CN111146461A - 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 - Google Patents

一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 Download PDF

Info

Publication number
CN111146461A
CN111146461A CN201911420661.9A CN201911420661A CN111146461A CN 111146461 A CN111146461 A CN 111146461A CN 201911420661 A CN201911420661 A CN 201911420661A CN 111146461 A CN111146461 A CN 111146461A
Authority
CN
China
Prior art keywords
electrode
graphite
paper
pani
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911420661.9A
Other languages
English (en)
Other versions
CN111146461B (zh
Inventor
张栋铭
刘有智
王浩宇
崔灿
程宇玲
袁志国
焦纬洲
祁贵生
刘志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201911420661.9A priority Critical patent/CN111146461B/zh
Publication of CN111146461A publication Critical patent/CN111146461A/zh
Application granted granted Critical
Publication of CN111146461B publication Critical patent/CN111146461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种纸‑石墨‑PANI‑Pt电极的制备方法及其在催化H2O2电还原反应中的应用。制法为:(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层;(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,使用循环伏安法进行电沉积,制备纸‑石墨‑PANI电极;(3)将纸‑石墨‑PANI电极在H2PtCl6·6H2O溶液中静置,得到纸‑石墨‑PANI‑Pt电极。本发明制备方法简单,且无需使用有机粘结剂,所制备电极具有优异的电催化活性、耐腐蚀性、机械稳定性,用于催化过氧化氢电还原,解决了H2O2电还原性能低、电极材料稳定性差的问题,具有广泛的应用前景。

Description

一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原 反应中的应用
技术领域
本发明属于电极材料制备领域,具体涉及到一种纸-石墨-PANI-Pt电极材料的制备方法,用于催化H2O2的电还原反应。
背景技术
能源对于人类社会的生存和发展是必不可少,但是传统的化石能源面临资源匮乏和环境污染两个重要的问题,为此人们不断寻找清洁的能源来代替传统能源。燃料电池是一种将燃料和氧化剂中的化学能直接转变为电能的装置,其发电效率高、噪音低、对环境污染小,逐渐被人们所关注,为解决能源问题提供新的方向。
H2O2作为氧化剂在燃料电池中已经被广泛应用,例如直接硼氢化物-过氧化氢燃料电池、甲醇-过氧化氢燃料电池、尿素-过氧化氢燃料电池等。H2O2有很多突出优势:(1)常温下表现为液态,储存运输方便;(2)其电还原为两电子反应,需要的活化能较低;(3)价格低廉,容易获得。制备对H2O2具有高电还原催化活性的电极材料对装配高性能燃料电池非常重要。
纸在我们的生活中随处可见,近年来纸作为柔性电极材料备受关注(可参阅Dongming Zhang, Dianxue Cao, Ke Ye*, Jinling Yin, Kui Cheng, Guiling Wang*.Cobalt nano-sheet supported on graphite modified paper as a binder freeelectrode for peroxide electrooxidation[J]. Electrochimica Acta. 2014; 139:250-255.及Dongming Zhang, Ke Ye, Dianxue Cao, Jinling Yin, Kui Cheng, BinWang, Yang Xu, Guiling Wang*. Catalytic behavior of a palladium doped binderfree paper based cobalt electrode in electroreduction of hydrogen peroxide[J]. Journal of Power Sources. 2015; 273: 1142-1147.)。纸作为电极支撑体,具有价格低廉、机械性能良好、可再生、环保无污染等优点。但是其作为电极材料支撑体也存在一些问题,如:化学稳定性较差、导电性不佳等。
发明内容
本发明旨在提供一种纸-石墨-PANI-Pt电极材料的制备方法,解决了H2O2电还原性能低、电极材料稳定性差的问题。
本发明是采用电沉积法在涂有石墨层的滤纸上沉积PANI,然后通过氧化还原反应在其表面负载Pt催化剂,用于催化H2O2电还原。本发明用铅笔涂覆滤纸,在滤纸表面形成导电石墨层,C6H7N单体通过电化学聚合过程在石墨纸表面形成PANI层,还原态的PANI与H2PtCl6·6H2O发生氧化还原反应,负载Pt催化剂。本发明制备方法简单,且无需使用有机粘结剂,所制备电极具有优异的电催化活性、耐腐蚀性、机械稳定性,解决了H2O2电还原性能低、电极材料稳定性差的问题,具有广泛的应用前景。
本发明提供了一种纸-石墨-PANI-Pt电极的制备方法,包括以下步骤:
(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层。
(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合电沉积液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极;循环伏安法扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V;
(3)将纸-石墨-PANI电极在H2PtCl6·6H2O溶液中静置,得到纸-石墨-PANI-Pt电极。
对上述方案作出以下进一步地说明:
步骤(2)中电沉积液组成为0.1~2.0 mol·L-1 H2SO4、0.1~0.5 mol·L-1 C6H7N,循环伏安沉积圈数为10~100圈。
步骤(3)中H2PtCl6·6H2O浓度为5 mmol·L-1,静置时间为1~16 h。
本发明提供了采用上述制备方法制得的纸-石墨-PANI-Pt电极。
本发明提供了上述纸-石墨-PANI-Pt电极在催化H2O2电还原反应中的应用。
具体应用过程为:将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用常规的三电极体系,使用循环伏安法催化H2O2电还原;循环伏安法扫描范围为-0.20~0.60 V,扫描速度为10 mV·s-1,测试溶液为0.1~2.0 mol·L-1H2SO4和0.01~2.0 mol·L-1 H2O2
本发明的有益效果:
本发明采用纸作为电极材料支撑体,廉价易得、机械性能良好、可降解、环保无污染;在其表面负载PANI使电极具有更强的化学稳定性和导电性,通过自发氧化还原反应负载Pt催化剂,简单易操作;电极材料制备过程中不使用有机粘结剂,使所制备电极材料具有良好的导电性和稳定性。
附图说明
图1为实施例1和实施例2制备的纸-石墨-PANI-Pt电极的循环伏安曲线图。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层,将其剪为10 mm×10 mm的正方形片作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合溶液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极。扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。其电沉积液组成为2.0 mol·L-1 H2SO4和0.4 mol·L-1 C6H7N,循环伏安沉积圈数为80圈。最后将纸-石墨-PANI电极在5 mmol·L-1的H2PtCl6·6H2O溶液中静置1 h,得到纸-石墨-PANI-Pt电极。将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用循环伏安法对催化H2O2电还原性能进行测试。在1.0 mol·L-1 H2SO4和1.0 mol·L-1 H2O2溶液中,当扫描速度为10 mV·s-1,电位为-0.2 V时,还原电流密度达到195.2 mA·cm-2
实施例2:
用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层,将其剪为10 mm×10 mm的正方形片作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合溶液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极。扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。其电沉积液组成为2.0 mol·L-1H2SO4、0.4 mol·L-1 C6H7N,循环伏安沉积圈数为80圈。最后将纸-石墨-PANI电极在5mmol·L-1 的H2PtCl6·6H2O溶液中静置4 h,得到纸-石墨-PANI-Pt电极。将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用循环伏安法对催化H2O2电还原性能进行测试。在1.0 mol·L-1 H2SO4和1.0 mol·L-1 H2O2溶液中,当扫描速度为10 mV·s-1,电位为-0.2 V时,还原电流密度达到235.8 mA·cm-2
图1示出了本发明制备的纸-石墨-PANI电极在H2PtCl6·6H2O溶液中分别静置1 h(曲线a对应实施例1)和4 h(曲线b对应实施例2)所制备的纸-石墨-PANI-Pt电极的循环伏安曲线。从图中可以看出,静置4 h所制备的纸-石墨-PANI-Pt电极催化H2O2电还原产生的电流密度更高,说明了静置时间的延长加强了所制备电极对H2O2电还原反应的催化活性。

Claims (9)

1.一种纸-石墨-PANI-Pt电极的制备方法,其特征在于包括以下步骤:
(1)用铅笔在滤纸表面均匀涂绘,在其表面覆盖导电石墨层;
(2)将涂有石墨层的滤纸作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,在H2SO4和C6H7N的混合电沉积液中,采用传统的三电极体系,使用循环伏安法进行电沉积过程,制备纸-石墨-PANI电极;
(3)将纸-石墨-PANI电极在H2PtCl6·6H2O溶液中静置,得到纸-石墨-PANI-Pt电极。
2.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)电沉积液中H2SO4的浓度为0.1~2.0 mol·L-1
3.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)电沉积液中C6H7N的浓度为0.1~0.5 mol·L-1
4.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)中扫描速度为50 mV·s-1,扫描范围为-0.4~1.0 V。
5.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(2)中循环伏安沉积圈数为10~100圈。
6.根据权利要求1所述的纸-石墨-PANI-Pt电极的制备方法,其特征在于:步骤(3)中H2PtCl6·6H2O浓度为5 mmol·L-1,静置时间为1~16 h。
7.一种权利要求1~6任一项所述的制备方法制得的纸-石墨-PANI-Pt电极。
8.一种权利要求7所述的纸-石墨-PANI-Pt电极在催化H2O2电还原反应中的应用。
9.根据权利要求8所述的应用,其特征在于:将纸-石墨-PANI-Pt电极作为工作电极,石墨棒作为对电极,氯化银电极作为参比电极,采用常规的三电极体系,使用循环伏安法催化H2O2电还原;循环伏安法扫描范围为-0.20~0.60 V,扫描速度为10 mV·s-1,测试溶液为0.1~2.0 mol·L-1 H2SO4和0.01~2.0 mol·L-1 H2O2
CN201911420661.9A 2019-12-31 2019-12-31 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用 Active CN111146461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911420661.9A CN111146461B (zh) 2019-12-31 2019-12-31 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911420661.9A CN111146461B (zh) 2019-12-31 2019-12-31 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用

Publications (2)

Publication Number Publication Date
CN111146461A true CN111146461A (zh) 2020-05-12
CN111146461B CN111146461B (zh) 2021-06-04

Family

ID=70522902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911420661.9A Active CN111146461B (zh) 2019-12-31 2019-12-31 一种纸-石墨-PANI-Pt电极的制备方法及其在催化H2O2电还原反应中的应用

Country Status (1)

Country Link
CN (1) CN111146461B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146358A (ja) * 2002-08-26 2004-05-20 Nitto Denko Corp 燃料電池
CN1564355A (zh) * 2004-04-02 2005-01-12 北京科技大学 燃料电池中聚合物负载催化剂电极及其制备方法
US20080096093A1 (en) * 2006-10-19 2008-04-24 Jang Bor Z Electro-catalyst compositions for fuel cells
CN103123870A (zh) * 2013-02-06 2013-05-29 燕山大学 用于超级电容器的纳米复合薄膜电极材料及其制备方法
CN106058278A (zh) * 2016-06-13 2016-10-26 江苏大学 一种一步原位制备石墨烯/聚苯胺复合电极的方法
CN108172414A (zh) * 2017-12-25 2018-06-15 浙江华正新材料股份有限公司 一种聚苯胺修饰的石墨烯薄膜的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146358A (ja) * 2002-08-26 2004-05-20 Nitto Denko Corp 燃料電池
CN1564355A (zh) * 2004-04-02 2005-01-12 北京科技大学 燃料电池中聚合物负载催化剂电极及其制备方法
US20080096093A1 (en) * 2006-10-19 2008-04-24 Jang Bor Z Electro-catalyst compositions for fuel cells
CN103123870A (zh) * 2013-02-06 2013-05-29 燕山大学 用于超级电容器的纳米复合薄膜电极材料及其制备方法
CN106058278A (zh) * 2016-06-13 2016-10-26 江苏大学 一种一步原位制备石墨烯/聚苯胺复合电极的方法
CN108172414A (zh) * 2017-12-25 2018-06-15 浙江华正新材料股份有限公司 一种聚苯胺修饰的石墨烯薄膜的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGMING ZHANG ET AL.: "Catalytic behavior of a palladium doped binder free paper based cobalt electrode in electroreduction", 《JOURNAL OR POWER SOURCES》 *
SONIA ET AL.: "Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers", 《J APPL ELECTROCHEM》 *

Also Published As

Publication number Publication date
CN111146461B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Logan et al. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells
Choe et al. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers
Sacco Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review
Gao et al. Crystalline cobalt/amorphous LaCoO x hybrid nanoparticles embedded in porous nitrogen-doped carbon as efficient electrocatalysts for hydrazine-assisted hydrogen production
Lu et al. Microbial fuel cell equipped with a photocatalytic rutile-coated cathode
Xia et al. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air–cathode catalyst in microbial fuel cells
Danaee et al. Electrooxidation of methanol on NiMn alloy modified graphite electrode
Wang et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells
Yu et al. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media
Shi et al. Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air–cathode microbial fuel cells
Chaturvedi et al. Recent advances and perspectives in platinum-free cathode catalysts in microbial fuel cells
Yuan et al. Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy
Döner et al. Electrocatalysis of Ni-promoted Cd coated graphite toward methanol oxidation in alkaline medium
CN105810957B (zh) 一种铂/氢氧化镍‑氢氧化钴/石墨烯三维复合催化剂的制备及应用
Chandrasekhar Effective and nonprecious cathode catalysts for oxygen reduction reaction in microbial fuel cells
Farzaneh et al. Insights on the superior performance of nanostructured nitrogen-doped reduced graphene oxide in comparison with commercial Pt/C as cathode electrocatalyst layer of passive direct methanol fuel cell
Yi et al. Carbon-supported bimetallic platinum–iron nanocatalysts: application in direct borohydride/hydrogen peroxide fuel cell
Yin et al. Tuning Ni-foam into NiOOH/FeOOH heterostructures toward superior water oxidation catalyst via three-step strategy
CN102324531A (zh) 一种碳载CoN燃料电池催化剂及其制备方法和应用
Danaee et al. Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode
CN102117918B (zh) 氮掺杂碳纳米管在制备微生物燃料电池阴极中的应用及其制备方法
CN107863539A (zh) 一种生物质碱性燃料电池阳极的制备方法
Chen et al. High electricity generation achieved by depositing rGO@ MnO2 composite catalysts on three-dimensional stainless steel fiber felt for preparing the energy-efficient air cathode in microbial fuel cells
CN101162780B (zh) 一种直接甲醇燃料电池阳极催化剂及其制备方法
Ghosh et al. Precious-Metal-Free Solvothermally Synthesized CeO2 Nanosphere-Graphitic Carbon Nitride Sheet Composites for Oxygen Reduction Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant