0.02g,其他条件和实施例1相同。
实施例6
制备中间产物磷化过程中,将次磷酸盐用量改为0.06g,其他条件和实施例1相同。
实施例7
硫化反应过程中,将硫化钠溶液的浓度改为9mM,其他条件和实施例1相同。
实施例8
硫化反应过程中,将硫化钠溶液的浓度改为13mM,其他条件和实施例1相同。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (7)

1.一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法,其特征在于,将三价铁盐、二价钴盐溶于去离子水中,配成混合溶液和泡沫镍一起放入三颈瓶中,在35~45℃恒温水浴、40~50r/min机械搅拌下,滴加草酸溶液,之后再搅拌1~4h,得到泡沫镍担载Fe-Co前驱体;然后,将前驱体和次磷酸盐分别置于两个瓷舟中,在氮气保护下进行磷化;将得到的中间产物放入配置好的硫化钠溶液中,在100~120℃水热反应釜中硫化反应6~9h,待反应釜冷却,取出样品,用去离子水反复洗涤后在40~60℃空气中烘干,得到最终产物。
2.如权利要求书1所述的制备方法,其特征在于,制备Fe-Co前驱体过程所使用混合溶液中,三价铁盐Fe(NO3)3的浓度为8~12mM,二价钴盐Co(NO3)2的浓度为8~12mM,泡沫镍基底的尺寸为3cm×1cm。
3.如权利要求书1所述的制备方法,其特征在于,制备Fe-Co前驱体过程中,草酸溶液浓度为8~12mM,体积为40~50mL,采用滴加的方式加入,滴加时间为8~10min。
4.如权利要求书1所述的制备方法,其特征在于,.是通过先磷化再硫化的步骤制得;制备中间产物磷化过程中所使用的次磷酸盐用量为0.03~0.06g,反应温度为280~320℃,升温速率为2~4℃/min,反应时间为2~4h。
5.如权利要求书1所述的制备方法,其特征在于,硫化反应采用硫化钠溶液的浓度为9~14mM,反应条件为100~120℃,反应时间为6~9h。
6.如权利要求书1所述的泡沫镍担载硫化物/磷化物复合亚微米管电容材料,其特征在于,单根管的外径为1μm,管壁厚度约为320nm,由硫化物片状阵列构成的多孔表层结构,磷化物位于纳米片的顶端;纳米片的厚度约为15nm。
7.如权利要求书1所述的制备方法,所制得的泡沫镍担载硫化物/磷化物复合亚微米管材料,可直接应用于固态超级电容器的电极。
CN202010024139.5A 2020-01-09 2020-01-09 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法 Pending CN111170374A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024139.5A CN111170374A (zh) 2020-01-09 2020-01-09 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024139.5A CN111170374A (zh) 2020-01-09 2020-01-09 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111170374A true CN111170374A (zh) 2020-05-19

Family

ID=70620019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024139.5A Pending CN111170374A (zh) 2020-01-09 2020-01-09 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111170374A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825178A (zh) * 2023-01-11 2023-03-21 宁波康和长晟科技有限公司 一种基于自支撑葡萄糖电催化材料的电化学葡萄糖传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118691A (zh) * 2015-09-14 2015-12-02 南京大学 泡沫镍担载钴酸亚铁亚微米管电极材料及其制备方法
CN107749350A (zh) * 2017-10-18 2018-03-02 德清鼎兴电子有限公司 一种超级电容铜镍复合电极及其制备工艺
CN108364806A (zh) * 2018-02-09 2018-08-03 中山大学 一种树状三维结构金属材料及其制备方法与在电池中的应用
CN109003839A (zh) * 2018-08-08 2018-12-14 西北大学 一种三维多级的硫钴镍/磷钴镍/镍泡沫核-壳复合电极材料的制备方法和应用
US20190157701A1 (en) * 2017-11-21 2019-05-23 The Chinese University Of Hong Kong High-energy density flow battery system with a smi-solid fluid containing chalcogens or metal chalgogenides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118691A (zh) * 2015-09-14 2015-12-02 南京大学 泡沫镍担载钴酸亚铁亚微米管电极材料及其制备方法
CN107749350A (zh) * 2017-10-18 2018-03-02 德清鼎兴电子有限公司 一种超级电容铜镍复合电极及其制备工艺
US20190157701A1 (en) * 2017-11-21 2019-05-23 The Chinese University Of Hong Kong High-energy density flow battery system with a smi-solid fluid containing chalcogens or metal chalgogenides
CN108364806A (zh) * 2018-02-09 2018-08-03 中山大学 一种树状三维结构金属材料及其制备方法与在电池中的应用
CN109003839A (zh) * 2018-08-08 2018-12-14 西北大学 一种三维多级的硫钴镍/磷钴镍/镍泡沫核-壳复合电极材料的制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825178A (zh) * 2023-01-11 2023-03-21 宁波康和长晟科技有限公司 一种基于自支撑葡萄糖电催化材料的电化学葡萄糖传感器

Similar Documents

Publication Publication Date Title
Guo et al. Non-noble metal-transition metal oxide materials for electrochemical energy storage
Huang et al. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors
Cao et al. Core–shell structural PANI-derived carbon@ Co–Ni LDH electrode for high-performance asymmetric supercapacitors
KR101683391B1 (ko) 고성능 슈퍼커패시터 전극소재용 3차원 니켈폼/그래핀/니켈코발트산화물 복합체 및 이의 제조방법
Hussain et al. Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications
Gu et al. Thin-carbon-layer-enveloped cobalt–iron oxide nanocages as a high-efficiency sulfur container for Li–S batteries
Yi et al. Rational design of hierarchically porous NiCo2O4 and Bi2O3 nanostructure: Anchored on 3D nitrogen doped carbonized melamine foam for flexible asymmetric supercapacitor
CN111446087A (zh) 一种纳米花状NiCoP超级电容器电极材料及其制备方法和应用
CN111009421A (zh) 一种层片状双金属有机骨架化合物及其制备方法和应用
Ren et al. In-situ transformation of Ni foam into sandwich nanostructured Co1. 29Ni1. 71O4 nanoparticle@ CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Liu et al. Chemical activation of hollow carbon nanospheres induced self-assembly of metallic 1T phase MoS2 ultrathin nanosheets for electrochemical lithium storage
CN106935855A (zh) 一种多孔碳纳米管状材料及其制备方法和应用
Huang et al. Hierarchical FeCo2S4 Nanotube Arrays Deposited on 3D Carbon Foam as Binder‐free Electrodes for High‐performance Asymmetric Pseudocapacitors
Huang et al. Fe-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage
Guo et al. High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes
Yue et al. Honeycomb-like biomass carbon with planted CoNi3 alloys to form hierarchical composites for high-performance supercapacitors
Huang et al. Bimetallic organic framework in situ fabrication nanoflower-like cobalt nickel sulfide and ultrathin layered double hydroxide arrays for high-efficient asymmetric hybrid supercapacitor
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Zhao et al. Sulfur-deficient Co9S8/Ni3S2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors
Wan et al. 2D/2D heterojunction of cobalt iron selenide and nickel cobalt phosphate for boosted supercapacitor performance
CN111170374A (zh) 一种泡沫镍担载硫化物/磷化物复合亚微米管电容材料及其制备方法
WO2023207813A1 (zh) 多级纳米片阵列NiCo2O4/rGO/NF制备方法与作电极应用
CN111039332A (zh) 一种多功能双层纳米线层状复合材料的制备方法及其应用
CN114300276B (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200519