CN111146974A - 静电吸头 - Google Patents

静电吸头 Download PDF

Info

Publication number
CN111146974A
CN111146974A CN201910741214.7A CN201910741214A CN111146974A CN 111146974 A CN111146974 A CN 111146974A CN 201910741214 A CN201910741214 A CN 201910741214A CN 111146974 A CN111146974 A CN 111146974A
Authority
CN
China
Prior art keywords
dielectric layer
electrostatic chuck
dielectric
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910741214.7A
Other languages
English (en)
Other versions
CN111146974B (zh
Inventor
陈立宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikro Mesa Technology Co Ltd
Original Assignee
Mikro Mesa Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikro Mesa Technology Co Ltd filed Critical Mikro Mesa Technology Co Ltd
Publication of CN111146974A publication Critical patent/CN111146974A/zh
Application granted granted Critical
Publication of CN111146974B publication Critical patent/CN111146974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/002Apparatus for assembling MEMS, e.g. micromanipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/23Chucks or sockets with magnetic or electrostatic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明公开了一种静电吸头,包含主体、电极、复合介电层以及至少一个介电层。电极设置在主体上。介电层设置并覆盖在电极上。复合介电层设置在介电层上。复合介电层包含聚合物层和多个无机介电微粒。无机介电微粒分布在聚合物层中。无机介电微粒的介电系数大于聚合物层的介电系数。介电层的电阻率大于复合介电层的电阻率。本发明所提出的静电吸头可以防止静电吸头刮伤、使聚合物层与待拾取的微型元件之间有更好的接触、增强拾取微型元件的静电压力、并可避免静电吸头的漏电流现象。

Description

静电吸头
技术领域
本发明涉及一种静电吸头,特别是涉及一种用以通过静电压力拾起微型元件的静电吸头。
背景技术
近年来,微型元件在许多应用领域都逐渐兴起。在与微型元件相关的各个技术层面中,元件转移工艺是微型元件商业化时最具挑战性的任务之一。元件转移工艺的一个重要议题是静电吸头的设计。
发明内容
本发明的目的在于克服现有技术的缺陷,而提出一种改进的静电吸头,可以防止静电吸头刮伤、使聚合物层与待拾取的微型元件之间有更好的接触、增强拾取微型元件的静电压力、并可避免静电吸头的漏电流现象。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。
本发明的一些实施方式公开了一种静电吸头,其包含主体、电极、复合介电层以及至少一个介电层。电极设置在主体上。介电层设置并覆盖在电极上。复合介电层设置在介电层上。复合介电层包含聚合物层和多个无机介电微粒。无机介电微粒分布在聚合物层中。无机介电微粒的介电系数大于聚合物层的介电系数。介电层的电阻率大于复合介电层的电阻率。
根据本发明的一实施例,介电层的硬度大于复合介电层的硬度。
根据本发明的一实施例,介电层包含无机材料。
根据本发明的一实施例,介电层包含氮化硅(silicon nitride,SiNx)、二氧化铪(hafnium(IV)oxide,(HfO2)、二氧化硅(silicon dioxide,SiO2)或其组合。
根据本发明的一实施例,介电层包含铁氟龙(teflon)、环氧树脂(epoxy)或其结合。
根据本发明的一实施例,介电层的数量为多个。
根据本发明的一实施例,无机介电微粒包含二氧化钛(titanium dioxide,TiO2)、钛酸钡(barium titanate,BaTiO3)或二氧化锆(zirconium dioxide,ZrO2)。
根据本发明的一实施例,每一个无机介电微粒上涂有金属,并由金属包裹住。
根据本发明的一实施例,复合介电层的厚度大于介电层的厚度。
根据本发明的一实施例,还包含第二电极,设置在介电层和主体之间,其中第二电极相邻电极并与电极电性隔离。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明的静电吸头借由较为柔韧的复合介电层,可以防止静电吸头刮伤,并使得聚合物层与待拾取的微型元件之间有更好的接触。复合介电层具有高介电系数的无机介电微粒以增强拾取微型元件的静电压力。此外,具有高电阻率的介电层的存在避免了静电吸头的漏电流现象。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1A绘示本发明一实施例中静电吸头的剖面示意图;
图1B绘示本发明一实施例中一部分的复合介电层的放大剖面示意图;
图2绘示本发明另一实施例中静电吸头的剖面示意图;
图3绘示根据本发明的又一实施例中静电吸头的剖面示意图;
图4绘示根据本发明的再一实施例中静电吸头的剖面示意图。
【主要元件符号说明】
100a、100b、100c、100d:静电吸头
110:主体
120a、120b、1202b、1204b:电极
130a、130b、130c:介电层
1302c:第一介电层
1304c:第二介电层
140a、140b:复合介电层
142a:聚合物层
144a:无机介电微粒
E:部分
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合图式及较佳实施例,对依据本发明提出的静电吸头,其具体实施方式、结构、方法、步骤、特征及其功效,详细说明如后。
有关本发明的前述及其他技术内容、特点及功效,在以下配合参考附图的较佳实施例的详细说明中将可清楚呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效更加深入且具体的了解,然而附图仅是提供参考与说明之用,并非用来对本发明加以限制。
为简化附图,一些现有已知惯用的结构与元件在附图中将以简单示意的方式绘示。并且,除非有其他表示,在不同附图中相同的元件符号可视为相对应的元件。这些附图的绘示是为了清楚表达这些实施方式中各元件之间的连接关系,并非绘示各元件的实际尺寸。
参考图1A和图1B。图1A绘示根据本发明的一实施例中静电吸头100a的剖面示意图。图1B绘示根据本发明的一实施例中一部分的复合介电层140a的放大剖面示意图。在一些实施例中,静电吸头100a包含主体110、电极120a、介电层130a和复合介电层140a。尽管在以下内容中描述的大多数术语是使用单数名词,但是依据附图或实际应用,术语也可以是指多个。
电极120a设置在主体110上。主体110可包含能够提供结构支撑的各种材料,例如,硅、陶瓷、玻璃或石英。介电层130a设置并覆盖在电极120a上。复合介电层140a设置在介电层130a上。在一些实施例中,介电层130a可由原子层沉积(atomic layer deposition,ALD)、热蒸镀(thermal deposition)、溅镀(sputtering)、化学气相沈积(chemical vapordeposition,CVD)或物理气相沈积(physical vapor deposition,PVD)所形成。如图1B所示的图1A中部分E的放大图示,复合介电层140a包含聚合物层142a和多个无机介电微粒144a。无机介电微粒144a分布在聚合物层142a中。详细而言,聚合物层142a可以是聚合物基质,可借由交联聚合物来制备。无机介电微粒144a嵌入聚合物基质中。图1B所示的复合介电层140a的聚合物层142a和无机介电微粒144a两者间的体积比仅是示意性的。聚合物层142a可以是聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA),聚二甲基硅氧烷(polydimethylsiloxane,PDMS)或环氧树脂(epoxy),但不限于此。无机介电微粒144a可包含二氧化钛(titanium dioxide,TiO2)、钛酸钡(barium titanate,BaTiO3)、二氧化锆(zirconium dioxide,ZrO2)或这些化合物的组合。在一些实施例中,复合介电层140a的制备为:首先在聚合物层142a中混合无机介电微粒144a,接着使用像是旋转涂布(spin-coating)、狭缝涂布(slit-coating)或喷墨印刷(inkjet printing)的工艺以在介电层130a上形成复合介电层140a。
在一些实施例中,每一个无机介电微粒144a上涂有金属,并由金属包裹住,从而增加每一个无机介电微粒144a的偶极矩,因而可进一步增强静电吸头100a施加至待拾取的微型元件上的静电压力。在一些实施例中,无机介电微粒144a的平均直径小于由静电吸头100a拾取的微型元件的尺寸。无机介电微粒144a的平均直径例如是相等或小于100纳米,从而向微型元件提供实质上均匀的静电压力。
在一些实施例中,复合介电层140a的厚度大于介电层130a的厚度,从而提高静电吸头100a的崩溃电压。此外,当施加电压增加时,较厚的复合介电层140a可对于复合介电层140a和待拾取的微型元件之间的空气间隙较为不敏感。而且,较厚的复合介电层140a可避免介电层130a刮伤。在一些实施例中,复合介电层140a的厚度范围在约0.2微米至约100微米间。在一些实施例中,复合介电层140a的厚度范围在约1微米至约10微米间。
在一些实施例中,无机介电微粒144a的介电系数(permittivity)大于聚合物层142a的介电系数,其可使得复合介电层140a的等效介电系数相较于没有无机介电微粒144a的复合介电层140a的介电系数(亦即,相较于复合介电层140a仅由聚合物层142a所组成的情况)有所增加。在一些实施例中,聚合物层142a的材料的介电系数约为1.4至1.5倍的真空介电系数(亦即,聚合物层142a的介电常数(dielectric constant)约为1.4至1.5)。在一些实施例中,无机介电微粒144a的材料的介电系数超过约二十倍的真空介电系数(亦即,无机介电微粒144a的介电常数超过20)。在一些实施例中,借由调整聚合物层142a的总体积与无机介电微粒144a的总体积之间的比例,复合介电层140a的等效介电系数大于六倍真空介电系数。如此,由于聚合物层142a的柔韧表面(亦即,介电层130a的硬度大于复合介电层140a的硬度),复合介电层140a不仅能避免静电吸头100a在拾起微型元件时被刮伤,亦具有足够高的介电系数以施加足够高的静电压力以稳定地转移微型元件。
在一些实施例中,介电层130a的电阻率大于复合介电层140a的电阻率,从而避免自电极120a至复合介电层140a和待拾取的微型元件之间的接触面所可能产生的漏电流。
在一些实施例中,介电层130a包含铁氟龙(teflon)、环氧树脂(epoxy)或其结合。在一些实施例中,介电层130a包含无机材料,例如,氮化硅(silicon nitride,SiNx)、二氧化铪(hafnium(IV)oxide,HfO2)、二氧化硅(silicon dioxide,SiO2)或这些化合物的组合。
利用上述配置,介电层130a和复合介电层140a的组合可具有多个好处。首先,由于与待拾取的微型元件相比,复合介电层140a的聚合物层142a(例如,PMMA)通常是柔韧的,因此聚合物层142a可防止静电吸头100a刮伤,从而防止拾取失败。此外,聚合物层142a与待拾取的微型元件之间亦显示有更好的接触。然而,软的材料常具有较低的介电系数,因此与具有较大硬度的介电材料(例如,氮化硅)相比,具有软材料(例如,前述聚合物层142a)在其上的静电吸头100a施加至微型元件的静电压力也较低。为了增强静电压力并同时在静电吸头100a和微型元件之间保持柔韧接触,遂将与聚合物层142a相比具有较高介电系数的无机介电微粒144a引入并混合在聚合物层142a中,以增强复合介电层140a的等效介电系数。然而,无机介电微粒144a的引入趋向增加发生局部电荷累积的状况,这种电荷累积可能导致无机介电微粒144a形成通道并造成漏电流。因此,与复合介电层140a相较之下具有更高电阻率的介电层130a的存在解决了因无机介电微粒144a形成的通道所产生的漏电流现象。
参考图2。图2绘示根据本发明的另一实施例中静电吸头100b的剖面示意图。图2所示的静电吸头100b和静电吸头100a的不同处在于,静电吸头100b的介电层130b背向电极120b的表面实质平坦,而如图1A所示的介电层130a背向电极120a的表面在电极120a上方具有隆起的平台。类似地,复合介电层140b背向电极120b的表面实质平坦,而复合介电层140a背向电极120a的表面在电极120a上方具有隆起的平台。上述差异可来自于电极120a和电极120b之间不同的厚度,但不限于此。
参考图3。图3绘示根据本发明的又一实施例中静电吸头100c的剖面示意图。在一些实施例中,介电层130c的数量是多个。举例而言,图3中介电层130c包含第一介电层1302c和第二介电层1304c。第一介电层1302c设置在电极120a上并接触电极120a。第二介电层1304c设置并堆叠在第一介电层1302c上。第一和第二介电层1302c、1304c可包含从氮化硅、二氧化铪、二氧化硅、五氧化二钽(tantalum pentoxide,Ta2O5)、二氧化钛、二氧化锆、氧化铝(aluminum oxide,Al2O3)、铁氟龙和环氧树脂当中的两个材料,但不以此为限。虽然图3中介电层130c具有隆起的平台,然而在其他实施例中,像是具有较薄的电极120a的实施例(例如,将电极120a替换成电极120b,类似图2描述的实施例)中,介电层130c背向电极120a(或电极120b)的表面亦可为实质平坦。
参考图4。图4绘示根据本发明的再一实施例中静电吸头100d的剖面示意图。在一些实施例中,静电吸头100d可包含两个电极(例如,第一电极1202b和第二电极1204b),设置在介电层130b和主体110之间。第二电极1204b相邻于电极1202b并与电极1202b电性隔离。在一些实施例中,电极1202b和电极1204b可以是双极性(bipolar)电极。也就是说,分别向电极1202b和电极1204b施加不同的电压以拾取微型元件。在一些实施例中,施加至电极1202b和电极1204b的电压可分别为正电压和负电压以增强和稳定静电压力以拾取微型元件。此外,当交流电流施加至电极1202b和电极1204b时,双极性电极可具有两相(two-phase)和多相(multi-phase)。
综上所述,本发明的实施例提供一种静电吸头,用以通过静电压力拾取微型元件。具有高电阻率的介电层设置在低电阻率的复合介电层和电极之间。如此,当执行转移(例如,转移微型元件)工艺时,可防止由静电吸头的电荷累积所造成的漏电流,同时可保持稳定且足够高的静电压力。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种静电吸头,其特征在于,包含:
主体;
电极,设置在所述主体上;
至少一个介电层,设置并覆盖在所述电极上;以及
复合介电层,设置在所述至少一个介电层上,包含:聚合物层;以及
多个无机介电微粒,分布在所述聚合物层中,所述无机介电微粒的介电系数大于所述聚合物层的介电系数,其中所述至少一个介电层的电阻率大于所述复合介电层的电阻率。
2.根据权利要求1所述的静电吸头,其特征在于,所述至少一个介电层的硬度大于所述复合介电层的硬度。
3.根据权利要求1所述的静电吸头,其特征在于,所述至少一个介电层包含无机材料。
4.根据权利要求1所述的静电吸头,其特征在于,所述至少一个介电层包含氮化硅、二氧化铪、二氧化硅或其组合。
5.根据权利要求1所述的静电吸头,其特征在于,所述至少一个介电层包含铁氟龙、环氧树脂或其结合。
6.根据权利要求1所述的静电吸头,其特征在于,所述至少一个介电层的数量为多个。
7.根据权利要求1所述的静电吸头,其特征在于,所述无机介电微粒包含二氧化钛、钛酸钡或二氧化锆。
8.根据权利要求1所述的静电吸头,其特征在于,每一个所述无机介电微粒上涂有金属,并由所述金属包裹住。
9.根据权利要求1所述的静电吸头,其特征在于,所述复合介电层的厚度大于所述至少一个介电层的厚度。
10.根据权利要求1所述的静电吸头,其特征在于,还包含第二电极,设置在所述至少一个介电层和所述主体之间,其中所述第二电极相邻所述电极并与所述电极电性隔离。
CN201910741214.7A 2018-11-06 2019-08-12 静电吸头 Active CN111146974B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/181,365 US10665493B1 (en) 2018-11-06 2018-11-06 Micro device electrostatic chuck
US16/181,365 2018-11-06

Publications (2)

Publication Number Publication Date
CN111146974A true CN111146974A (zh) 2020-05-12
CN111146974B CN111146974B (zh) 2022-11-04

Family

ID=70457944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910741214.7A Active CN111146974B (zh) 2018-11-06 2019-08-12 静电吸头

Country Status (2)

Country Link
US (1) US10665493B1 (zh)
CN (1) CN111146974B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031272B2 (en) * 2018-11-06 2021-06-08 Mikro Mesa Technology Co., Ltd. Micro device electrostatic chuck with diffusion blocking layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161285A1 (en) * 2007-12-20 2009-06-25 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
TW201314815A (zh) * 2011-09-29 2013-04-01 Calitech Co Ltd 靜電吸盤及其製作方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350479A (en) * 1992-12-02 1994-09-27 Applied Materials, Inc. Electrostatic chuck for high power plasma processing
KR100404631B1 (ko) * 1994-01-31 2004-02-05 어플라이드 머티어리얼스, 인코포레이티드 두께가일정한절연체막을갖는정전기척
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US6577113B2 (en) * 2001-06-06 2003-06-10 Tokyo Electron Limited Apparatus and method for measuring substrate biasing during plasma processing of a substrate
JP2004319972A (ja) * 2003-03-31 2004-11-11 Tokyo Electron Ltd エッチング方法及びエッチング装置
US7072166B2 (en) * 2003-09-12 2006-07-04 Axcelis Technologies, Inc. Clamping and de-clamping semiconductor wafers on a J-R electrostatic chuck having a micromachined surface by using force delay in applying a single-phase square wave AC clamping voltage
US20060075967A1 (en) * 2004-10-12 2006-04-13 Applied Materials, Inc. Magnetic-field concentration in inductively coupled plasma reactors
JP4648030B2 (ja) * 2005-02-15 2011-03-09 日本碍子株式会社 イットリア焼結体、セラミックス部材、及び、イットリア焼結体の製造方法
US7646581B2 (en) * 2006-01-31 2010-01-12 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck
US20070224451A1 (en) * 2006-03-24 2007-09-27 General Electric Company Composition, coating, coated article, and method
WO2008051369A2 (en) * 2006-10-25 2008-05-02 Axcelis Technologies, Inc. Low-cost electrostatic clamp with fast declamp time and the manufacture
US8228658B2 (en) * 2007-02-08 2012-07-24 Axcelis Technologies, Inc. Variable frequency electrostatic clamping
US7667944B2 (en) * 2007-06-29 2010-02-23 Praxair Technology, Inc. Polyceramic e-chuck
WO2011150311A1 (en) * 2010-05-28 2011-12-01 Praxair Technology, Inc. Substrate supports for semiconductor applications
JP6032022B2 (ja) * 2013-01-16 2016-11-24 住友大阪セメント株式会社 誘電体材料
US9944561B2 (en) * 2014-03-10 2018-04-17 Sumitomo Osaka Cement Co., Ltd. Dielectric material and electrostatic chucking device
US9508561B2 (en) * 2014-03-11 2016-11-29 Applied Materials, Inc. Methods for forming interconnection structures in an integrated cluster system for semicondcutor applications
CN108495829B (zh) * 2016-01-27 2021-09-14 住友大阪水泥股份有限公司 陶瓷材料及静电卡盘装置
TWI830751B (zh) * 2018-07-19 2024-02-01 美商應用材料股份有限公司 低溫高品質的介電膜及其形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161285A1 (en) * 2007-12-20 2009-06-25 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
TW201314815A (zh) * 2011-09-29 2013-04-01 Calitech Co Ltd 靜電吸盤及其製作方法

Also Published As

Publication number Publication date
US10665493B1 (en) 2020-05-26
CN111146974B (zh) 2022-11-04
US20200144942A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
CN105431374B (zh) 在微机电系统感测器中黏滞力减少的方法
US9293255B2 (en) Solid state energy storage devices
US7842946B2 (en) Electronic devices with hybrid high-k dielectric and fabrication methods thereof
US10490356B2 (en) Capacitor and method of manufacturing the same
US9099639B2 (en) Resistance switching material element and device employing the same
US20100259865A1 (en) Film capacitors with improved dielectric strength breakdown
TWI695515B (zh) 半導體積體電路的電容器以及其製造方法
KR20120135298A (ko) 전하 저장 디바이스, 이를 제조하는 방법, 이를 위한 전기 도전성 구조를 제조하는 방법, 이를 이용하는 이동 전자 디바이스, 및 이를 포함하는 마이크로전자 디바이스
US20210091174A1 (en) Semiconductor structure enhanced for high voltage applications
US20140092524A1 (en) Capacitor and method of manufacturing the same
CN111146974B (zh) 静电吸头
US8728851B2 (en) Method of manufacturing solar cell with upper and lower conductor layers stacked together
JP2017529572A (ja) 基板レスフレキシブルディスプレイおよびその製造方法
US8407871B2 (en) Method of manufacturing a shapeable short-resistant capacitor
KR20160015178A (ko) 압전층 배열체 제조 방법 및 상응하는 압전층 배열체
US10403434B2 (en) Capacitor component
TWI697070B (zh) 製造靜電夾的方法、靜電夾及靜電夾系統
US10179731B2 (en) Transfer head array
EP2973662B1 (en) Passivation layer for harsh environments and methods of fabrication thereof
CN116195064A (zh) 用于焦平面阵列的高密度电容器
US11031272B2 (en) Micro device electrostatic chuck with diffusion blocking layer
US10199166B2 (en) Capacitor
KR20110072033A (ko) 플렉서블 소자 제조방법 및 이에 의하여 제조된 플렉서블 소자, 플렉서블 압전소자 및 커패시터 소자 제조방법 및 이에 의하여 제조된 플렉서블 압전소자 및 커패시터 소자
US20080122044A1 (en) Method manufacturing capacitor dielectric
US8974901B2 (en) Multilayer thin film for ceramic electronic component and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant