CN111167457B - 基于硼掺杂的镍/半焦催化剂及其制备和应用 - Google Patents

基于硼掺杂的镍/半焦催化剂及其制备和应用 Download PDF

Info

Publication number
CN111167457B
CN111167457B CN202010100583.0A CN202010100583A CN111167457B CN 111167457 B CN111167457 B CN 111167457B CN 202010100583 A CN202010100583 A CN 202010100583A CN 111167457 B CN111167457 B CN 111167457B
Authority
CN
China
Prior art keywords
biomass
catalyst
semicoke
nickel
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010100583.0A
Other languages
English (en)
Other versions
CN111167457A (zh
Inventor
杜朕屹
刘红利
徐趁
李文英
冯杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010100583.0A priority Critical patent/CN111167457B/zh
Publication of CN111167457A publication Critical patent/CN111167457A/zh
Application granted granted Critical
Publication of CN111167457B publication Critical patent/CN111167457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于硼掺杂的镍/半焦催化剂,是以可溶性镍盐的水溶液和硼酸水溶液分别等体积浸渍生物质,干燥后加热至600~800℃进行热解,制备得到的以过渡金属镍为活性组分,生物质半焦为载体,并在生物质半焦中掺入能够与所述生物质半焦载体形成固溶体的助剂硼组成的金属负载型生物质半焦催化剂。本发明催化剂不需要对载体进行预处理,以其催化生物质气化焦油的水蒸气重整转化,具有较高的催化活性和稳定性,焦油转化率高、催化剂寿命长。

Description

基于硼掺杂的镍/半焦催化剂及其制备和应用
技术领域
本发明属于生物质能源化工技术领域,涉及一种用于催化生物质气化焦油水蒸气重整反应的金属负载型生物质半焦催化剂,以及该催化剂的制备方法。
背景技术
随着能源需求的增加和全球环境问题的日益严峻,大力发展清洁持续的可再生能源刻不容缓。生物质作为一种可再生能源,是未来继煤、石油和天然气之后的主要潜在燃料和化学品来源。
生物质气化可以有效地将生物质转化为合成气,进一步用于生产液体燃料、化学品和发电。然而,在生物质的气化过程中不可避免地会产生焦油。焦油的生成不但降低了气化效率,还会造成管道堵塞和环境污染等问题。利用水蒸气重整工艺可以降低焦油含量,改善产气品质,被普遍认为是一种具有良好工业化应用前景的焦油处理方法。
生物质半焦价格低廉,而且具有孔隙结构发达、可利用生物质原料“原位”制备等特点。因此,生物质半焦及其负载金属催化剂被广泛用于焦油重整的研究中。
CN 103846088A涉及一种镍基生物质焦油水蒸气重整催化剂及其制备与应用方法,虽然该发明选用廉价的褐煤作为焦油重整催化剂的载体,但是在负载活性金属前,需要将褐煤载体浸于氢氧化钠水溶液中并煮沸0.5~1h进行活化,制备过程相对复杂。
CN 107715884A公开了一种金属负载型生物质半焦催化剂及其制备方法,其将金属盐溶液浸渍在酸洗后的生物质上,再通过热解制备得到重整催化剂。但是酸洗会产生大量废水,从而对环境造成一定的污染。
Shen等(Chinese Journal of Chemical Engineering, 2018, 26(02): 322-329.)在硝酸处理过的活性炭上负载镍,用于焦油模型化合物甲苯的水蒸气重整转化;Qian等(Fuel, 2017, 187: 128-136.)在KOH活化和硝酸预处理后的半焦上负载不同前驱体的镍盐,用于甲苯和萘的水蒸气重整。
这些催化剂在制备前,都需要对载体碳材料进行预处理,然后再负载活性金属。对载体进行预处理,一方面使得制备过程繁琐,另一方面会产生大量废水,造成环境污染。
更为重要的是,现有研究发现,这类以碳材料为载体制备的催化剂,在焦油的水蒸气重整反应过程中,容易因碳材料载体的气化消耗而失活,严重缩短了催化剂的使用寿命。
例如,Cao等(Fuel, 2018, 217: 515-521.)以褐煤焦负载镍作为催化剂,用于生物质焦油模型化合物甲苯的水蒸气重整反应,在研究气氛对于催化剂上碳沉积的影响时发现,催化剂在氢气气氛下具有较好的抗积碳性能,但是在水蒸气气氛下,特别是在650℃、水碳比为2的条件下,褐煤焦会因为与水蒸气的反应而消耗,造成催化剂的寿命减短,并最终失活。
Li等(Fuel Processing Technology, 2010, 91(8): 889-894.)在褐煤上负载镍,经600℃碳化处理得到Ni/褐煤焦催化剂,用于两段式固定床反应器生物质气化过程,结果表明,在450~650℃的较低温度下,催化剂作用下的H2产率是不加催化剂的16.6倍,且反应温度高于500℃时的焦油转化率和产气率更高。但当反应温度过高时,载体褐煤焦会参与水蒸气气化反应,造成催化剂寿命减短,最终失活。
发明内容
本发明的目的是提供一种基于硼掺杂的镍/半焦催化剂,本发明催化剂不需要对载体进行预处理,且具有较高的焦油催化活性和稳定性。
提供一种方法简单的所述催化剂的制备方法,是本发明的另一目的。
本发明所述的基于硼掺杂的镍/半焦催化剂是以过渡金属镍为活性组分,生物质半焦为载体,并在生物质半焦中掺入能够与所述生物质半焦载体形成固溶体的助剂硼组成的金属负载型生物质半焦催化剂。其中,所述活性组分镍占催化剂总质量的5~20%,助剂硼占催化剂的总质量以B计为1~10%。
本发明所述的基于硼掺杂的镍/半焦催化剂可以以nNi-xB/C(n=5~20;x=1~10)表示。
本发明可以采用下述方法制备得到所述基于硼掺杂的镍/半焦催化剂:以可溶性镍盐的水溶液等体积浸渍生物质,干燥后得到镍盐/生物质前驱体;再以硼酸水溶液等体积浸渍镍盐/生物质前驱体,再次干燥后,加热至600~800℃进行热解,制备得到基于硼掺杂的镍/半焦催化剂。
上述热解过程中,生物质热解形成生物质半焦,同时与可溶性镍盐热分解得到的氧化物发生碳热还原反应形成镍活性组分,硼酸则脱水形成硼氧化物,部分硼原子可以进入到生物质半焦的碳层中,与碳形成固溶体。
本发明所述催化剂的制备方法中,所述用于热解形成生物质半焦载体的原料生物质可以是各种农林废弃物,例如,包括但不限于木屑、秸秆、玉米芯、树枝、果壳中的一种或几种。
进一步地,本发明给出了所述基于硼掺杂的镍/半焦催化剂的更具体的制备方法。
1)将生物质加入等体积的可溶性镍盐水溶液中,浸渍不少于24h,干燥后得到镍盐/生物质前驱体。
2)以等体积的硼酸溶液浸渍所述镍盐/生物质前驱体不少于1h,干燥后得到掺入硼的镍盐/生物质前驱体。
3)在管式炉中加入所述掺入硼的镍盐/生物质前驱体,N2气氛下升温至600~800℃保温热解,制备得到所述基于硼掺杂的镍/半焦催化剂。
本发明上述制备方法中,优选将原料生物质粉碎成40~60目的颗粒。
进而,本发明优选在100~120℃条件下对所述两次等体积浸渍得到的前驱体进行干燥。
进一步地,本发明所述的保温热解是将管式炉以5~10℃/min的速率从室温升温至600~800℃,保持温度热解30~120min。
更进一步地,在所述保温热解的过程中,优选以流速500mL/min向管式炉中通入N2
本发明制备的基于硼掺杂的镍/半焦催化剂作为一种金属负载型生物质半焦催化剂,可以作为气化焦油重整用催化剂,用于催化生物质气化焦油的水蒸气重整转化。
本发明针对普通半焦负载型金属催化剂容易与水蒸气之间发生气化反应,导致催化剂稳定性较差的问题,在镍/半焦催化剂中掺入硼,制备得到了一种具有较高催化活性和稳定性的硼掺杂金属负载型生物质半焦催化剂,焦油转化率高、催化剂寿命长,较普通镍/半焦催化剂更加稳定。
生物质中固有的碱金属及碱土金属会催化生物质半焦与重整介质水蒸气之间的气化反应,使得生物质半焦载体在焦油重整反应过程中被不断消耗,进而造成催化剂失活。本发明通过在催化剂中掺入硼并使其与生物质半焦载体形成固溶体,有效抑制了碱金属及碱土金属的催化作用,提高了生物质半焦载体的石墨化程度,从而降低了生物质半焦的气化反应性,减缓或抑制了生物质半焦载体的气化消耗。
一方面,由于硼的含氧酸呈弱酸性,而生物质半焦载体中所含的碱金属与碱土金属通常以碱性氧化物的形态存在,这些碱性氧化物(以MxO形式表示)与硼酸热解脱水形成的B2O3发生下述反应:2B 2 O 3 +M x O=M x B 4 O 7 。该反应将会消耗生物质半焦载体中的碱/碱土金属氧化物,从而抑制碱金属及碱土金属的催化作用。因此,本发明无需对生物质原料进行酸洗脱灰预处理,可以直接应用。同时,由于硼酸失水后形成的B2O3吸附在生物质半焦的微孔表层,可以阻止氧化性气体向内层扩散,抑制生物质半焦的气化反应,即形成了物理阻隔的作用。
另一方面,由于硼的原子半径与碳的原子半径非常接近,在本发明制备催化剂的热解过程中,硼原子向半焦的碳层扩散,取代点阵中的碳原子或者进入半焦石墨结构的层间空隙、空位、缺陷处形成固溶体,从而提高了半焦内部的有序化程度,促进了半焦载体的石墨化,同样抑制了半焦的气化反应,有效提高了半焦载体的稳定性。
附图说明
图1是不同硼负载量的5Ni-xB/C催化剂的氮气吸-脱附曲线图。
图2是不同硼负载量的5Ni-xB/C催化剂的XRD图。
图3是不同硼负载量的5Ni-xB/C催化剂的拉曼光谱图。
图4是5Ni/C与5Ni-3.5B/C催化剂的热重图。
图5是不同硼负载量的5Ni-xB/C催化剂的恒温性能评价实验。
图6是不同硼负载量的5Ni-xB/C催化剂的程序升温性能评价实验。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不是限制本发明的保护范围。本领域普通技术人员在不脱离本发明原理和宗旨的情况下,针对这些实施例进行的各种变化、修改、替换和变型,均应包含在本发明的保护范围之内。
实施例1。
称取0.743g Ni(NO3)2·6H2O,配制成45mL硝酸镍水溶液。称取0.172g H3BO3,配制成45mL硼酸水溶液。
称取以玉米芯制备的40~60目的生物质颗粒10g,加入上述硝酸镍水溶液中,室温下超声分散震荡1h,搅拌24h进行等体积浸渍。
将充分浸渍有硝酸镍的生物质颗粒在105℃下干燥12h,得到镍盐/生物质前驱体。
得到的镍盐/生物质前驱体加入上述硼酸水溶液中,室温下搅拌1h再次进行等体积浸渍。
浸渍后的前驱体在105℃干燥12h后,N2气氛下,以10℃/min的升温速率,从室温升温至600℃,保温30min,制备得到硼掺杂的镍/半焦催化剂5Ni-1B/C。
本实施例制备催化剂中,Ni和B的质量分数分别为5%和1%。
实施例2。
称取0.743g Ni(NO3)2·6H2O,配制成45mL硝酸镍水溶液。称取0.601g H3BO3,配制成45mL硼酸水溶液。
称取以玉米芯制备的40~60目的生物质颗粒10g,加入上述硝酸镍水溶液中,室温下超声分散震荡1h,搅拌24h进行等体积浸渍。
将充分浸渍有硝酸镍的生物质颗粒在105℃下干燥12h,得到镍盐/生物质前驱体。
得到的镍盐/生物质前驱体加入上述硼酸水溶液中,室温下搅拌1h再次进行等体积浸渍。
浸渍后的前驱体在105℃干燥12h后,N2气氛下,以10℃/min的升温速率,从室温升温至600℃,保温30min,制备得到硼掺杂的镍/半焦催化剂5Ni-3.5B/C。
本实施例制备催化剂中,Ni和B的质量分数分别为5%和3.5%。
实施例3。
除H3BO3用量为0.858g外,其他制备过程均与实施例1完全相同,制备得到硼掺杂的镍/半焦催化剂5Ni-5B/C。
本实施例制备催化剂中,Ni和B的质量分数均为5%。
实施例4。
除H3BO3用量为1.201g外,其他制备过程均与实施例1完全相同,制备得到硼掺杂的镍/半焦催化剂5Ni-7B/C。
本实施例制备催化剂中,Ni和B的质量分数分别为5%和7%。
实施例5。
称取1.486g Ni(NO3)2·6H2O,配制成45mL硝酸镍水溶液。称取0.343g H3BO3,配制成45mL硼酸水溶液。
称取以玉米芯制备的40~60目的生物质颗粒10g,加入上述硝酸镍水溶液中,室温下超声分散震荡1h,搅拌24h进行等体积浸渍。
将充分浸渍有硝酸镍的生物质颗粒在105℃下干燥12h,得到镍盐/生物质前驱体。
得到的镍盐/生物质前驱体加入上述硼酸水溶液中,室温下搅拌1h再次进行等体积浸渍。
浸渍后的前驱体在105℃干燥12h后,N2气氛下,以10℃/min的升温速率,从室温升温至700℃,保温60min,制备得到硼掺杂的镍/半焦催化剂10Ni-2B/C。
本实施例制备催化剂中,Ni和B的质量分数分别为10%和2%。
实施例6。
称取2.973g Ni(NO3)2·6H2O,配制成45mL硝酸镍水溶液。称取1.716g H3BO3,配制成45mL硼酸水溶液。
称取以松木屑制备的40~60目的生物质颗粒10g,加入上述硝酸镍水溶液中,室温下超声分散震荡1h,搅拌24h进行等体积浸渍。
将充分浸渍有硝酸镍的生物质颗粒在105℃下干燥12h,得到镍盐/生物质前驱体。
得到的镍盐/生物质前驱体加入上述硼酸水溶液中,室温下搅拌1h再次进行等体积浸渍。
浸渍后的前驱体在105℃干燥12h后,N2气氛下,以10℃/min的升温速率,从室温升温至800℃,保温90min,制备得到硼掺杂的镍/半焦催化剂20Ni-10B/C。
本实施例制备催化剂中,Ni和B的质量分数分别为20%和10%。
对比例1。
称取0.743g Ni(NO3)2·6H2O,配制成45mL硝酸镍水溶液。
称取以玉米芯制备的40~60目的生物质颗粒10g,加入上述硝酸镍水溶液中,室温下超声分散震荡1h,搅拌24h进行等体积浸渍。
将充分浸渍有硝酸镍的生物质颗粒在105℃下干燥12h,得到镍盐/生物质前驱体。
得到的镍盐/生物质前驱体在N2气氛下,以10℃/min的升温速率,从室温升温至600℃,保温30min,制备得到不含硼的镍/半焦催化剂5Ni/C。
该催化剂中Ni的质量分数为5%。
应用例1。
采用氮气吸附法,测定出相对压力下各实施例和对比例制备催化剂的氮气吸附量,根据BET公式计算其对应的比表面积,并以X射线衍射仪测定各催化剂的平均金属晶粒尺寸,对催化剂的物理性能进行表征。
根据图1的氮气吸-脱附曲线图可以看出,各实施例和对比例制备催化剂在相对较低的压力下(P/P 0 <0.2)时吸附量就很高,但随着压力的增大,吸附量变化很小,表明催化剂大部分是以微孔形式存在。
图2的X射线衍射图显示,除了镍晶粒尺寸的三个峰外,并没有检测到单质硼或硼氧化物的衍射峰,说明硼已经分散进入半焦载体中。而且,随着硼负载量的增加,镍的特征衍射峰强度逐渐增大,半峰宽变窄,说明活性组分镍的晶粒尺寸在逐渐增大。进一步通过谢乐公式计算出Ni(111)的晶粒尺寸,可以证实其的增大程度。具体结果见表1。
Figure 296337DEST_PATH_IMAGE001
可以看出,与对比例相比,各实施例制备催化剂的比表面积变化不大,但是金属颗粒尺寸明显大于对比例。
因此,本发明制备的催化剂在比表面积基本不变的情况下,金属颗粒尺寸变大,耐烧结性更好,有利于催化剂稳定性的提高。
应用例2。
采用拉曼光谱测定各实施例和对比例制备催化剂的石墨化程度,结果如图3所示。
G带代表石墨结构,D带代表定向碳结构,D带与G带强度(峰值面积)之比(ID/IG)作为研究晶体或类石墨碳结构的重要参数,已被广泛应用。ID/IG通常会随着石墨化程度的提高而降低。
半焦载体石墨化程度的提高,可以有效减弱半焦的气化反应,从而提高Ni/C催化剂的稳定性。
从图3可以看出,随着硼掺杂量的增加,Ni/C催化剂中的ID/IG呈现先减小后增大的趋势,说明适量的硼掺杂有利于未处理半焦载体石墨化程度的提高。而当硼负载量继续增多时,固溶于碳中的硼达到饱和状态,过量硼会占据间隙位置,导致石墨层间距变大,从而造成半焦载体石墨化程度的降低。
应用例3。
取实施例2和对比例1制备的催化剂,在水蒸气气氛下,以10℃/min的升温速率,从25℃升温至800℃,利用热重分析仪分析其气化稳定性,实验结果如图4。
从图中可以看出,催化剂样品的质量百分率随着温度的升高而降低。5Ni/C催化剂在467℃左右开始有明显失重,650℃左右失重趋于平稳。然而,5Ni-3.5B/C催化剂在510℃才开始有明显失重,750℃失重趋于平稳。5Ni/C和5Ni-3.5B/C的最大失重速率分别发生在511℃和547.3℃左右。
结果表明,硼掺杂提高了5Ni/C催化剂的气化稳定性和气化温度。
应用例4。
本应用例以甲苯作为生物质焦油模型化合物,在恒温条件下进行催化剂的性能评价实验。
实验用原料气的体积组成为甲苯/水蒸气/N2=1/21/178,催化剂质量54.4mg,反应温度600℃,常压,重时空速4h-1,反应时间10h。具体评价结果见图5。
从图中可以看出,对于无掺杂的5Ni/C催化剂,大约1.5h后催化剂完全失活,而不同比例硼掺杂的催化剂达到失活的时间均有所延长,表明硼掺杂可以有效提高5Ni/C催化剂的稳定性。
通过实验可以看出,本发明催化剂催化生物质焦油模型化合物甲苯的活性和稳定性明显高于对比例。
应用例5。
本应用例以甲苯作为生物质焦油模型化合物,在程序升温条件下进行催化剂的性能评价实验。
实验用原料气的体积组成为甲苯/水蒸气/N2=1/21/178,催化剂质量54.4mg,反应温度400~750℃,升温速率1℃/min,常压,重时空速4h-1。具体评价结果见图6。
从图中可以看出,随着温度的升高,甲苯转化率随之升高,当达到一定温度时,甲苯转化率随着温度的升高逐渐降低,说明催化剂逐渐失活。从图中还可以看出,对比例催化剂5Ni/C在实验温度范围内的甲苯转化率最高为45.7%,且600℃时由于与水蒸气反应消耗,已经完全失活,而实施例催化剂5Ni-3.5B/C和5Ni-5B/C在实验温度范围内的甲苯转化率最高为97%左右,到达650℃左右活性才开始下降,直到700℃左右完全失活。相比于5Ni/C催化剂,硼掺杂后催化剂达到失活的温度升高了约100℃。
由此可见,在甲苯水蒸气重整体系中,硼掺杂显著提高了生物质半焦在反应过程中的稳定性。

Claims (10)

1.一种基于硼掺杂的镍/半焦催化剂,是以过渡金属镍为活性组分,生物质半焦为载体,并在生物质半焦中掺入能够与所述生物质半焦载体形成固溶体的助剂硼组成的金属负载型生物质半焦催化剂,其中,所述活性组分镍占催化剂总质量的5~20%,助剂硼占催化剂的总质量以B计为1~10%。
2.权利要求1所述基于硼掺杂的镍/半焦催化剂的制备方法,是以可溶性镍盐的水溶液等体积浸渍生物质,干燥后得到镍盐/生物质前驱体;再以硼酸水溶液等体积浸渍镍盐/生物质前驱体,再次干燥后,加热至600~800℃进行热解,制备得到基于硼掺杂的镍/半焦催化剂。
3.根据权利要求2所述的制备方法,其特征是按照以下方法制备所述催化剂:
1)将生物质加入等体积的可溶性镍盐水溶液中,浸渍不少于24h,干燥后得到镍盐/生物质前驱体;
2)以等体积的硼酸溶液浸渍所述镍盐/生物质前驱体不少于1h,干燥后得到掺入硼的镍盐/生物质前驱体;
3)在管式炉中加入所述掺入硼的镍盐/生物质前驱体,N2气氛下升温至600~800℃保温热解,制备得到所述基于硼掺杂的镍/半焦催化剂。
4.根据权利要求2或3所述的制备方法,其特征是所述的生物质是木屑、秸秆、玉米芯、树枝、果壳中的一种或几种。
5.根据权利要求2或3所述的制备方法,其特征是将所述生物质粉碎成40~60目的颗粒。
6.根据权利要求2或3所述的制备方法,其特征是所述的干燥在100~120℃条件下进行。
7.根据权利要求2或3所述的制备方法,其特征是所述的热解时间为30~120min。
8.根据权利要求3所述的制备方法,其特征是将管式炉以5~10℃/min的速率从室温升温至600~800℃,保持温度热解30~120min。
9.根据权利要求3所述的制备方法,其特征是以流速500mL/min向管式炉中通入N2
10.权利要求1所述基于硼掺杂的镍/半焦催化剂作为生物质气化焦油水蒸气重整催化剂的应用。
CN202010100583.0A 2020-02-19 2020-02-19 基于硼掺杂的镍/半焦催化剂及其制备和应用 Active CN111167457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010100583.0A CN111167457B (zh) 2020-02-19 2020-02-19 基于硼掺杂的镍/半焦催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010100583.0A CN111167457B (zh) 2020-02-19 2020-02-19 基于硼掺杂的镍/半焦催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN111167457A CN111167457A (zh) 2020-05-19
CN111167457B true CN111167457B (zh) 2022-05-13

Family

ID=70621358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010100583.0A Active CN111167457B (zh) 2020-02-19 2020-02-19 基于硼掺杂的镍/半焦催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN111167457B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376575A (zh) * 2023-03-16 2023-07-04 徐州工程学院 一种生物质原位-非原位催化热解方法
CN117431082B (zh) * 2023-12-11 2024-03-08 成都万潜科延科技有限公司 生物质热解产生的焦油的催化碳化方法、碳材料及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2115995A (en) * 1994-03-02 1995-09-18 William C. Orr Unleaded mmt fuel compositions
CN102413924A (zh) * 2009-02-23 2012-04-11 环球油品公司 重整催化剂
CN104014347A (zh) * 2014-06-10 2014-09-03 太原理工大学 生物质焦油重质组分轻质化催化剂的制备方法
CN104755163A (zh) * 2012-09-05 2015-07-01 雪佛龙美国公司 加氢转化多金属催化剂及其制备方法
CN107715884A (zh) * 2017-11-14 2018-02-23 太原理工大学 一种金属负载型生物质半焦催化剂及其制备方法
CN110711584A (zh) * 2019-10-08 2020-01-21 宁夏大学 半焦负载型焦油水蒸气重整催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122492B2 (en) * 2003-02-05 2006-10-17 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2115995A (en) * 1994-03-02 1995-09-18 William C. Orr Unleaded mmt fuel compositions
CN102413924A (zh) * 2009-02-23 2012-04-11 环球油品公司 重整催化剂
CN104755163A (zh) * 2012-09-05 2015-07-01 雪佛龙美国公司 加氢转化多金属催化剂及其制备方法
CN104014347A (zh) * 2014-06-10 2014-09-03 太原理工大学 生物质焦油重质组分轻质化催化剂的制备方法
CN107715884A (zh) * 2017-11-14 2018-02-23 太原理工大学 一种金属负载型生物质半焦催化剂及其制备方法
CN110711584A (zh) * 2019-10-08 2020-01-21 宁夏大学 半焦负载型焦油水蒸气重整催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound";Quang Thang Trinh等;《Catalysis Science & Technology》;20160502;第6卷;第5871-5883页 *
"Ni/半焦催化甲苯水蒸气重整反应的稳定性研究";杜朕屹等;《太原理工大学学报》;20191130;第50卷(第6期);第771-777页 *
"Promotional effect of boron in catalytic tar reforming: First principles investigation using toluene as a model compound";Trinh, QT等;《ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL》;20160313;第251卷;第1页 *

Also Published As

Publication number Publication date
CN111167457A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Shan et al. A review of recent developments in catalytic applications of biochar-based materials
Lee et al. Review of the use of activated biochar for energy and environmental applications
CN107715884B (zh) 一种金属负载型生物质半焦催化剂及其制备方法
Li et al. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping
Saka et al. Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts
CN111167457B (zh) 基于硼掺杂的镍/半焦催化剂及其制备和应用
Farooq et al. Catalytic steam gasification of food waste using Ni-loaded rice husk derived biochar for hydrogen production
Fakayode et al. Simplistic two-step fabrication of porous carbon-based biomass-derived electrocatalyst for efficient hydrogen evolution reaction
CN109569612B (zh) 一种以活性半焦为载体的纳米二元金属基焦油催化裂解催化剂及其制备方法
WO2023029192A1 (zh) 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用
Yin et al. Fabrication of P-doped porous carbon catalysts, with inherent N functionality, from waste peanut shells and their application in the metal-free aerobic oxidation of alcohols
Wang et al. Synthesis and applications of biomass-derived porous carbon materials in energy utilization and environmental remediation
Shang et al. Hydrogen-rich syngas production via catalytic gasification of sewage sludge and wheat straw using corn stalk char-supported catalysts
Yuan et al. Recent advances and challenges in biomass-derived carbon materials for supercapacitors: A review
Liu et al. Catalytic pyrolysis of tar model compound with various bio-char catalysts to recycle char from biomass pyrolysis
Wang et al. Catalytic gasification of rice hull by dielectric barrier discharge non-thermal plasma over potassium catalyst
Liu et al. A green route for hydrogen production from alkaline thermal treatment (ATT) of biomass with carbon storage
Akpasi et al. Biochar Development as a Catalyst and Its Application
Guo et al. Preparation of hydrogen-rich gas from waste polyurethane foam by steam gasification and catalytic reforming in a two-stage fixed bed reactor
CN112108138B (zh) 一种生物质水热碳载体催化剂及其制备方法与应用
Zhao et al. Catalytic decomposition of methane over enteromorpha prolifera-based hierarchical porous biochar
CN114214640A (zh) 生物质碳基纳米碳化钼-氮化钼异质结复合催化剂及方法
CN115212911A (zh) 一种镍负载氮掺杂多级孔生物炭材料及其制备方法和应用
CN107952442A (zh) 一种生物质与煤制甲烷的催化剂及其制备方法和应用
CN111514907B (zh) 一种以生物质基碳为结构支架的电催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant