CN111158037A - 核设施固体废物包放射性活度评估方法和系统 - Google Patents

核设施固体废物包放射性活度评估方法和系统 Download PDF

Info

Publication number
CN111158037A
CN111158037A CN202010001713.5A CN202010001713A CN111158037A CN 111158037 A CN111158037 A CN 111158037A CN 202010001713 A CN202010001713 A CN 202010001713A CN 111158037 A CN111158037 A CN 111158037A
Authority
CN
China
Prior art keywords
radioactive waste
nuclide
activity
waste
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010001713.5A
Other languages
English (en)
Other versions
CN111158037B (zh
Inventor
魏学虎
熊军
尹淑华
陈小强
贾运仓
杨寿海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Engineering Co Ltd
CGN Power Co Ltd
Shenzhen China Guangdong Nuclear Engineering Design Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Engineering Co Ltd
CGN Power Co Ltd
Shenzhen China Guangdong Nuclear Engineering Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Engineering Co Ltd, CGN Power Co Ltd, Shenzhen China Guangdong Nuclear Engineering Design Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN202010001713.5A priority Critical patent/CN111158037B/zh
Publication of CN111158037A publication Critical patent/CN111158037A/zh
Application granted granted Critical
Publication of CN111158037B publication Critical patent/CN111158037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Data Mining & Analysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种核设施固体废物包放射性活度评估方法和系统,所述方法是在放射性废物的产生或处理阶段,建立屏蔽计算废物模型计算出放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,结合放射性废物表面剂量率计算得到放射性废物中各放射性核素的活度,并在将放射性废物处理形成废物包后,根据放射性核素的衰变对废物包中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度,对全部放射性废物中同种易测核素的修正活度加和得到废物包中该种易测核素的活度。与传统的取样实验室放化分析和NDA方法相比,本发明解决了废物包取样和测量困难的问题,且测量评估结果比NDA方法精确度更高。

Description

核设施固体废物包放射性活度评估方法和系统
技术领域
本发明属于核设施放射性废物管理领域,更具体地说,本发明涉及一种核设施固体废物包放射性活度评估方法和系统。
背景技术
近几十年来,国家核工业建设和核能开发持续开展了大量科研生产活动,建立了大量核设施,在科研生产过程中会不可避免地产生一定量的中低放废物;同时随着近年来核电站建设与运营的快速发展,各种放射性废物持续产生。早期建设的大量核设施在圆满完成了各项国家任务后,为保障环境和公众安全,各类核设施已陆续关闭和进入了退役阶段,将来也会有更多的核设施实施退役,退役过程中也必将产生大量的中低放废物。
放射性废物与其他有害物质或一般废物不同,它的危害性不能通过化学、物理或生物的方法消除,而只能通过自身衰变或核反应嬗变来降低其放射性水平。核设施产生的放射性水废滤芯、废树脂、浓缩液、泥浆以及拆除的金属类部件、混凝土结构、污染土壤、技术废物及其他杂项废物等固体干废物,通常首先对放射性废物进行分拣整备,将其装入钢桶或钢箱等包装容器中。随后将这些放射性废物货包在废物暂存库中暂存三至五年,再外运至处置场最终处置。
根据《中华人民共和国核安全法》、《中华人民共和国放射性污染防治法》、《放射性废物安全管理条例》、《放射性废物分类》以及放射性废物管理相关核安全法规导则和国家标准,国家对放射性废物实行分类管理,根据各类废物的潜在危害以及处置时所需的包容和隔离程度进行分类,并使废物的类别与处置方式相关联,确保废物处置的长期安全;放射性固体废物贮存单位应当建立放射性固体废物贮存情况记录档案,如实完整地记录贮存的放射性固体废物的来源、数量、特征、贮存位置、清洁解控、送交处置等与贮存活动有关的事项;放射性固体废物处置单位同样应当建立放射性固体废物处置情况记录档案,如实记录处置的放射性固体废物的来源、数量、特征、存放位置等与处置活动有关的事项。
放射性废物分类为放射性废物的产生、处理、贮存、处置等全过程安全管理提供依据,确保以安全和经济的方式管理废物。放射性废物分为极短寿命放射性废物、极低水平放射性废物、低水平放射性废物、中水平放射性废物和高水平放射性废物等五类,其中废物放射性核素种类及活度浓度是主要的分类指标。因此需测量和评估废物包内放射性核素的组成及活度浓度,为放射性废物安全运输和分类处置提供依据,避免由于放射性废物货包放射性特征信息不准确而导致处置策略不确定,造成处理、处置代价过大。
放射性固体废物包中包含未知量的各种放射性核素,其物理、化学形态复杂,介质的平均密度变化范围很大,且容器内废物空间密度变化也很大,空间分布不均匀,不同种类的放射性核素分布也不均匀,很难获得有代表性的样品,采用传统的先取样再用放射化学分析法进行检测的做法,必然会带来很大的误差,误差的大小难以评估;并且对于数量庞大的废物包全部进行取样实验室分析测量废物包中的放射性核素组成及活度浓度,分析费用将非常高,通常需要通过放射化学方法提纯、浓缩,制成适用于测量的样品后进行测量,分析测量周期将非常长。因此,在工程应用中采用取样实验室分析的方法是不现实的。
目前放射性固体废物包通常采用基于放射性测量的无损分析(Non DestructiveAssay,NDA)方法对废物包进行整体测量和分析,在样品的物理、化学形态不发生任何变化的情况下,分析出样品中所含的易测核素组成及其含量。该方法克服了化学破坏分析法取样难的问题;同时,分析的费用低,分析测量周期短。NDA方法包括:无源和有源的γ射线分析法、无源和有源的中子无损分析法、量热分析法。其中γ射线分析法利用样品本身发射的γ射线来对样品进行定量分析,且不会产生二次放射性废物,是应用最为广泛的NDA方法。γ射线分析技术经过40多年的发展,先后出现了分段γ扫描技术(SGS方法)和层析γ扫描技术(TGS方法)。TGS方法测量精度比较理想,适用范围比较广,特别对于桶内材料不均匀的测量精度明显优于其他测量方法,但较高的精度严重依赖于测量的次数,多次测量联立求解方程组的解耦过程导致测量过程比较复杂,测量时间过长,对于核设施大量的废物包测量工作来说,并不适用。传统SGS方法采用贮运容器中的放射性废物每层内放射性核素和吸收介质都均匀分布的基本假设,这与核设施实际的工艺过程并不符合,实际产生的放射性废物货包类型多种多样,货包内材料和核素分布大都不均匀,任何测量对象的介质和放射性核素分布均与SGS方法的基本假设存在差异,特别是中高密度、核素分布极不均匀、甚至有“热点”的放射性废物,放射性强度的分布和介质密度随空间几何位置变化很大,如果仍用相同的线衰减系数来对样品进行自吸收校正,必然对分析结果造成很大的误差。SGS方法对相对均匀且衰减较小的样品,误差范围为10%至30%,而误差随衰减程度的增大而增大;对于衰减十分不均匀的样品,误差甚至可能超过500%,且系统不能自动诊断到误差的发生。
可见,核设施固体废物包中易测核素的放射性活度评估需要一种更贴近于现场实际情况、便于现场实施、评估结果更为可信的活度评估方法和系统。
发明内容
本发明的目的在于:提供一种更贴近于现场实际情况、便于现场实施、评估结果更为可信的核设施固体废物包放射性活度评估方法和系统。
为了实现上述发明目的,本发明提供了一种核设施固体废物包放射性活度评估方法,所述方法包括:
1)在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0,并且记录表面剂量率测量位置和测量日期T0;其中,所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期;
2)使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值;
3)根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度;
4)在将放射性废物处理形成废物包后,根据放射性核素的衰变,对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度;
5)对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
作为本发明核设施固体废物包放射性活度评估方法的一种改进,所述步骤2)中的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,其中i=1,2,3……用以区分不同的放射性核素;
所述步骤3)具体为:
根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度;
Figure BDA0002353737880000051
Figure BDA0002353737880000052
公式(1)(2)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
Ci为每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
作为本发明核设施固体废物包放射性活度评估方法的一种改进,所述步骤2)中的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C;
所述步骤3)具体为:
根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度;
Figure BDA0002353737880000053
Figure BDA0002353737880000054
公式(3)(4)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
C为放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
作为本发明核设施固体废物包放射性活度评估方法的一种改进,对废物包中每一放射性废物中易测核素的活度进行修正的计算公式为公式(5):
Figure BDA0002353737880000061
公式(5)中:
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
A1i为放射性废物中核素i的修正活度,Bq;
λi为核素i的衰变常数,h-1
t为废物包核素活度测量日期T1与放射性废物中表面剂量率测量日期T0的时间差,h;计算公式为t=(T1-T0)*24。
作为本发明核设施固体废物包放射性活度评估方法的一种改进,所述步骤2)中,所述放射性废物特征包括废物体积、组成及密度。
为了实现上述发明目的,本发明还提供了一种核设施固体废物包放射性活度评估系统,所述系统包括:
表面剂量率测量模块,用于在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0;其中,所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于放射性废物中易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期;
存储模块,用于存储放射性废物的易测核素典型γ能谱、放射性废物表面剂量率测量位置和测量日期T0
剂量率建模计算模块,用于使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值;
核素活度计算模块,用于根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度;
核素活度修正模块,用于在将放射性废物处理形成废物包后,根据放射性核素的衰变,对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度;
核素活度加和模块,用于对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
作为本发明核设施固体废物包放射性活度评估系统的一种改进,所述剂量率建模计算模块计算出的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,其中i=1,2,3……用以区分不同的放射性核素;
所述核素活度计算模块,用于根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度;
Figure BDA0002353737880000081
Figure BDA0002353737880000082
公式(1)(2)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
Ci为每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
作为本发明核设施固体废物包放射性活度评估系统的一种改进,所述剂量率建模计算模块计算出的放射性废物中单位量易测核素(1Bq)对放射性废物表面剂量率测量位置的剂量率贡献值,是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C;
所述核素活度计算模块,用于根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度;
Figure BDA0002353737880000083
Figure BDA0002353737880000084
公式(3)(4)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
C为放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
作为本发明核设施固体废物包放射性活度评估系统的一种改进,核素活度修正模块对废物包中每一放射性废物中易测核素的活度进行修正的计算公式为公式(5):
Figure BDA0002353737880000091
公式(5)中:
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
A1i为放射性废物中核素i的修正活度,Bq;
λi为核素i的衰变常数,h-1
t为废物包核素活度测量日期T1与放射性废物中表面剂量率测量日期T0的时间差,h;计算公式为t=(T1-T0)*24。
作为本发明核设施固体废物包放射性活度评估系统的一种改进,所述放射性废物特征包括废物体积、组成及密度。
与传统的取样实验室放化分析和NDA方法相比,本发明至少具有以下优点:
1)本发明预先在放射性废物的产生、处理(整备)阶段,测量原生放射性废物中易测核素典型γ能谱,解决了废物包取样和测量困难的问题,大大节约了分析测量周期和分析费用;
2)本发明只需针对每类放射性废物测量分析测定易测核素典型γ能谱,不需要对每批放射性废物均进行γ能谱测量,在后续使用过程中对易测核素典型γ能谱进行定期测量修正即可,大大减少了取样实验室分析的工作量;
3)本发明根据放射性废物特征建立废物模型,先计算出放射性废物中每种易测核素的活度后再进行修正,最后对全部放射性废物中易测核素的修正活度进行加和,得到废物包中每种易测核素的活度,测量评估结果比NDA方法精确度更高。
附图说明
下面结合附图和具体实施方式,对本发明核设施固体废物包放射性活度评估方法和系统进行详细说明。
图1提供了本发明核设施固体废物包放射性活度评估方法的一个实例流程图。
图2提供了本发明核设施固体废物包放射性活度评估系统的一个实例示意图。
具体实施方式
为了使本发明的目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图1,本发明核设施固体废物包放射性活度评估方法包括以下步骤:
步骤101,测量放射性废物的表面剂量率。
此步骤是在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0,并且记录表面剂量率测量位置和测量日期T0。所述放射性废物优选为废滤芯。
其中,所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期。例如,对于废滤芯,如果废滤芯的易测核素典型γ能谱是在废滤芯更换后测量的,废滤芯的易测核素典型γ能谱的对应日期就是废滤芯的更换日期;对于废树脂和浓缩液,如果其易测核素典型γ能谱是在处理过程中取样测定的,废树脂或浓缩液的易测核素典型γ能谱的对应日期就是废树脂或浓缩液的处理日期。
具体地,放射性废物中易测核素典型γ能谱的测定过程为:在该类放射性废物的产生、处理(整备)阶段,对原生放射性废物进行取样,样品送至放化实验室测量分析,或者利用就地γ谱测量装置测量分析,确定该类放射性废物中易测核素典型γ能谱,定义γ能谱中核素i的活度占比为P0i。放射性废物中易测核素典型γ能谱是指易测核素的组成及活度占比,例如,测得的某一类放射性废物中易测核素典型γ能谱如表1所示。
表1、某一类放射性废物中易测核素典型γ能谱
易测核素 活度占比P<sub>0i</sub>
Cr-51 15%
Mn-54 10%
Co-58 50%
Co-60 10%
Ag-110m 15%
需要说明的是,本发明只需提前针对每类放射性废物测量分析测定其易测核素典型γ能谱,并不需要对后续产生的每批放射性废物均进行γ能谱测量。易于理解的是,易测核素典型γ能谱的数据可以在后续使用过程中定性进行测量修正。
步骤102,建模计算单位量易测核素对放射性废物表面剂量率贡献值。
此步骤是使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素(1Bq)对放射性废物表面剂量率测量位置的剂量率贡献值。
具体地,放射性废物特征包括废物体积、组成及密度等。
具体地,放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值可以是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci(其中i=1,2,3……用以区分不同的放射性核素),也可以是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C。
例如,计算出某一放射性废物中每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci如表2所示。
表2、1Bq不同核素对放射性废物表面剂量率贡献值
Figure BDA0002353737880000121
步骤103,计算得到放射性废物中每种易测核素的活度。
此步骤是根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度。
具体地,此步骤可以是根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度。
Figure BDA0002353737880000131
Figure BDA0002353737880000132
公式(1)(2)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
Ci为每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
具体地,此步骤也可以是根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度。
Figure BDA0002353737880000133
Figure BDA0002353737880000134
公式(3)(4)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
C为放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
步骤104,对放射性废物中易测核素的活度进行修正。
此步骤是在将放射性废物处理形成废物包后,根据放射性核素的衰变,对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度。
具体地,对废物包中每一放射性废物中易测核素的活度进行修正的计算公式为公式(5):
Figure BDA0002353737880000141
公式(5)中:
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
A1i为放射性废物中核素i的修正活度,Bq;
λi为核素i的衰变常数,h-1
t为废物包核素活度测量日期T1与放射性废物中表面剂量率测量日期T0的时间差,h;计算公式为t=(T1-T0)*24。
步骤105,计算得到废物包中每种易测核素的活度。
此步骤是对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
本发明建立核设施固体废物包放射性活度评估方法体系,在放射性废物的产生或处理阶段,采用辐射屏蔽计算程序根据放射性废物特征建立屏蔽计算废物模型,计算出放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,结合测得的放射性废物表面剂量率计算得到放射性废物中各放射性核素的活度,并在将放射性废物处理形成废物包后,根据放射性核素的衰变对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度,对全部放射性废物中同种易测核素的修正活度进行加和,即可得到废物包中该种易测核素的活度。
请参阅图2所示的本发明核设施固体废物包放射性活度评估系统的一个实例示意图,该系统包括:表面剂量率测量模块201、存储模块202、剂量率建模计算模块203、核素活度计算模块204、核素活度修正模块205和核素活度加和模块206。
表面剂量率测量模块201,用于测量放射性废物的表面剂量率。所述放射性废物优选为废滤芯。
具体地,表面剂量率测量模块201用于在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0。表面剂量率测量模块可以是固定式剂量率检测装置,用于测量放射性废物表面典型位置的表面剂量率。
所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于放射性废物中易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期。
具体地,所述同类放射性废物中易测核素典型γ能谱的测定过程为:在该类放射性废物的产生、处理(整备)阶段,对原生放射性废物进行取样,样品送至放化实验室测量分析,或者利用就地γ谱测量装置测量分析,测定该类放射性废物中易测核素典型γ能谱。
存储模块202,用于存储放射性废物的易测核素典型γ能谱、放射性废物表面剂量率测量位置和测量日期T0
剂量率建模计算模块203,用于建模计算单位量易测核素对放射性废物表面剂量率贡献值。
具体地,剂量率建模计算模块203用于使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素(1Bq)对放射性废物表面剂量率测量位置的剂量率贡献值。其中,所述放射性废物特征包括废物体积、组成及密度等。
具体地,放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值可以是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci(其中i=1,2,3……用以区分不同的放射性核素),也可以是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C。
核素活度计算模块204,用于计算得到放射性废物中每种易测核素的活度。
具体地,核素活度计算模块204用于根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度。
具体地,核素活度计算模块204可以根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度。
具体地,核素活度计算模块204也可以根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度。
核素活度修正模块205,用于对放射性废物中易测核素的活度进行修正。
具体地,核素活度修正模块205用于在将放射性废物处理形成废物包后,根据放射性核素的衰变,采用公式(5)对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度。
核素活度加和模块206,用于计算得到废物包中每种易测核素的活度。
具体地,核素活度加和模块206用于对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
本发明核设施固体废物包放射性活度评估系统的实施方法、流程和计算公式可以参见前述实施例中介绍的方法实施例,此处不再赘述。
结合以上对本发明的详细描述可以看出,针对核设施固体废物包中易测核素的放射性活度评估,本发明给出的评估方法和系统更贴近于现场实际情况、便于现场的操作和实施、评估结果也更为可信,能够分析评估得到废物包中易测核素的组成及其活度,满足国家放射废物处理处置相关的要求。
与传统的取样实验室放化分析和NDA方法相比,本发明至少具有以下优点:
1)本发明预先在放射性废物的产生、处理(整备)阶段,测量原生放射性废物中易测核素典型γ能谱,解决了废物包取样和测量困难的问题,大大节约了分析测量周期和分析费用;
2)本发明只需针对每类放射性废物测量分析测定易测核素典型γ能谱,不需要对每批放射性废物均进行γ能谱测量,在后续使用过程中对易测核素典型γ能谱进行定期测量修正即可,大大减少了取样实验室分析的工作量;
3)本发明根据放射性废物特征建立废物模型,先计算出放射性废物中每种易测核素的活度后再进行修正,最后对全部放射性废物中易测核素的修正活度进行加和,得到废物包中每种易测核素的活度,测量评估结果比NDA方法精确度更高。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种核设施固体废物包放射性活度评估方法,其特征在于,所述方法包括:
1)在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0,并且记录表面剂量率测量位置和测量日期T0;其中,所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期;
2)使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值;
3)根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度;
4)在将放射性废物处理形成废物包后,根据放射性核素的衰变,对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度;
5)对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
2.根据权利要求1所述的核设施固体废物包放射性活度评估方法,其特征在于,所述步骤2)中的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,其中i=1,2,3……用以区分不同的放射性核素;
所述步骤3)具体为:
根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度;
Figure FDA0002353737870000021
Figure FDA0002353737870000022
公式(1)(2)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
Ci为每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
3.根据权利要求1所述的核设施固体废物包放射性活度评估方法,其特征在于,所述步骤2)中的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C;
所述步骤3)具体为:
根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度;
Figure FDA0002353737870000031
Figure FDA0002353737870000032
公式(3)(4)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
C为放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
4.根据权利要求1至3中任一项所述的核设施固体废物包放射性活度评估方法,其特征在于,对废物包中每一放射性废物中易测核素的活度进行修正的计算公式为公式(5):
Figure FDA0002353737870000033
公式(5)中:
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
A1i为放射性废物中核素i的修正活度,Bq;
λi为核素i的衰变常数,h-1
t为废物包核素活度测量日期T1与放射性废物中表面剂量率测量日期T0的时间差,h;计算公式为t=(T1-T0)*24。
5.根据权利要求1至3中任一项所述的核设施固体废物包放射性活度评估方法,其特征在于,所述步骤2)中,所述放射性废物特征包括废物体积、组成及密度。
6.一种核设施固体废物包放射性活度评估系统,其特征在于,所述系统包括:
表面剂量率测量模块,用于在放射性废物易测核素典型γ能谱的对应日期,测量放射性废物的表面剂量率D0;其中,所述易测核素典型γ能谱是之前在同类放射性废物的产生或处理阶段,测定的该类放射性废物中易测核素典型γ能谱,测定时放射性废物所处的过程节点为易测核素典型γ能谱测定节点,放射性废物处于放射性废物中易测核素典型γ能谱测定节点时的日期为其易测核素典型γ能谱的对应日期;
存储模块,用于存储放射性废物的易测核素典型γ能谱、放射性废物表面剂量率测量位置和测量日期T0
剂量率建模计算模块,用于使用辐射屏蔽计算程序,根据放射性废物特征建立屏蔽计算废物模型,计算放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值;
核素活度计算模块,用于根据放射性废物的表面剂量率D0和放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,计算得到放射性废物中每种易测核素的活度;
核素活度修正模块,用于在将放射性废物处理形成废物包后,根据放射性核素的衰变,对废物包中每一放射性废物中易测核素的活度进行修正,得到每一放射性废物中每种易测核素的修正活度;
核素活度加和模块,用于对废物包中全部放射性废物中同一种易测核素的修正活度进行加和,得到废物包中该种易测核素的活度,以同样方式一一计算得到废物包中每种易测核素的活度。
7.根据权利要求6所述的核设施固体废物包放射性活度评估系统,其特征在于,所述剂量率建模计算模块计算出的放射性废物中单位量易测核素对放射性废物表面剂量率测量位置的剂量率贡献值,是每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,其中i=1,2,3……用以区分不同的放射性核素;
所述核素活度计算模块,用于根据放射性废物中易测核素γ能谱、放射性废物的表面剂量率D0和每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,使用公式(1)计算放射性废物中所有易测核素的总活度,使用公式(2)计算得到放射性废物中每种易测核素的活度;
Figure FDA0002353737870000051
Figure FDA0002353737870000052
公式(1)(2)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
Ci为每种易测核素活度为1Bq时对放射性废物表面剂量率测量位置的剂量率贡献值Ci,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
8.根据权利要求6所述的核设施固体废物包放射性活度评估系统,其特征在于,所述剂量率建模计算模块计算出的放射性废物中单位量易测核素(1Bq)对放射性废物表面剂量率测量位置的剂量率贡献值,是根据放射性废物中易测核素γ能谱计算出的、放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C;
所述核素活度计算模块,用于根据放射性废物表面剂量率D0和放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,使用公式(3)计算放射性废物中所有易测核素的总活度,使用公式(4)计算得到放射性废物中每种易测核素的活度;
Figure FDA0002353737870000061
Figure FDA0002353737870000062
公式(3)(4)中:
A0为放射性废物表面剂量率测量时,放射性废物中所有易测核素的总活度,Bq;
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
D0为测得的放射性废物表面剂量率,mSv/h;
C为放射性废物中所有易测核素总活度为1Bq时对放射性废物表面剂量率测量位置的贡献值C,(mSv/h)/Bq;
P0i为该类放射性废物中易测核素γ能谱中核素i对应的活度占比。
9.根据权利要求6至8中任一项所述的核设施固体废物包放射性活度评估系统,其特征在于:核素活度修正模块对废物包中每一放射性废物中易测核素的活度进行修正的计算公式为公式(5):
Figure FDA0002353737870000063
公式(5)中:
A0i为放射性废物表面剂量率测量时,放射性废物中核素i的活度,Bq;
A1i为放射性废物中核素i的修正活度,Bq;
λi为核素i的衰变常数,h-1
t为废物包核素活度测量日期T1与放射性废物中表面剂量率测量日期T0的时间差,h;计算公式为t=(T1-T0)*24。
10.根据权利要求6至8中任一项所述的核设施固体废物包放射性活度评估系统,其特征在于:所述放射性废物特征包括废物体积、组成及密度。
CN202010001713.5A 2020-01-02 2020-01-02 核设施固体废物包放射性活度评估方法和系统 Active CN111158037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010001713.5A CN111158037B (zh) 2020-01-02 2020-01-02 核设施固体废物包放射性活度评估方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010001713.5A CN111158037B (zh) 2020-01-02 2020-01-02 核设施固体废物包放射性活度评估方法和系统

Publications (2)

Publication Number Publication Date
CN111158037A true CN111158037A (zh) 2020-05-15
CN111158037B CN111158037B (zh) 2022-03-15

Family

ID=70561367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010001713.5A Active CN111158037B (zh) 2020-01-02 2020-01-02 核设施固体废物包放射性活度评估方法和系统

Country Status (1)

Country Link
CN (1) CN111158037B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466495A (zh) * 2020-11-13 2021-03-09 中广核工程有限公司 核电厂退役放射性废物管理方法
CN112485819A (zh) * 2020-11-05 2021-03-12 深圳中广核工程设计有限公司 核设施固体废物货包放射性活度评估方法和系统
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361225A (ja) * 2001-06-04 2002-12-17 Mitsubishi Materials Corp 廃棄物評価システム、廃棄物評価方法、廃棄物評価プログラムおよび記録媒体
JP2004077162A (ja) * 2002-08-12 2004-03-11 Hitachi Ltd 廃棄物処理方法
FR2872294A1 (fr) * 2004-06-25 2005-12-30 Onectra Soc Par Actions Simpli Procede d'evaluation de l'activite radioactive d'un lot de colis radioactifs
JP2006035068A (ja) * 2004-07-26 2006-02-09 Kajima Corp 廃棄物地層処分場の配置方法
CN103985426A (zh) * 2014-05-15 2014-08-13 中广核工程有限公司 核设施放射性湿固体废物处理方法
CN104035117A (zh) * 2013-03-08 2014-09-10 中国原子能科学研究院 一种放射性废物量就地估算方法
JP2015068677A (ja) * 2013-09-27 2015-04-13 日立Geニュークリア・エナジー株式会社 廃棄体容器の放射線計測方法および装置
CN104714245A (zh) * 2015-02-09 2015-06-17 上海交通大学 中低放射性废物桶测量的半层析伽玛扫描方法
CN105448372A (zh) * 2014-08-12 2016-03-30 中核核电运行管理有限公司 一种用于核电厂报废空气过滤器金属框架清洁解控的方法
CN105665310A (zh) * 2016-03-11 2016-06-15 深圳市利美泰克自控设备有限公司 放射性固体废物检测分类方法及系统
CN107796668A (zh) * 2016-09-07 2018-03-13 岭澳核电有限公司 一种核电厂废树脂处理方法
CN107942365A (zh) * 2017-11-02 2018-04-20 中广核工程有限公司 一种核电站废物桶放射性的测量方法以及测量装置
CN109283568A (zh) * 2018-11-20 2019-01-29 阳江核电有限公司 一种放射性水过滤器废滤芯测量系统和方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361225A (ja) * 2001-06-04 2002-12-17 Mitsubishi Materials Corp 廃棄物評価システム、廃棄物評価方法、廃棄物評価プログラムおよび記録媒体
JP2004077162A (ja) * 2002-08-12 2004-03-11 Hitachi Ltd 廃棄物処理方法
FR2872294A1 (fr) * 2004-06-25 2005-12-30 Onectra Soc Par Actions Simpli Procede d'evaluation de l'activite radioactive d'un lot de colis radioactifs
JP2006035068A (ja) * 2004-07-26 2006-02-09 Kajima Corp 廃棄物地層処分場の配置方法
CN104035117A (zh) * 2013-03-08 2014-09-10 中国原子能科学研究院 一种放射性废物量就地估算方法
JP2015068677A (ja) * 2013-09-27 2015-04-13 日立Geニュークリア・エナジー株式会社 廃棄体容器の放射線計測方法および装置
CN103985426A (zh) * 2014-05-15 2014-08-13 中广核工程有限公司 核设施放射性湿固体废物处理方法
CN105448372A (zh) * 2014-08-12 2016-03-30 中核核电运行管理有限公司 一种用于核电厂报废空气过滤器金属框架清洁解控的方法
CN104714245A (zh) * 2015-02-09 2015-06-17 上海交通大学 中低放射性废物桶测量的半层析伽玛扫描方法
CN105665310A (zh) * 2016-03-11 2016-06-15 深圳市利美泰克自控设备有限公司 放射性固体废物检测分类方法及系统
CN107796668A (zh) * 2016-09-07 2018-03-13 岭澳核电有限公司 一种核电厂废树脂处理方法
CN107942365A (zh) * 2017-11-02 2018-04-20 中广核工程有限公司 一种核电站废物桶放射性的测量方法以及测量装置
CN109283568A (zh) * 2018-11-20 2019-01-29 阳江核电有限公司 一种放射性水过滤器废滤芯测量系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485819A (zh) * 2020-11-05 2021-03-12 深圳中广核工程设计有限公司 核设施固体废物货包放射性活度评估方法和系统
CN112466495A (zh) * 2020-11-13 2021-03-09 中广核工程有限公司 核电厂退役放射性废物管理方法
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质
CN115267873B (zh) * 2022-08-01 2024-04-19 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、系统、终端及介质

Also Published As

Publication number Publication date
CN111158037B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN111158037B (zh) 核设施固体废物包放射性活度评估方法和系统
CN111180018B (zh) 核设施固体废物包放射性活度评估方法和系统
KR101212063B1 (ko) NaI 측정기를 이용한 주괴 내의 방사능물질 측정방법
JP5546174B2 (ja) 放射性廃棄物の放射能濃度評価方法及び評価プログラム、並びに放射能濃度評価装置
KR101212062B1 (ko) HPGe 측정기를 이용한 주괴 내의 방사능물질 측정방법
US11079512B2 (en) System and method for analysis of fissionable materials by multispectral active neutron interrogation analysis
Gurau et al. Quantification of uncertainty applied to radiological characterization of radioactive waste
Gauld et al. In-field performance testing of the fork detector for quantitative spent fuel verification
JPS61107183A (ja) 容器詰め放射性廃棄物の放射能量測定方法
Schillebeeckx et al. A non-destructive method to determine the neutron production rate of a sample of spent nuclear fuel under standard controlled area conditions
JPH0479597B2 (zh)
CN112485819A (zh) 核设施固体废物货包放射性活度评估方法和系统
CN112489830A (zh) 一种核电厂蒸汽发生器排污系统废树脂清洁解控方法
Walton Nondestructive Assay
Hattori et al. Development of waste monitor of clearance level to ensure social reliance on recycled metal from nuclear facilities
Park et al. Estimating Spent Fuel Burnup with Neutron Measurements: A Practical Rule of Thumb Equation
Jung et al. Evaluation of Density and Coincidence Summing Correction on Low-Level Concrete Waste for Gamma Spectroscopy
Guo et al. Radiation source terms analysis and classification of radioactive waste for the decommissioning of the first HWRR reactor in China
Dean et al. Traceability for measurements of radioactivity in waste materials arising from nuclear site decommissioning
Räty et al. Activity characterization and waste management in the FiR1 TRIGA decommissioning project
Dean et al. A survey of user requirements for a UK radioactivity measurement infrastructure for nuclear decommissioning.
Zsigrai et al. Non-destructive determination of the nuclear material content of spent fuel pieces in canisters
Simpson et al. Spent fuel measurements in support of burnup credit
Carlsson et al. Low and intermediate level radioactive waste. Waste characterization and activity measurements
Simpson et al. Operational experience in radiometric instrumentation for spent fuel monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant