CN111167442A - 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用 - Google Patents

水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用 Download PDF

Info

Publication number
CN111167442A
CN111167442A CN202010007686.2A CN202010007686A CN111167442A CN 111167442 A CN111167442 A CN 111167442A CN 202010007686 A CN202010007686 A CN 202010007686A CN 111167442 A CN111167442 A CN 111167442A
Authority
CN
China
Prior art keywords
composite oxide
ruthenium
catalyst
oxide material
hydrated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010007686.2A
Other languages
English (en)
Inventor
张龙生
王丽平
张波
彭慧胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202010007686.2A priority Critical patent/CN111167442A/zh
Publication of CN111167442A publication Critical patent/CN111167442A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/23Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/827Iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于析氧反应催化剂技术领域,具体为一种水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用。本发明材料简写为RuIrMOx,其中M代表Mg、Ca、Sr或Ba等水合金属。本发明RuIrMOx复合氧化物中的水合金属与水/氢氧根离子(H2O/OH)之间会产生非共价相互作用,会增强复合氧化物表面与H2O/OH之间的结合,进而提高氧化物催化剂的反应速率。本发明制备工艺简单,且能实现高活性、长循环的析氧催化剂,在电解水领域具有良好的应用前景。

Description

水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用
技术领域
本发明属于析氧反应催化剂技术领域,具体涉及一种水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用。
背景技术
析氧反应(OER)是电解水,二氧化碳电解池和微生物电合成等装置中的阳极反应。常规电解水装置采用强碱或强酸电解液,会对设备和隔膜产生严重腐蚀,降低了装置的稳定性。此外,由于酶和细菌无法在酸/碱性电解液中生存,为了使微生物电合成装置得以稳定工作,须采用中性电解液体系的OER电极。然而,目前中性OER催化剂的过电位仍较高,反应速率较为缓慢,导致能量转换效率较低。一般而言,OER过程包括四个电子转移步骤,以及反应中间产物(*OH、*O和*OOH)的吸脱附过程。OER过程的第一步是催化剂表面吸附水分子(H2O)或氢氧根离子(OH)。由于中性电解液的OH浓度比碱性电解液低几个数量级,中性OER体系需要额外的H2O吸附和解离过程,以提供OER所需的OH,从而产生了更大的势垒。近年来,研究表明水合金属阳离子(Mn+)和H2O/OH之间的非共价相互作用会产生水合作用,会形成OHad-Mn+(H2O)x,从而增强催化剂表面对H2O/OH的吸附。因此,在钌铱复合氧化物中引入水合金属,可能会增强催化剂表面对H2O/OH的吸附,并提高催化剂的反应速率。
发明内容
本发明的目的在于提供一种水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用。
本发明提供的水合金属掺杂的钌铱复合氧化物材料,其中,钌的原子百分含量为20-40%,铱的原子百分含量为30-60%;水合金属为Mg、Ca、Sr或Ba等金属的一种,其原子百分含量为10-20%。总原子量为100%。简写为RuIrMOx,其中M代表Mg、Ca、Sr或Ba等水合金属。
本发明提供的水合金属掺杂的钌铱复合氧化物材料的制备方法,具体步骤如下:
(1)称取1-5 g三氯化钌(RuCl3)、0.5-2.5 g三氯化铱(IrCl3)和0.1-0.8 g水合金属盐(MgCl2、CaCl2、SrCl2或BaCl2等),溶解在50-200 mL N,N-二甲基甲酰胺溶剂中;
(2)然后,将5-50 mL环氧丙烷和1-10 mL去离子水滴加在溶液中,并通过振荡使之充分混合;待溶液静置2-5天后,离心得到沉淀产物,并用丙酮清洗沉淀产物;
(3)待产物干燥后,将产物放入管式炉中,在空气氛围中以5-20℃/min 的升温速率升至300-800℃,并煅烧2-6小时,制备得到水合金属掺杂的钌铱复合氧化物材料。
本发明的水合金属掺杂的钌铱复合氧化物材料,其中水合金属与水/氢氧根离子(H2O/OH)之间会产生非共价相互作用,会增强复合氧化物表面与H2O/OH之间的结合,进而提高氧化物催化剂的反应速率。该材料可用于析氧反应催化剂电极的制备,具体制备步骤如下:将水合金属掺杂的钌铱复合氧化物材料与导电剂分散在乙醇和水的混合溶剂中,并加入粘结剂,超声分散后,将催化剂浆料滴涂在催化剂载体上。待干燥后,可作为电解水析氧反应的催化剂电极。其中,导电剂为碳黑、碳纳米管、石墨烯等,导电剂的比重为10-30%。粘结剂为5%全氟磺酸型聚合物溶液,粘结剂在催化剂浆料中的比重为5-10%。催化剂载体为碳纸、金属泡沫、金属箔片等,催化剂的负载量为2-20 mg/cm2
以该复合电极作为中性体系电解水装置的阳极,用商业20-60%铂碳催化剂制备的复合电极作为阴极,电解液为5-15 mol/L的硝酸钠或硫酸钠水溶液,隔膜采用沃特曼玻璃纤维滤纸,组装得到中性电解水装置,并进行电化学测试。
本发明制备工艺简单,且能实现高活性、长循环的析氧催化剂,在电解水领域具有良好的应用前景。
附图说明
图1为RuIrCaOx复合氧化物材料的透射电镜照片。
图2为RuIrCaOx复合氧化物材料的能谱分布图。标尺为50 nm。
图3为RuIrCaOx复合氧化物材料表面结构的表征图。其中,a,为热重分析曲线;b,为氧元素的高分辨光电子能谱曲线及其拟合/分峰曲线。
图4为用RuIrCaOx复合氧化物材料制备的复合电极的电化学性能图。其中,a为线性扫描伏安曲线;b为采用恒流模式进行稳定性测试的电势曲线。电解液为CO2饱和的0.5 MKHCO3水溶液,线性扫描伏安测试的扫速为5mV/s,恒流测试的电流密度为10 mA/cm2
图5为RuIrCaOx复合氧化物材料作为阳极催化剂的中性体系电解水装置的电化学性能图。其中,a为极化曲线;b为采用恒流模式进行稳定性测试的电压曲线,电流密度为200mA/cm2
具体实施方式
实施例1
(1)水合金属掺杂的钌铱复合氧化物材料的制备:称取1.2g三氯化钌(RuCl3)、0.5 g三氯化铱(IrCl3)和0.2 g氯化钙(CaCl2),溶解在50 mL N,N-二甲基甲酰胺溶剂中。然后,将10mL环氧丙烷和2mL去离子水滴加在溶液中,并通过振荡使之充分混合。待溶液静置3天后,离心得到沉淀产物,并用丙酮清洗沉淀产物。待产物干燥后,将产物放入管式炉中,在空气氛围中以5℃/min 的升温速率升至400 ℃,煅烧2小时,制备得到RuIrCaOx复合氧化物材料。如图1和图2所示,RuIrCaOx复合氧化物呈纳米颗粒状,尺寸大小范围2-6 nm,氧化物中的钌、铱、钙和氧元素呈均匀分布。如图3所示,RuIrCaOx复合氧化物材料在氮气氛围中加热至150℃时的失重为5%,表明其表面吸附的H2O/OH的比重约为5%。此外,根据氧元素的高分辨光电子能谱的分峰结果,RuIrCaOx复合氧化物材料表面吸附的OH占H2O/OH的比重约为70%;
(2)水合金属掺杂的钌铱复合氧化物催化剂电极的制备:将50 mgRuIrCaOx复合氧化物材料与10 mg碳黑分散在5 mL乙醇和水(体积比为1/4)的混合溶剂中,并加入80μL的5%全氟磺酸型聚合物溶液,超声30分钟后,将催化剂浆料滴涂在1.6 mm厚的泡沫镍上。待自然干燥后,制备得到析氧反应催化剂电极,催化剂的负载量为10 mg/cm2。如图4所示,该催化剂电极在CO2饱和的0.5 M KHCO3水溶液中50 mA/cm2的电势为1.586 V,即过电位为356 mV。此外,在200小时的恒流测试过程中,电势没有出现明显的增长,表明该催化剂电极具备良好的稳定性。
实施例2
(1)水合金属掺杂的钌铱复合氧化物材料的制备:称取2.4g三氯化钌(RuCl3)、1 g三氯化铱(IrCl3)和0.4 g氯化钙(CaCl2),溶解在100 mL N,N-二甲基甲酰胺溶剂中。然后,将20mL环氧丙烷和4mL去离子水滴加在溶液中,并通过振荡使之充分混合。待溶液静置3天后,离心得到沉淀产物,并用丙酮清洗沉淀产物。待产物干燥后,将产物放入管式炉中,在空气氛围中以15 ℃/min 的升温速率升至400 ℃,煅烧3小时,制备得到RuIrCaOx复合氧化物材料;
(2)水合金属掺杂的钌铱复合氧化物催化剂电极的制备:将50 mgRuIrCaOx复合氧化物材料与15 mg碳黑分散在5 mL乙醇和水(体积比为1/4)的混合溶剂中,并加入100μL的5%全氟磺酸型聚合物溶液,超声30分钟后,将催化剂浆料滴涂在碳纸上。待自然干燥后,制备得到析氧反应催化剂电极,催化剂的负载量为5 mg/cm2
(3)基于水合金属掺杂的钌铱复合氧化物催化剂电极的中性电解水装置的组装及其性能测试:将上述得到的RuIrCaOx复合氧化物催化剂电极作为阳极,以使用商业20%铂碳催化剂负载在碳纸上的电极作为阴极。电解液为10 mol/L的硝酸钠水溶液,隔膜采用沃特曼玻璃纤维滤纸,组装得到中性电解水装置,并进行电化学测试。如图5所示,该中性电解水装置在100、200、300和400 mA/cm2的电压为1.98、2.12、2.24和2.35 V。此外,在恒流测试过程中电压没有出现明显的增长,表明该中性电解水装置具备良好的稳定性。

Claims (5)

1.一种水合金属掺杂的钌铱复合氧化物材料,其特征在于,所述复合氧化物材料中,钌的原子百分含量为20-40%,铱的原子百分含量为30-60%;水合金属为Mg、Ca、Sr或Ba金属的一种,其原子百分含量为10-20%;总原子量为100%。
2.一种如权利要求1所述的水合金属掺杂的钌铱复合氧化物材料的制备方法,其特征在于,具体步骤如下:
(1)称取1-5 g三氯化钌、0.5-2.5 g三氯化铱和0.1-0.8 g水合金属盐,溶解在50-200mL N,N-二甲基甲酰胺溶剂中;所述水合金属盐为MgCl2、CaCl2、SrCl2或BaCl2
(2)然后,将5-50 mL环氧丙烷和1-10 mL去离子水滴加在溶液中,并通过振荡使之充分混合;将溶液静置2-5天,离心得到沉淀产物,并用丙酮清洗沉淀产物;产物干燥;
(3)将干燥的产物放入管式炉中,在空气氛围中以5-20℃/min 的升温速率升至300-800 ℃,并煅烧2-6小时,制备得到水合金属掺杂的钌铱复合氧化物材料。
3.如权利要求1所述的水合金属掺杂的钌铱复合氧化物材料在制备析氧反应催化剂电极中的应用。
4.根据权利要求3所述的应用,其特征在于,具体步骤如下:
将水合金属掺杂的钌铱复合氧化物材料与导电剂分散在乙醇和水的混合溶剂中,并加入粘结剂,超声分散后,将催化剂浆料滴涂在催化剂载体上;干燥,即得电解水析氧反应的催化剂电极;其中,导电剂为碳黑、碳纳米管或石墨烯,导电剂的比重为10-30%;粘结剂为5%全氟磺酸型聚合物溶液,粘结剂在催化剂浆料中的比重为5-10%;催化剂载体为碳纸、金属泡沫或金属箔片,催化剂的负载量为2-20 mg/cm2
5. 一种中性电解水装置,其特征在于,以权利要求1所述的水合金属掺杂的钌铱复合氧化物材料作为阳极催化剂,以20-60%铂碳催化剂作为阴极催化剂,电解液为5-15 mol/L的硝酸钠或硫酸钠水溶液,隔膜采用沃特曼玻璃纤维滤纸,组装得到中性电解水装置。
CN202010007686.2A 2020-01-05 2020-01-05 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用 Pending CN111167442A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010007686.2A CN111167442A (zh) 2020-01-05 2020-01-05 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010007686.2A CN111167442A (zh) 2020-01-05 2020-01-05 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111167442A true CN111167442A (zh) 2020-05-19

Family

ID=70618695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010007686.2A Pending CN111167442A (zh) 2020-01-05 2020-01-05 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167442A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265681A (zh) * 2021-04-08 2021-08-17 复旦大学 原子级均分散的钌基多元金属氧化物材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322631A1 (en) * 2011-12-22 2014-10-30 Umicore Ag & Co., Kg Precious metal oxide catalyst for water electrolysis
CN109772410A (zh) * 2019-02-21 2019-05-21 西南大学 一种高效铱基电解水双功能催化剂及其制备方法和应用
CN110354848A (zh) * 2019-05-24 2019-10-22 深圳欧赛技术有限公司 PtRu催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322631A1 (en) * 2011-12-22 2014-10-30 Umicore Ag & Co., Kg Precious metal oxide catalyst for water electrolysis
CN109772410A (zh) * 2019-02-21 2019-05-21 西南大学 一种高效铱基电解水双功能催化剂及其制备方法和应用
CN110354848A (zh) * 2019-05-24 2019-10-22 深圳欧赛技术有限公司 PtRu催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. DI BLASI等: ""Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer"", 《J APPL ELECTROCHEM》 *
BO ZHANG等: ""Homogeneously dispersed multimetal oxygen-evolving catalysts"", 《SCIENCE》 *
K. L. DIMUTHU等: ""Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-Doped Bimetal Oxide Complexes"", 《J. PHYS. CHEM. A》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265681A (zh) * 2021-04-08 2021-08-17 复旦大学 原子级均分散的钌基多元金属氧化物材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110052282B (zh) 一种过渡金属磷化物/核壳型氮掺杂碳纳米纤维复合材料的制备和应用
Yang et al. Boosting power density of microbial fuel cells with 3D nitrogen‐doped graphene aerogel electrode
Park et al. Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries
Wang et al. Co3S4/NCNTs: a catalyst for oxygen evolution reaction
Di Blasi et al. Synthesis and characterization of electrospun nickel-carbon nanofibers as electrodes for vanadium redox flow battery
Zheng et al. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction
Li et al. Enhancement of nitrogen and sulfur co-doping on the electrocatalytic properties of carbon nanotubes for VO 2+/VO 2+ redox reaction
Zhan et al. Alginate derived Co3O4/Co nanoparticles decorated in N-doped porous carbon as an efficient bifunctional catalyst for oxygen evolution and reduction reactions
Xiao et al. Phytic acid-guided ultra-thin N, P co-doped carbon coated carbon nanotubes for efficient all-pH electrocatalytic hydrogen evolution
Cheng et al. In situ growing catalytic sites on 3D carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries
CN113437314A (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN114289021B (zh) 一种镍铁基催化剂及其制备和应用
CN110273162B (zh) 一种铁/钴/镍氮耦合的碳基复合材料及其应用
Rezaei et al. Porous magnetic iron-manganese oxide nanocubes derived from metal organic framework deposited on reduced graphene oxide nanoflake as a bi-functional electrocatalyst for hydrogen evolution and oxygen reduction reaction
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
CN110504456A (zh) 一种基于氮氧掺杂球/片多孔碳材料的氧还原电极及其制备方法和应用
CN113437305A (zh) 一种2D-Co@NC复合材料及其制备方法和应用
CN109876859B (zh) 一种离子液体功能化碳纳米管的复合材料及其制备方法
US20240025764A1 (en) Iridium-containing oxide, method for producing same and catalyst containing iridium-containing oxide
CN113718269B (zh) 一种电催化材料及其制备方法和应用
CN111167442A (zh) 水合金属掺杂的钌铱复合氧化物材料及其制备方法和应用
CN111151244A (zh) 溶胶凝胶法制备的钌基复合氧化物材料及制备方法和应用
CN115505951B (zh) 一种多孔氧化铱纳米材料、其制备方法和应用
CN116329561A (zh) 一种过渡金属掺杂的铱基纳米材料及其制备方法与应用
CN115584536A (zh) 一种用于碱性电析氢反应的钌纳米团簇催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200519

WD01 Invention patent application deemed withdrawn after publication