CN111146461A - 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 - Google Patents
一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 Download PDFInfo
- Publication number
- CN111146461A CN111146461A CN201911420661.9A CN201911420661A CN111146461A CN 111146461 A CN111146461 A CN 111146461A CN 201911420661 A CN201911420661 A CN 201911420661A CN 111146461 A CN111146461 A CN 111146461A
- Authority
- CN
- China
- Prior art keywords
- electrode
- graphite
- paper
- pani
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8853—Electrodeposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
Abstract
本发明公开一种纸‑石墨‑PANI‑Pt电极的制备方法及其在催化H2O2电还原反应中的应用。制法为:(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层;(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,使用循环伏安法进行电沉积,制备纸‑石墨‑PANI电极;(3)将纸‑石墨‑PANI电极在H2PtCl6·6H2O溶液中静置,得到纸‑石墨‑PANI‑Pt电极。本发明制备方法简单,且无需使用有机粘结剂,所制备电极具有优异的电催化活性、耐腐蚀性、机械稳定性,用于催化过氧化氢电还原,解决了H2O2电还原性能低、电极材料稳定性差的问题,具有广泛的应用前景。
Description
技术领域
本发明属于电极材料制备领域,具体涉及到一种纸-石墨-PANI-Pt电极材料的制备方法,用于催化H2O2的电还原反应。
背景技术
能源对于人类社会的生存和发展是必不可少,但是传统的化石能源面临资源匮乏和环境污染两个重要的问题,为此人们不断寻找清洁的能源来代替传统能源。燃料电池是一种将燃料和氧化剂中的化学能直接转变为电能的装置,其发电效率高、噪音低、对环境污染小,逐渐被人们所关注,为解决能源问题提供新的方向。
H2O2作为氧化剂在燃料电池中已经被广泛应用,例如直接硼氢化物-过氧化氢燃料电池、甲醇-过氧化氢燃料电池、尿素-过氧化氢燃料电池等。H2O2有很多突出优势:(1)常温下表现为液态,储存运输方便;(2)其电还原为两电子反应,需要的活化能较低;(3)价格低廉,容易获得。制备对H2O2具有高电还原催化活性的电极材料对装配高性能燃料电池非常重要。
纸在我们的生活中随处可见,近年来纸作为柔性电极材料备受关注(可参阅Dongming Zhang, Dianxue Cao, Ke Ye*, Jinling Yin, Kui Cheng, Guiling Wang*.Cobalt nano-sheet supported on graphite modified paper as a binder freeelectrode for peroxide electrooxidation[J]. Electrochimica Acta. 2014; 139:250-255.及Dongming Zhang, Ke Ye, Dianxue Cao, Jinling Yin, Kui Cheng, BinWang, Yang Xu, Guiling Wang*. Catalytic behavior of a palladium doped binderfree paper based cobalt electrode in electroreduction of hydrogen peroxide[J]. Journal of Power Sources. 2015; 273: 1142-1147.)。纸作为电极支撑体,具有价格低廉、机械性能良好、可再生、环保无污染等优点。但是其作为电极材料支撑体也存在一些问题,如:化学稳定性较差、导电性不佳等。
发明内容
本发明旨在提供一种纸-石墨-PANI-Pt电极材料的制备方法,解决了H2O2电还原性能低、电极材料稳定性差的问题。
本发明是采用电沉积法在涂有石墨层的滤纸上沉积PANI,然后通过氧化还原反应在其表面负载Pt催化剂,用于催化H2O2电还原。本发明用铅笔涂覆滤纸,在滤纸表面形成导电石墨层,C6H7N单体通过电化学聚合过程在石墨纸表面形成PANI层,还原态的PANI与H2PtCl6·6H2O发生氧化还原反应,负载Pt催化剂。本发明制备方法简单,且无需使用有机粘结剂,所制备电极具有优异的电催化活性、耐腐蚀性、机械稳定性,解决了H2O2电还原性能低、电极材料稳定性差的问题,具有广泛的应用前景。
本发明提供了一种纸-石墨-PANI-Pt电极的制备方法,包括以下步骤:
(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层。
(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合电沉积液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极;循环伏安法扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V;
(3)将纸-石墨-PANI电极在H2PtCl6·6H2O溶液中静置,得到纸-石墨-PANI-Pt电极。
对上述方案作出以下进一步地说明:
步骤(2)中电沉积液组成为0.1~2.0 mol·L-1 H2SO4、0.1~0.5 mol·L-1 C6H7N,循环伏安沉积圈数为10~100圈。
步骤(3)中H2PtCl6·6H2O浓度为5 mmol·L-1,静置时间为1~16 h。
本发明提供了采用上述制备方法制得的纸-石墨-PANI-Pt电极。
本发明提供了上述纸-石墨-PANI-Pt电极在催化H2O2电还原反应中的应用。
具体应用过程为:将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用常规的三电极体系,使用循环伏安法催化H2O2电还原;循环伏安法扫描范围为-0.20~0.60 V,扫描速度为10 mV·s-1,测试溶液为0.1~2.0 mol·L-1H2SO4和0.01~2.0 mol·L-1 H2O2。
本发明的有益效果:
本发明采用纸作为电极材料支撑体,廉价易得、机械性能良好、可降解、环保无污染;在其表面负载PANI使电极具有更强的化学稳定性和导电性,通过自发氧化还原反应负载Pt催化剂,简单易操作;电极材料制备过程中不使用有机粘结剂,使所制备电极材料具有良好的导电性和稳定性。
附图说明
图1为实施例1和实施例2制备的纸-石墨-PANI-Pt电极的循环伏安曲线图。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层,将其剪为10 mm×10 mm的正方形片作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合溶液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极。扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。其电沉积液组成为2.0 mol·L-1 H2SO4和0.4 mol·L-1 C6H7N,循环伏安沉积圈数为80圈。最后将纸-石墨-PANI电极在5 mmol·L-1的H2PtCl6·6H2O溶液中静置1 h,得到纸-石墨-PANI-Pt电极。将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用循环伏安法对催化H2O2电还原性能进行测试。在1.0 mol·L-1 H2SO4和1.0 mol·L-1 H2O2溶液中,当扫描速度为10 mV·s-1,电位为-0.2 V时,还原电流密度达到195.2 mA·cm-2。
实施例2:
用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层,将其剪为10 mm×10 mm的正方形片作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合溶液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极。扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。其电沉积液组成为2.0 mol·L-1H2SO4、0.4 mol·L-1 C6H7N,循环伏安沉积圈数为80圈。最后将纸-石墨-PANI电极在5mmol·L-1 的H2PtCl6·6H2O溶液中静置4 h,得到纸-石墨-PANI-Pt电极。将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用循环伏安法对催化H2O2电还原性能进行测试。在1.0 mol·L-1 H2SO4和1.0 mol·L-1 H2O2溶液中,当扫描速度为10 mV·s-1,电位为-0.2 V时,还原电流密度达到235.8 mA·cm-2。
图1示出了本发明制备的纸-石墨-PANI电极在H2PtCl6·6H2O溶液中分别静置1 h(曲线a对应实施例1)和4 h(曲线b对应实施例2)所制备的纸-石墨-PANI-Pt电极的循环伏安曲线。从图中可以看出,静置4 h所制备的纸-石墨-PANI-Pt电极催化H2O2电还原产生的电流密度更高,说明了静置时间的延长加强了所制备电极对H2O2电还原反应的催化活性。
Claims (9)
1.一种纸-石墨-PANI-Pt电极的制备方法,其特征在于包括以下步骤:
(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层;
(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合电沉积液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极;
(3)将纸-石墨-PANI电极在H2PtCl6·6H2O溶液中静置,得到纸-石墨-PANI-Pt电极。
2.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)电沉积液中H2SO4的浓度为0.1~2.0 mol·L-1。
3.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)电沉积液中C6H7N的浓度为0.1~0.5 mol·L-1。
4.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)中扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。
5.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)中循环伏安沉积圈数为10~100圈。
6.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(3)中H2PtCl6·6H2O浓度为5 mmol·L-1,静置时间为1~16 h。
7.一种权利要求1~6任一项所述的制备方法制得的纸-石墨-PANI-Pt电极。
8.一种权利要求7所述的纸-石墨-PANI-Pt电极在催化H2O2电还原反应中的应用。
9.根据权利要求8所述的应用,其特征在于:将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用常规的三电极体系,使用循环伏安法催化H2O2电还原;循环伏安法扫描范围为-0.20~0.60 V,扫描速度为10 mV·s-1,测试溶液为0.1~2.0 mol·L-1 H2SO4和0.01~2.0 mol·L-1 H2O2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911420661.9A CN111146461B (zh) | 2019-12-31 | 2019-12-31 | 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911420661.9A CN111146461B (zh) | 2019-12-31 | 2019-12-31 | 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111146461A true CN111146461A (zh) | 2020-05-12 |
CN111146461B CN111146461B (zh) | 2021-06-04 |
Family
ID=70522902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911420661.9A Active CN111146461B (zh) | 2019-12-31 | 2019-12-31 | 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111146461B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146358A (ja) * | 2002-08-26 | 2004-05-20 | Nitto Denko Corp | 燃料電池 |
CN1564355A (zh) * | 2004-04-02 | 2005-01-12 | 北京科技大学 | 燃料电池中聚合物负载催化剂电极及其制备方法 |
US20080096093A1 (en) * | 2006-10-19 | 2008-04-24 | Jang Bor Z | Electro-catalyst compositions for fuel cells |
CN103123870A (zh) * | 2013-02-06 | 2013-05-29 | 燕山大学 | 用于超级电容器的纳米复合薄膜电极材料及其制备方法 |
CN106058278A (zh) * | 2016-06-13 | 2016-10-26 | 江苏大学 | 一种一步原位制备石墨烯/聚苯胺复合电极的方法 |
CN108172414A (zh) * | 2017-12-25 | 2018-06-15 | 浙江华正新材料股份有限公司 | 一种聚苯胺修饰的石墨烯薄膜的制备方法及其应用 |
-
2019
- 2019-12-31 CN CN201911420661.9A patent/CN111146461B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146358A (ja) * | 2002-08-26 | 2004-05-20 | Nitto Denko Corp | 燃料電池 |
CN1564355A (zh) * | 2004-04-02 | 2005-01-12 | 北京科技大学 | 燃料电池中聚合物负载催化剂电极及其制备方法 |
US20080096093A1 (en) * | 2006-10-19 | 2008-04-24 | Jang Bor Z | Electro-catalyst compositions for fuel cells |
CN103123870A (zh) * | 2013-02-06 | 2013-05-29 | 燕山大学 | 用于超级电容器的纳米复合薄膜电极材料及其制备方法 |
CN106058278A (zh) * | 2016-06-13 | 2016-10-26 | 江苏大学 | 一种一步原位制备石墨烯/聚苯胺复合电极的方法 |
CN108172414A (zh) * | 2017-12-25 | 2018-06-15 | 浙江华正新材料股份有限公司 | 一种聚苯胺修饰的石墨烯薄膜的制备方法及其应用 |
Non-Patent Citations (2)
Title |
---|
DONGMING ZHANG ET AL.: "Catalytic behavior of a palladium doped binder free paper based cobalt electrode in electroreduction", 《JOURNAL OR POWER SOURCES》 * |
SONIA ET AL.: "Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers", 《J APPL ELECTROCHEM》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111146461B (zh) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Logan et al. | Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells | |
Choe et al. | Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers | |
Sacco | Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review | |
Gao et al. | Crystalline cobalt/amorphous LaCoO x hybrid nanoparticles embedded in porous nitrogen-doped carbon as efficient electrocatalysts for hydrazine-assisted hydrogen production | |
Lu et al. | Microbial fuel cell equipped with a photocatalytic rutile-coated cathode | |
Xia et al. | Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air–cathode catalyst in microbial fuel cells | |
Danaee et al. | Electrooxidation of methanol on NiMn alloy modified graphite electrode | |
Wang et al. | Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells | |
Yu et al. | Electrochemical reduction of oxygen with iron phthalocyanine in neutral media | |
Shi et al. | Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air–cathode microbial fuel cells | |
Chaturvedi et al. | Recent advances and perspectives in platinum-free cathode catalysts in microbial fuel cells | |
Yuan et al. | Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy | |
Döner et al. | Electrocatalysis of Ni-promoted Cd coated graphite toward methanol oxidation in alkaline medium | |
CN105810957B (zh) | 一种铂/氢氧化镍‑氢氧化钴/石墨烯三维复合催化剂的制备及应用 | |
Chandrasekhar | Effective and nonprecious cathode catalysts for oxygen reduction reaction in microbial fuel cells | |
Farzaneh et al. | Insights on the superior performance of nanostructured nitrogen-doped reduced graphene oxide in comparison with commercial Pt/C as cathode electrocatalyst layer of passive direct methanol fuel cell | |
Yi et al. | Carbon-supported bimetallic platinum–iron nanocatalysts: application in direct borohydride/hydrogen peroxide fuel cell | |
Yin et al. | Tuning Ni-foam into NiOOH/FeOOH heterostructures toward superior water oxidation catalyst via three-step strategy | |
CN102324531A (zh) | 一种碳载CoN燃料电池催化剂及其制备方法和应用 | |
Danaee et al. | Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode | |
CN102117918B (zh) | 氮掺杂碳纳米管在制备微生物燃料电池阴极中的应用及其制备方法 | |
CN107863539A (zh) | 一种生物质碱性燃料电池阳极的制备方法 | |
Chen et al. | High electricity generation achieved by depositing rGO@ MnO2 composite catalysts on three-dimensional stainless steel fiber felt for preparing the energy-efficient air cathode in microbial fuel cells | |
CN101162780B (zh) | 一种直接甲醇燃料电池阳极催化剂及其制备方法 | |
Ghosh et al. | Precious-Metal-Free Solvothermally Synthesized CeO2 Nanosphere-Graphitic Carbon Nitride Sheet Composites for Oxygen Reduction Reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |