CN111167493A - 一种纳米纤维素氮化碳复合膜及其制备方法和应用 - Google Patents

一种纳米纤维素氮化碳复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN111167493A
CN111167493A CN201911399556.1A CN201911399556A CN111167493A CN 111167493 A CN111167493 A CN 111167493A CN 201911399556 A CN201911399556 A CN 201911399556A CN 111167493 A CN111167493 A CN 111167493A
Authority
CN
China
Prior art keywords
carbon nitride
nanocellulose
nano
cellulose
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911399556.1A
Other languages
English (en)
Other versions
CN111167493B (zh
Inventor
吴玉龙
张立龙
范桂芳
胡湖生
杨明德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201911399556.1A priority Critical patent/CN111167493B/zh
Publication of CN111167493A publication Critical patent/CN111167493A/zh
Application granted granted Critical
Publication of CN111167493B publication Critical patent/CN111167493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种纳米纤维素和氮化碳复合膜,其包括一层或多层纳米氮化碳层,和用于支撑所述纳米氮化碳层的纳米纤维素构成的层。本发明还公开了所述纤维素和氮化碳复合膜的制备方法和用途。

Description

一种纳米纤维素氮化碳复合膜及其制备方法和应用
技术领域
本发明属于光催化材料及薄膜反应器技术领域,具体涉及一种纳米纤维素和层氮化碳复合光催化薄膜及其制备方法。
背景技术
氮化碳是一种非常有吸引力的非金属光催化剂,其具有良好的电子结构、优异的热稳定和化学稳定性、对环境友好以及易于用丰富廉价的原材料合成等优点。但由于其电导率低、载流子复合快、表面活性位点少等缺点,极大地限制了其在水分解和光有机合成领域的应用。近年来,大量的工作都致力于制备层数较少甚至单层的氮化碳,但已报道的制备方法中大部分都是采用先制备后剥离的方法;这些方法存在低效、过程繁杂、高耗能的缺点。模板剂作为其形貌调控的手段广泛应用在氮化碳片片的制备上,但是现有的模板剂如AAO(阳极氧化铝)、TiO2等在后期去除过程中需要利用含氟溶液,造成二次污染。另一方面,氮化碳既难溶于大多数溶剂且成膜性差,而良好的分散性及成膜性对于常规镀膜方法(如滴涂法及旋涂法等)在各种基底表面可控制备薄膜至关重要。因此,将石墨相氮化碳应用到薄膜器件中具有很大的挑战性。
发明内容
本发明的目的在于公开一种纳米纤维素和氮化碳复合膜、其制备方法及用于光催化降解有机物反应的用途。为了达到上述目的,本发明提出通过加入纳米纤维素模板,利用纳米纤维素自身的三维网状结构给氮化碳制备的前驱体提供支撑;对含有氮化碳前驱体的胶体采用定向液氮快速冷冻的方法,使纳米纤维素保持其自身的三维网状结构,经冷冻干燥得到含有氮化碳前驱体的定干凝胶,再对干凝胶进行热处理及超声处理,得到一种氮化碳材料;然后利用纳米纤维素的成膜特性作为支撑层,在纳米纤维素薄膜表面覆盖氮化碳片层,最终制备出具有光催化反应活性的复合膜。
本发明的技术方案如下:
本发明的第一方面公开了一种纳米纤维素和氮化碳复合膜,其包括一层或多层纳米氮化碳层、和用于支撑所述纳米氮化碳层的纳米纤维素构成的层。
优选地,所述氮化碳分子式为C3N2-6,所述纳米氮化碳层的厚度为1-1000nm,面积为10nm2-1000nm2,其中氮元素含量为50.0wt%-70.0wt%。
优选地,所述纳米纤维素构成的层中的纳米纤维素为直径小于1000nm的纤维素。
优选地,所述纳米纤维素构成层的定量为20g/m2-60g/m2,即每平方米上的纳米纤维素为20g-60g。
本发明第二方面公开了所述纳米纤维素和氮化碳复合膜的制备方法,包括如下步骤:
①将氮化碳前驱体和纳米纤维素按照质量比为(1-9)∶(9-1)溶解在水中,然后超声处理0.5-1.5小时得到含氮化碳前驱体的纳米纤维素凝胶;利用纳米纤维素自身的三维网状结构给氮化碳制备前驱体提供支撑;
②将步骤①得到凝胶在液氮中冷冻72小时以上,得到干凝胶;具体为:将步骤①得到凝胶移至离心管中,将该离心管中的凝胶全部浸没在液氮中,然后停止下降并保持此状态30分钟;再将离心管置于冻干机中冻干72小时以上;得到具有定向孔结构的网状结构的干凝胶;
③将步骤②得到干凝胶在氮气保护下升温至400-600℃并恒温2-6小时,然后降至室温,得到氮化碳;具体为将步骤②得到干凝胶至于管式炉中,通入氮气作保护气体升温和恒温;
④将步骤③得到的碳化物再次升温至400-600℃并恒温2-4小时,具体为将碳化物放置在马弗炉中升温和恒温;降至室温后将样品在水中超声处理0.5-1.5小时,得到固体含量为0.1wt%-1wt%的含氮化碳分散体系;
⑤将步骤④得到含氮化碳分散体系用纳米纤维素膜进行抽滤,即得到所述的纳米纤维素和氮化碳复合膜;重复本步骤可以得到氮化碳层层堆叠的复合膜,即多层纳米氮化碳层和纳米纤维素的复合膜;
优选地,步骤①所述氮化碳前驱体为尿素、硫脲、三聚氰胺、双氰胺、单氰胺中的一种或几种;两种时重量百分比(20%~70%)∶(80%~30%)。
优选地,步骤①或步骤④超声处理为选用超声波细胞粉碎机,功率为1500W-1800W。
优选地,步骤①或步骤⑤所述纳米纤维素为直径小于1000nm的纤维素。
优选地,步骤③和步骤④的升温速率为1℃-20℃/分钟;降温速率为5-10℃/分钟。
优选地,步骤⑤所述纳米纤维素膜的定量为20g/m2-60g/m2(即每平方米上的纳米纤维素质量为20g-60g),其制备方法为:将纳米纤维素溶于水形成纳米纤维素分散液,在0.05-0.08Mpa下使用孔径为220nm-650nm的滤膜进行抽滤,即得到纳米纤维素膜;220nm-650nm的滤膜为市售。
本发明第三方面公开了所述纤维素和氮化碳复合膜用于光催化降解有机物反应的用途。光催化降解有机物反应是指在特定波长(如>400nm)下进行的光催化反应。
本发明具有如下的优点和效果:
1、本发明由于采用纳米纤维素作为模板剂,通过简单的加热的方法就能去除,避免了在后期去除模板剂的污染问题。
2、本发明首次利用纳米纤维素的三维网状结构为氮化碳前驱体进行聚合反应提供支撑,纳米纤维素提供了充分的空间得到网状结构干凝胶,能够避免传统制备过程中氮化碳聚合叠加成块的弊端;制得的片层氮化碳具有更宽的带隙,得到的复合薄膜可以提高光催化反应活性。本发明制得的片层氮化碳带隙宽度在2.65eV以上,最好可以达到2.85eV;而现有技术得到的块状氮化碳的带隙宽度一般在2.6eV以下。
3、本发明首次利用纳米纤维素薄膜的层结构做片层氮化碳的支撑层,既可以为后续的光催化降解有机物连续反应提供支撑,又能给高通量的水流提供通道制备纳米层状氮化碳。而市售的滤膜与氮化碳的复合程度不牢固无法给纳米层状氮化碳提供支撑、且无法提供高通量的水流通道。
4、本发明的纳米纤维素和氮化碳复合膜用于用于光催化降解有机物反应时,纳米纤维素薄膜的层结构可以提供高通量的水流通道,且能连续稳定运行,提高了废水的处理效率。
5、本发明的制备方法简单,易于工业化生产。
附图说明
图1为本发明方法制备的纳米纤维素和片层氮化碳复合膜截面扫描电镜图。
图2为本发明制备的片层氮化碳与块状氮化碳紫外分光光谱对比图。
图3为使用本发明复合薄膜光降解有机物的实验装置示意图。
具体实施方式
实施例1
将直径约为800nm的纳米纤维素和氮化碳前驱体三聚氰胺按照质量比3:1溶解在水中,然后用超声波粉碎机1500W下进行超声处理0.5小时。将得到凝胶移至市售的塑料离心管中,将该离心管全部浸没在液氮中,然后停止下降并保持此状态30分钟;再将离心管置于冻干机中冻干100小时,得到含有氮化碳先驱物的干凝胶。然后将干凝胶至于管式炉中,通入氮气作保护气体,以5℃/分钟的升温速率升至550℃并恒温4小时后以5℃/分钟的降温速率降至室温,得含氮化碳的碳化物。将含氮化碳的碳化物至于马弗炉中,以2.5℃/分钟的升温速率升至500℃并恒温4小时,再以5℃/分钟的降温速率降至室温取出样品并置于含有350mL蒸馏水的玻璃烧杯中在超声波细胞粉碎机中1500W超声处理0.5小时,得氮化碳分散液。将一定浓度的纳米纤维素溶液,在0.05Mpa下使用孔径为220nm的滤膜进行抽滤,即得到定量为20g/m2纳米纤维素膜;将上述得到的含氮化碳分散液用纳米纤维素膜进行抽滤,即得到所述纤维素和氮化碳复合膜。经分析得到复合膜的纳米氮化碳层中氮含量60.9wt%,氮化碳分子式为C3N4,其厚度为10nm,片层面积在100nm2左右,产率(以三聚氰胺计)90%以上。得到的纳米氮化碳层的带隙宽度达2.7eV。图1为本实施例制得的纤维素和氮化碳复合膜的截面扫描电镜图,上层为纳米氮化碳层。由图1可以看出,纳米氮化碳层层堆叠在纳米纤维素层上面,两者紧密结合中间无缝隙产生。图2为本实施例制备的片层氮化碳与现有技术的块状氮化碳紫外分光光谱对比图,由图2可以看出本实施例得到的片层氮化碳在带隙宽度上比块状氮化碳有明显的提升,可以增加光利用效率。
实施例2
将直径约为700nm的纳米纤维素和氮化碳前驱体三聚氰胺按照质量比1:9溶解在水中,后进行超声波粉碎机1800W超声处理1.5小时,待冷却后将混合凝胶放置到液氮中速冷0.5小时。将得到凝胶移至市售的塑料离心管中,将该离心管固定在可精确控制升降速率的装置上,调整离心管高度,使离心管全部浸没在液氮中,然后停止下降并保持此状态30分钟;再将离心管置于冻干机中冻干80小时,得到含有氮化碳先驱物的干凝胶。后将干凝胶至于管式炉中,通入氮气作保护气体,以20℃/分钟的升温速率升至650℃并恒温2小时后以10℃/分钟的降温速率降至室温,得含氮化碳薄片的碳化物。将含氮化碳薄片的碳化物至于马弗炉中,以5℃/分钟的升温速率升至500℃并恒温2小时,再以10℃/分钟的降温速率降至室温取出样品并置于含有350mL蒸馏水的玻璃烧杯中在超声波细胞粉碎机中1800W超声处理1.5小时,得氮化碳分散液。将一定浓度的纳米纤维素溶液,在0.08Mpa下使用孔径为400nm的滤膜进行抽滤,即得到定量为40g/m2的纳米纤维素膜;将上述得到的含氮化碳分散液用纳米纤维素膜进行抽滤,即得到所述纳米纤维素和氮化碳复合膜;重复该步骤得到两层氮化碳的复合膜。经分析得到复合膜的纳米氮化碳层中氮含量66.4wt%,氮化碳分子式为C3N5,每层氮化碳的厚度约为1000nm,片层面积在1000nm2左右,产率(以三聚氰胺计)30%以上。得到的纳米氮化碳层的带隙宽度达2.65eV。
实施例3
将直径约为500nm的纳米纤维素和氮化碳前驱体三聚氰胺按照质量比9:1溶解在水中,然后用超声波粉碎机1800W下进行超声处理1.5小时。将得到凝胶移至市售的塑料离心管中,将该离心管固定在可精确控制升降速率的装置上,调整离心管高度,使离心管底部与液氮表面接触,然后在1毫米/分钟的下降速率范围内,使离心管下降,直至离心管中的凝胶全部浸没在液氮中,然后停止下降并保持此状态30分钟;再将离心管置于冻干机中冻干90小时,得到含有氮化碳先驱物的干凝胶。然后将干凝胶至于管式炉中,通入氮气作保护气体,以20℃/分钟的升温速率升至600℃并恒温2小时后以5℃/分钟的降温速率降至室温,得含氮化碳的碳化物。将含氮化碳的碳化物至于马弗炉中,以1℃/分钟的升温速率升至500℃并恒温4小时,再以5℃/分钟的降温速率降至室温取出样品并置于含有350mL蒸馏水的玻璃烧杯中在超声波细胞粉碎机中1500W超声处理1.5小时,得氮化碳分散液。将一定浓度的纳米纤维素溶液,在0.05Mpa下使用孔径为220nm的滤膜进行抽滤,即得到定量为60g/m2的纳米纤维素膜;将上述得到的含氮化碳分散液用纳米纤维素膜进行抽滤,即得到所述纳米纤维素和氮化碳复合膜,重复该步骤两次得到具有三层氮化碳的复合膜。经分析得到复合膜的纳米氮化碳层中氮含量53.8wt%,氮化碳分子式为C3N3,每层氮化碳厚度约为100nm,片层面积在500nm2左右,产率(以三聚氰胺计)45%以上。得到的纳米氮化碳层的带隙宽度达2.68eV。
实施例4
将直径约为400nm的纳米纤维素和氮化碳前驱体三聚氰胺及双氰胺按照质量比1:1:1溶解在水中,然后用超声波粉碎机1500W下进行超声处理0.5小时。将得到凝胶移至市售的塑料离心管中,将该离心管固定在可精确控制升降速率的装置上,调整离心管高度,使离心管底部与液氮表面接触,然后在1毫米/分钟的下降速率范围内,使离心管下降,直至离心管中的凝胶全部浸没在液氮中,然后停止下降并保持此状态30分钟;再将离心管置于冻干机中冻干120小时,得到含有氮化碳先驱物的干凝胶。然后将干凝胶至于管式炉中,通入氮气作保护气体,以5℃/分钟的升温速率升至550℃并恒温4小时后以5℃/分钟的降温速率降至室温,得含氮化碳的碳化物。将含氮化碳的碳化物至于马弗炉中,以2.5℃/分钟的升温速率升至500℃并恒温4小时,再以5℃/分钟的降温速率降至室温取出样品并置于含有350mL蒸馏水的玻璃烧杯中在超声波细胞粉碎机中1500W超声处理1.0小时,得氮化碳分散液。将一定浓度的纳米纤维素溶液,在0.08Mpa下使用孔径为220nm的滤膜进行抽滤,即得到定量为60g/m2的纳米纤维素膜;将上述得到的含氮化碳分散液用纳米纤维素膜进行抽滤,即得到所述纳米纤维素和氮化碳复合膜;重复该步骤三次得到四层氮化碳的复合膜。经分析得到复合膜的纳米氮化碳层中氮含量60.9wt%,氮化碳分子式为C3N4,每层氮化碳厚度为10nm,片层面积在200nm2左右,产率(以三聚氰胺计)90%以上。得到的纳米氮化碳层的带隙宽度达2.7eV。
实施例5
将实施例1得到的纤维素和氮化碳复合膜用于罗丹明B染液的(RhB)的降解。步骤为:将10mg/L的RhB模拟染料废水加入含有实施例1得到的复合膜的抽滤装置中,在0.05Mpa的抽滤压力下,距离薄膜上的25cm处用400w氙灯照射下(如图3所示),测定其过滤后溶液的紫外吸收光谱。结果表明,此光催化薄膜反应器在高通量(约160liter·hour-1·m-2·bar-1)情况下能连续稳定运行5h,降解率超过95%。
实施例6
将实施例2得到的纤维素和氮化碳复合膜用于亚甲基蓝染液(MB)的降解。步骤为:将10mg/L的MB模拟染料废水加入含有实施例2得到的复合膜的抽滤装置中,在0.05Mpa的抽滤压力下,距离薄膜上的25cm处用400w氙灯照射下(如图3所示),测定其过滤后溶液的紫外吸收光谱。结果表明,此光催化薄膜反应器在高通量(约200liter·hour-1·m-2·bar-1)情况下连续稳定运行5h,降解率超过95%。
实施例7
将实施例3得到的纤维素和氮化碳复合膜用于间氯酚的降解。步骤为:将10mg/L的间氯酚模拟染料废水加入含有实施例3得到的复合膜的抽滤装置中,在0.08Mpa的抽滤压力下,距离薄膜上的25cm处用400w氙灯照射下(如图3所示),测定其过滤后溶液的紫外吸收光谱。结果表明,此光催化薄膜反应器在高通量(约160liter·hour-1·m-2·bar-1)情况下连续稳定运行5h,降解率超过90%。
实施例8
将实施例4得到的纤维素和氮化碳复合膜用于偶氮红质(E122)的降解。步骤为:将10mg/L的E122模拟染料废水加入含有实施例4得到的复合膜的抽滤装置中,在0.08Mpa的抽滤压力下,距离薄膜上的25cm处用400w氙灯照射下(如图3所示),测定其过滤后溶液的紫外吸收光谱。结果表明,此光催化薄膜反应器在高通量(约200liter·hour-1·m-2·bar-1)情况下连续稳定运行5h,降解率超过90%。

Claims (10)

1.一种纳米纤维素和氮化碳复合膜,其特征在于,其包括一层或多层纳米氮化碳层、和用于支撑所述纳米氮化碳层的纳米纤维素构成的层。
2.根据权利要求1所述纳米纤维素和氮化碳复合膜,其特征在于,所述氮化碳分子式为C3N2-6,其中氮元素含量为50.0wt%-70.0wt%。
3.根据权利要求1所述纳米纤维素和氮化碳复合膜,其特征在于,所述纳米纤维素构成的层中的纳米纤维素为直径小于1000nm的纤维素。
4.根据权利要求1所述纳米纤维素和氮化碳复合膜,其特征在于,所述纳米纤维素构成层的定量为20g/m2-60g/m2
5.根据权利要求1-4任一所述纳米纤维素和氮化碳复合膜的制备方法,其特征在于,包括如下步骤:
①将氮化碳前驱体和纳米纤维素按照质量比为(1-9)∶(9-1)溶解在水中,然后超声处理0.5-1.5小时得到含氮化碳前驱体的纳米纤维素凝胶;
②将步骤①得到凝胶在液氮中冷冻72小时以上,得到干凝胶;
③将步骤②得到干凝胶在氮气保护下升温至400-600℃并恒温2-6小时,然后降至室温,得到氮化碳;
④将步骤③得到的碳化物再次升温至400-600℃并恒温2-4小时,降至室温后将其在水中超声处理0.5-1.5小时,得到固体含量为0.1wt%-1wt%的含氮化碳分散体系;
⑤将步骤④得到含氮化碳分散体系用纳米纤维素膜进行抽滤,即得到所述的纳米纤维素和氮化碳复合膜。
6.根据权利要求5所述的制备方法,其特征在于,步骤①所述氮化碳前驱体为尿素、硫脲、三聚氰胺、双氰胺、单氰胺中的一种或几种。
7.根据权利要求5所述的制备方法,其特征在于,步骤①或步骤⑤所述纳米纤维素为直径小于1000nm的纤维素。
8.根据权利要求5所述的制备方法,其特征在于,步骤③和步骤④的升温速率为1℃-20℃/分钟;降温速率为5-10℃/分钟。
9.根据权利要求5所述的制备方法,其特征在于,步骤⑤所述纳米纤维素膜的定量为20g/m2-60g/m2,其制备方法为:将纳米纤维素溶于水形成纳米纤维素分散液,在0.05-0.08Mpa下使用孔径为220nm-650nm的滤膜进行抽滤,即得到纳米纤维素膜。
10.根据权利要求1-5任一所述纳米纤维素和氮化碳复合膜用于光催化降解有机物反应的用途。
CN201911399556.1A 2019-12-30 2019-12-30 一种纳米纤维素氮化碳复合膜及其制备方法和应用 Active CN111167493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911399556.1A CN111167493B (zh) 2019-12-30 2019-12-30 一种纳米纤维素氮化碳复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911399556.1A CN111167493B (zh) 2019-12-30 2019-12-30 一种纳米纤维素氮化碳复合膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111167493A true CN111167493A (zh) 2020-05-19
CN111167493B CN111167493B (zh) 2021-07-13

Family

ID=70647548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911399556.1A Active CN111167493B (zh) 2019-12-30 2019-12-30 一种纳米纤维素氮化碳复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167493B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076785A (zh) * 2020-08-28 2020-12-15 四川大学 一种氮化碳/氢氧化镧纳米纤维膜及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592446A (zh) * 2015-01-15 2015-05-06 宁波大学 四环素类抗生素的纳米纤维分子印迹聚合物的制备方法和应用
CN104722325A (zh) * 2015-02-27 2015-06-24 清华大学 一种三维宏观体多孔石墨相氮化碳光催化剂及其制备与应用
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
CN108714431A (zh) * 2018-03-22 2018-10-30 中南林业科技大学 一种纳米纤维素增强复合光催化剂及其制备方法和应用
CN109735963A (zh) * 2019-01-16 2019-05-10 江苏理工学院 一种氮化碳纳米纤维的制备方法及其应用
CN110327955A (zh) * 2019-06-13 2019-10-15 福建农林大学 一种碳纤维互穿微异质结氮化碳光催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
CN104592446A (zh) * 2015-01-15 2015-05-06 宁波大学 四环素类抗生素的纳米纤维分子印迹聚合物的制备方法和应用
CN104722325A (zh) * 2015-02-27 2015-06-24 清华大学 一种三维宏观体多孔石墨相氮化碳光催化剂及其制备与应用
CN108714431A (zh) * 2018-03-22 2018-10-30 中南林业科技大学 一种纳米纤维素增强复合光催化剂及其制备方法和应用
CN109735963A (zh) * 2019-01-16 2019-05-10 江苏理工学院 一种氮化碳纳米纤维的制备方法及其应用
CN110327955A (zh) * 2019-06-13 2019-10-15 福建农林大学 一种碳纤维互穿微异质结氮化碳光催化剂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076785A (zh) * 2020-08-28 2020-12-15 四川大学 一种氮化碳/氢氧化镧纳米纤维膜及其制备方法和用途
CN112076785B (zh) * 2020-08-28 2021-09-14 四川大学 一种氮化碳/氢氧化镧纳米纤维膜及其制备方法和用途

Also Published As

Publication number Publication date
CN111167493B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
Hoseini et al. Photocatalytic degradation of 2, 4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes
Yang et al. Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production
CN109603880B (zh) 中空管状氮化碳光催化剂及其制备方法和应用
Chen et al. Salt-assisted synthesis of 3D open porous gC 3 N 4 decorated with cyano groups for photocatalytic hydrogen evolution
CN106914264B (zh) 复合可见光催化剂的制备方法
Gu et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability
Zhao et al. Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity
Wu et al. An ultrasound-assisted deposition of NiO nanoparticles on TiO 2 nanotube arrays for enhanced photocatalytic activity
Tian et al. Low-cost and efficient visible-light-driven CaMg (CO3) 2@ Ag2CO3 microspheres fabricated via an ion exchange route
Phuruangrat et al. Ultrasonic-assisted synthesis and photocatalytic performance of ZnO nanoplates and microflowers
CN106669756B (zh) 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法
Wei et al. Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties
Yu et al. A facile approach to construct BiOI/Bi 5 O 7 I composites with heterostructures: efficient charge separation and enhanced photocatalytic activity
Zhang et al. Synergy of dopants and defects in ultrathin 2D carbon nitride sheets to significantly boost the photocatalytic hydrogen evolution
CN103752334A (zh) 离子液体促进合成石墨相氮化碳纳米片可见光催化剂
Wang et al. One-step, high-yield synthesis of gC 3 N 4 nanosheets for enhanced visible light photocatalytic activity
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN113318764A (zh) 一种氮缺陷/硼掺杂的管状氮化碳光催化剂的制备方法及应用
Zhao et al. Carbonized polymer dots/TiO 2 photonic crystal heterostructures with enhanced light harvesting and charge separation for efficient and stable photocatalysis
CN108906085A (zh) 一种Bi2S3/BiOBr复合光催化材料的制备方法及其应用
Yan et al. Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity
CN111167493B (zh) 一种纳米纤维素氮化碳复合膜及其制备方法和应用
Chang et al. ZIF-8-derived carbon-modified gC 3 N 4 heterostructure with enhanced photocatalytic activity for dye degradation and hydrogen production
Wang et al. Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO4 and PANI
CN103801354B (zh) 一种后退火处理的石墨相氮化碳空心球可见光催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant