CN111143757A - 一种二维非高斯粗糙体目标散射特性的计算方法 - Google Patents

一种二维非高斯粗糙体目标散射特性的计算方法 Download PDF

Info

Publication number
CN111143757A
CN111143757A CN201911257424.5A CN201911257424A CN111143757A CN 111143757 A CN111143757 A CN 111143757A CN 201911257424 A CN201911257424 A CN 201911257424A CN 111143757 A CN111143757 A CN 111143757A
Authority
CN
China
Prior art keywords
formula
scattering
rough
equation
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911257424.5A
Other languages
English (en)
Other versions
CN111143757B (zh
Inventor
王明军
思黛蓉
贺锦涛
杨培琦
郭镭力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201911257424.5A priority Critical patent/CN111143757B/zh
Publication of CN111143757A publication Critical patent/CN111143757A/zh
Application granted granted Critical
Publication of CN111143757B publication Critical patent/CN111143757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种二维非高斯粗糙体目标散射特性的计算方法,具体为:利用标量亥姆霍兹方程和物理光学近似,经过严格的理论推导得到了非高斯分布粗糙体目标散射场的相干与非相干分量、归一化非相干分量比和散射强度,对比高斯与非高斯粗糙目标的散射特性。通过对随机粗糙表面散射特性的研究为计算非高斯分布更复杂粗糙体目标理论建模及激光散射探测、识别的统计特性等问题提供了理论依据。

Description

一种二维非高斯粗糙体目标散射特性的计算方法
技术领域
本发明属于粗糙面电磁散射技术领域,具体涉及一种二维非高斯粗糙体目标散射特性的计算方法。
背景技术
目前,针对随机粗糙背景下复杂运动目标的散射特性研究越来越受重视,粗糙面电磁散射研究在理论分析和实际应用中具有重要的意义,广泛的应用在军用和民用工程上对电波传播、通信、机载雷达和星载雷达等众多领域,推动随机粗糙表面电磁散射研究的深入发展。
国内外学者对于高斯随机粗糙体目标散射特性已进行大量的研究,求解方法利用基尔霍夫近似法、平面波谱展开法及物理光学近似法。基尔霍夫近似法是关于电磁波在粗糙表面上的散射,为测量远区散射场计算粗糙物体表面相干与非相干分量等光学方法提供理论依据。利用标量亥姆霍兹积分方程和粗糙体目标散射理论,通过对修正指数分布函数的计算得到散射场的双频互相关函数,进而推导获得非高斯粗糙体目标的非相干分量比和散射强度的解析表达式。
发明内容
本发明的目的在于提供一种二维非高斯粗糙体目标散射特性的计算方法,解决了现有技术中对非高斯分布粗糙体目标散射特性计算困难的问题。
本发明所采用的技术方案是,一种二维非高斯粗糙体目标散射特性的计算方法,具体按照以下步骤实施:
步骤1,求解散射场的双频互相关函数;
步骤2,经步骤1后,求解散射场的相干与非相干散射强度;
步骤3,经步骤2后,求解粗糙球体目标的散射场非相干分量比和粗糙锥体目标的散射强度函数。
本发明的特点还在于,
步骤1中,求解散射场的双频互相关函数,具体步骤如下:
设入射平面波
Figure BDA0002310674650000021
为入射波矢量,k=2πλ为自由空间波数,λ为入射波的波长,其中,S′是粗糙目标的平均面,SΣ是凸体目标的起伏表面;矢量
Figure BDA0002310674650000022
为平均面S′的单位外法向矢量,
Figure BDA0002310674650000023
是起伏表面SΣ的外法向矢量;
Figure BDA0002310674650000024
是目标原点到表面的矢量距离,
Figure BDA0002310674650000025
是目标原点到面SΣ的矢径,
Figure BDA0002310674650000026
为观察点P与目标坐标系原点之间的矢量距离;θi
Figure BDA0002310674650000027
位置的局部入射角,θi′是在
Figure BDA0002310674650000028
位置的入射角;
Figure BDA0002310674650000029
是入射方位角,
Figure BDA00023106746500000210
是散射方位角;矢量
Figure BDA00023106746500000211
Figure BDA00023106746500000212
分别是入射矢量和散射矢量,省略掉入射波的时间因子exp(-iωt);
根据标量Helmholtz方程,散射场表达式如式(1)所示:
Figure BDA00023106746500000213
式(1)中,
Figure BDA00023106746500000216
Figure BDA00023106746500000214
为粗糙面SΣ上的总电场和它的法向导数;
Figure BDA00023106746500000215
为自由空间标量格林函数,其表达式如式(2)所示:
Figure BDA0002310674650000031
由式(1)可知,表面总电场
Figure BDA0002310674650000032
是入射场
Figure BDA0002310674650000033
与散射场
Figure BDA0002310674650000034
之和;入射到粗糙表面上的电场
Figure BDA0002310674650000035
满足式(3):
Figure BDA0002310674650000036
观察点P处的散射场表达式如式(4)所示:
Figure BDA0002310674650000037
当表面任一点的主曲率半径远大于入射波长,采用切平面近似;粗糙面上任一点
Figure BDA0002310674650000038
上的散射场和法向导数如式(5)、(6)所示:
Figure BDA0002310674650000039
Figure BDA00023106746500000310
其中,Ri为菲涅尔反射系数;
采用远场近似,式(1)中格林函数
Figure BDA00023106746500000311
的法向导数可以写成式(7):
Figure BDA00023106746500000312
采用远场近似,将式(1)可简化为式(8):
Figure BDA00023106746500000313
其中,
Figure BDA00023106746500000314
Figure BDA00023106746500000315
矢量距离
Figure BDA00023106746500000316
可近似满足式(9):
Figure BDA00023106746500000317
且有式(10)、(11):
Figure BDA0002310674650000041
Figure BDA0002310674650000042
假定观测点位于物体远区时,粗糙面的均方根斜率远小于1,则
Figure BDA0002310674650000043
将式(9)--式(12)代入式(8),得到散射场表达式,如式(13)所示:
Figure BDA0002310674650000044
假设目标为导体,则式(13)可进一步简化为式(14);
Figure BDA0002310674650000045
利用远场近似,式(14)中的距离可简化为
Figure BDA0002310674650000046
式(15)中,R为观察点P和光滑面S′之间的距离;
则粗糙目标的远场散射表达式,如式(16)所示:
Figure BDA0002310674650000047
由式(16)可知,可以得到平均散射场表达式,如式(17)所示:
Figure BDA0002310674650000048
双频互相关函数Γ可表示为相干Γc和非相干分量Γf之和,如式(18)、式(19)及式(20)所示:
Γ=Γcf (18);
Figure BDA0002310674650000051
Figure BDA0002310674650000052
步骤2中,求解散射场的相干与非相干散射强度,具体步骤如下:
根据步骤1中式(18)--式(20)可知,可以得到双频互相关函数的相干散射强度,如式(21)所示:
Figure BDA0002310674650000053
双频互相关函数的非相干散射强度如式(22)所示:
Figure BDA0002310674650000054
式(22)中,K=exp[i(k1-k2)R]/(2πR)2,粗糙面起伏函数
Figure BDA0002310674650000055
服从修正指数分布,均方根高度为σ,相关长度为lc,得到修正指数函数的一阶、二阶特征函数如式(23)、(24)所示:
Figure BDA0002310674650000056
Figure BDA0002310674650000057
将式(24)进行泰勒级数展开,得到式(25):
Figure BDA0002310674650000058
式(25)中,
Figure BDA0002310674650000059
是V的单位矢量;
Figure BDA00023106746500000510
为粗糙面修正指数函数的归一化自相关函数,其表达式如式(26)所示:
Figure BDA00023106746500000511
将式(23)--式(26)带入式(21)中,得到双频互相关函数的相干分量表达式如式(27)所示:
Figure BDA0002310674650000061
双频互相关函数的非相干分量表达式如式(28)所示:
Figure BDA0002310674650000062
步骤3中,求解粗糙球体目标的散射场非相干分量比和粗糙锥体目标的散射强度函数;具体为:
根据步骤2中式(27)和式(28),定义比值系数如式(29)所示:
Figure BDA0002310674650000063
Figure BDA0002310674650000064
其中,式(29)、(30)定义γ12数学含义为非高斯粗糙面非相干分量与相干分量的比值;入射平面波沿着-Z轴方向入射在粗糙球体上,球体中心位于坐标系的原点,设平面波入射波长λ=1.06μm,球体半径为a,σ为粗糙面的粗糙度,lc为相关长度,入射角θi=0°,方位角
Figure BDA0002310674650000065
其轴线与ks的夹角为θs,即ks=(sinθs,0,cosθs);
设平面波入射在圆锥体侧面,取圆锥底面中心为坐标原点,圆锥体底面半径为a,高为h,半锥角为α,锥面方程的表达式如式(31)所示:
Figure BDA0002310674650000071
Figure BDA0002310674650000072
设入射波在平面xoz内,即方位角为0;圆锥的散射波矢量为
Figure BDA0002310674650000073
法向矢量为
Figure BDA0002310674650000074
入射波矢量为
Figure BDA0002310674650000075
Figure BDA0002310674650000076
知,在稳相点处
Figure BDA0002310674650000077
在高频极限条件下,
Figure BDA0002310674650000078
Figure BDA0002310674650000079
θ0为镜向点处的入射角,则粗糙圆锥体的散射场表达式如式(32)所示;
Figure BDA00023106746500000710
则平均散射场表达式如式(33)所示;
Figure BDA00023106746500000711
利用高频近似,则式(33)中的积分可进行简化,如式(34)所示;
Figure BDA00023106746500000712
粗糙圆锥体的高度起伏满足修正指数分布,由(23)式可知,表面特征函数如式(35)所示;
χ(-2kicosθ0)=[1+ki 2σ2cos2θ0]-4 (35);
根据式(33)--(35)可得到粗糙锥体目标散射强度函数,如式(36)所示;
Figure BDA0002310674650000081
本发明的有益效果是,
本发明利用标量亥姆霍兹积分方程和粗糙体目标散射理论为基础,经过严格的理论推导给出了散射场的双频互相关函数、粗糙球体目标的非相干分量比和粗糙锥体目标的散射强度的计算公式。通过对比高斯与非高斯粗糙体目标的散射特性,相对于现有技术具有更好的通用性和更广的工程应用范围。
附图说明
图1是本发明一种二维非高斯粗糙体目标散射特性的计算方法的流程图;
图2a是本发明一种二维非高斯粗糙体目标散射特性的计算方法中粗糙物体平面波散射局部示意图;
图2b是本发明建立的平面波入射粗糙物体平均表面散射模型示意图;
图3是本发明建立的平面波入射粗糙球体散射模型示意图;
图4是本发明建立的圆锥光散射模型示意图;
图5是半径为5cm时不同粗糙度下高斯与非高斯粗糙球体散射归一化非相干分量比响应示意图;
图6是粗糙度为0.06μm时不同半径下高斯与非高斯粗糙球体散射归一化非相干分量比响应示意图;
图7是粗糙度为0.06μm、半径为10cm时高斯与非高斯粗糙球体散射归一化非相干分量比响应示意图;
图8是波长为1.06μm、半径为5cm时高斯与非高斯粗糙球体散射归一化非相干分量比响应示意图;
图9是不同粗糙度下高斯分布散射光强响应示意图;
图10是不同粗糙度下非高斯分布散射光强响应示意图;
图11是粗糙度为0.05μm时不同目标材料下高斯分布散射光强响应示意图;
图12是粗糙度为0.05μm时不同目标材料下非高斯分布散射光强响应示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种二维非高斯粗糙体目标散射特性的计算方法,如图1所示,具体按照以下步骤实施:
步骤1,求解散射场的双频互相关函数,具体步骤如下:
设入射平面波
Figure BDA0002310674650000091
为入射波矢量,k=2π/λ为自由空间波数,λ为入射波的波长,散射情况如图2a、图2b所示。其中,S′是粗糙目标的平均面,SΣ是凸体目标的起伏表面;矢量
Figure BDA0002310674650000092
为平均面S′的单位外法向矢量,
Figure BDA0002310674650000093
是起伏表面SΣ的外法向矢量;
Figure BDA0002310674650000094
是目标原点到表面的矢量距离,
Figure BDA0002310674650000095
是目标原点到面SΣ的矢径,
Figure BDA0002310674650000096
为观察点P与目标坐标系原点之间的矢量距离;θi
Figure BDA0002310674650000101
位置的局部入射角,θi′是在
Figure BDA0002310674650000102
位置的入射角;
Figure BDA0002310674650000103
是入射方位角,
Figure BDA0002310674650000104
是散射方位角;矢量
Figure BDA0002310674650000105
Figure BDA0002310674650000106
分别是入射矢量和散射矢量,省略掉入射波的时间因子exp(-iωt)。
根据标量Helmholtz方程,散射场表达式如式(1)所示:
Figure BDA0002310674650000107
式(1)中,
Figure BDA0002310674650000108
Figure BDA0002310674650000109
为粗糙面SΣ上的总电场和它的法向导数;
Figure BDA00023106746500001010
为自由空间标量格林函数,其表达式如式(2)所示:
Figure BDA00023106746500001011
由式(1)可知,表面总电场
Figure BDA00023106746500001012
是入射场
Figure BDA00023106746500001013
与散射场
Figure BDA00023106746500001014
之和;入射到粗糙表面上的电场
Figure BDA00023106746500001015
满足式(3):
Figure BDA00023106746500001016
观察点P处的散射场表达式如式(4)所示:
Figure BDA00023106746500001017
当表面任一点的主曲率半径远大于入射波长,采用切平面近似;粗糙面上任一点
Figure BDA00023106746500001018
上的散射场和法向导数如式(5)、(6)所示:
Figure BDA00023106746500001019
Figure BDA00023106746500001020
其中,Ri为菲涅尔反射系数;
采用远场近似,式(1)中格林函数
Figure BDA00023106746500001021
的法向导数可以写成式(7):
Figure BDA0002310674650000111
采用远场近似,将式(1)可简化为式(8):
Figure BDA0002310674650000112
其中,
Figure BDA0002310674650000113
Figure BDA0002310674650000114
矢量距离
Figure BDA0002310674650000115
可近似满足式(9):
Figure BDA0002310674650000116
且有式(10)、(11):
Figure BDA0002310674650000117
Figure BDA0002310674650000118
假定观测点位于物体远区时,粗糙面的均方根斜率远小于1,则
Figure BDA0002310674650000119
将式(9)—式(12)代入式(8),得到散射场表达式,如式(13)所示:
Figure BDA00023106746500001110
假设目标为导体,则式(13)可进一步简化为式(14);
Figure BDA00023106746500001111
利用远场近似,式(14)中的距离可简化为
Figure BDA00023106746500001112
式(15)中,R为观察点P和光滑面S′之间的距离。
则粗糙目标的远场散射表达式,如式(16)所示:
Figure BDA0002310674650000121
将式(16)与式(8)相比,粗糙物体的散射场比光滑物体散射场在积分号内多了一个起伏相位因子,该因子是由物体的随机起伏而引入的额外相位。
由式(16)可知,可以得到平均散射场表达式,如式(17)所示:
Figure BDA0002310674650000122
双频互相关函数Γ可表示为相干Γc和非相干分量Γf之和,如式(18)、式(19)及式(20)所示:
Γ=Γcf (18);
Figure BDA0002310674650000123
Figure BDA0002310674650000124
步骤2,经步骤1后,求解散射场的相干与非相干散射强度;
根据步骤1中式(18)--式(20)可知,可以得到双频互相关函数的相干散射强度,如式(21)所示:
Figure BDA0002310674650000125
双频互相关函数的非相干散射强度如式(22)所示:
Figure BDA0002310674650000126
式(22)中,K=exp[i(k1-k2)R]/(2πR)2,粗糙面起伏函数
Figure BDA0002310674650000127
服从修正指数分布,均方根高度为σ,相关长度为lc,得到修正指数函数的一阶、二阶特征函数如式(23)、(24)所示:
Figure BDA0002310674650000131
Figure BDA0002310674650000132
将式(24)进行泰勒级数展开,得到式(25):
Figure BDA0002310674650000133
式(25)中,
Figure BDA0002310674650000134
是V的单位矢量;
Figure BDA0002310674650000135
为粗糙面修正指数函数的归一化自相关函数,其表达式如式(26)所示:
Figure BDA0002310674650000136
将式(23)--式(26)带入式(21)中,得到双频互相关函数的相干分量表达式如式(27)所示:
Figure BDA0002310674650000137
双频互相关函数的非相干分量表达式如式(28)所示:
Figure BDA0002310674650000138
步骤3,经步骤2后,求解粗糙球体目标的散射场非相干分量比和粗糙锥体目标的散射强度函数;具体为:
根据步骤2中式(27)和式(28),定义比值系数如式(29)所示:
Figure BDA0002310674650000141
Figure BDA0002310674650000142
其中,式(29)、(30)定义γ12数学含义为非高斯粗糙面非相干分量与相干分量的比值;如图3所示,入射平面波沿着-Z轴方向入射在粗糙球体上,球体中心位于坐标系的原点,设平面波入射波长λ=1.06μm,球体半径为a,σ为粗糙面的粗糙度,lc为相关长度,入射角θi=0°,方位角
Figure BDA0002310674650000143
其轴线与ks的夹角为θs,即ks=(sinθs,0,cosθs)。
设平面波入射在圆锥体侧面,取圆锥底面中心为坐标原点,如图4所示,圆锥体底面半径为a,高为h,半锥角为α,锥面方程的表达式如式(31)所示:
Figure BDA0002310674650000144
Figure BDA00023106746500001412
设入射波在平面xoz内,即方位角为0;圆锥的散射波矢量为
Figure BDA0002310674650000145
法向矢量为
Figure BDA0002310674650000146
入射波矢量为
Figure BDA0002310674650000147
Figure BDA0002310674650000148
知,在稳相点处
Figure BDA0002310674650000149
在高频极限条件下,
Figure BDA00023106746500001410
Figure BDA00023106746500001411
θ0为镜向点处的入射角,则粗糙圆锥体的散射场表达式如式(32)所示;
Figure BDA0002310674650000151
则平均散射场表达式如式(33)所示;
Figure BDA0002310674650000152
利用高频近似,则式(33)中的积分可进行简化,如式(34)所示;
Figure BDA0002310674650000153
粗糙圆锥体的高度起伏满足修正指数分布,由(23)式可知,表面特征函数如式(35)所示;
χ(-2kicosθ0)=[1+ki 2σ2cos2θ0]-4 (35);
根据式(33)--(35)可得到粗糙锥体目标散射强度函数,如式(36)所示;
Figure BDA0002310674650000154
为了验证本发明方法所推导的相干与非相干散射分量、粗糙球体非相干分量比和粗糙锥体散射强度的正确性。在不同参数设置下,先对高斯分布粗糙体目标非相干分量比进行计算,之后与非高斯粗糙体目标进行比较来验证其结果的正确性。
令平面波入射波长λ=1.06μm,球体半径为a,σ为粗糙面的粗糙度,lc为相关长度,入射角θi=0°,方位角
Figure BDA0002310674650000161
其轴线与ks的夹角为θs,即ks=(sinθs,0,cosθs)。
图5中粗糙球体的半径为5cm,在σ=0.04μm、σ=0.05μm不同粗糙度的条件下归一化非相干分量比响应示意图,从图可以看出高斯粗糙球体非相干分量比随着粗糙度的增加逐渐变大,非高斯粗糙球体非相干分量比对应曲线变化趋势与高斯球体相反;图6中当粗糙球体的粗糙度为σ=0.06μm,在a=5cm、a=10cm不同半径的条件下归一化非相干分量比响应示意图,随着半径的增大,高斯球体归一化非相干分量比逐渐减小,非高斯球体非相干分量比对应曲线几乎不受半径影响;在图7中,当σ=0.06μm、a=10cm,给出归一化非相干分量比随相关长度增加而变大,高斯球体非相干分量比始终小于非高斯修正指数分布球体的非相干分量比,说明其镜向分量增强,则高斯球体表面更光滑。图8中,当λ=1.06μm、a=5cm,随着粗糙度的增大,高斯粗糙球体散射对应曲线缓慢上升,非高斯粗糙球体对应曲线下降,这是由于指数函数和二项式定理所致,即高斯粗糙球体散射归一化非相干分量比增大,而非高斯粗糙球体散射归一化非相干分量比减小。
在粗糙锥体目标中,设波长λ=1.06μm,圆锥的半径为a=5cm,半锥角α=15°,抛光铝材料的复折射率为2.43+10.7i,镀金包覆薄膜材料的复折射率为1.2277+10.3768i,观察方位角
Figure BDA0002310674650000162
高度起伏均方根分别为σ=0.05μm、σ=0.1μm。在图9、图10中,在σ=0.05μm、σ=0.1μm不同粗糙度的条件下散射光强响应示意图,对比图9和图10,可以发现高斯圆锥体散射光强较大。当观察方位角
Figure BDA0002310674650000163
一定,两种分布的圆锥体散射光强随高度起伏均方根的增加而减小。圆锥的散射光强随观察角顶角的变大,曲线先增大后减小,在0°附近有一峰值,这个峰值主要是由镜向散射形成的;
由图11、图12可看出,在不同目标材料的条件下散射光强响应示意图,对比图11和图12,可以发现目标材料不同对散射光强有影响,铝材料比镀金包覆薄膜材料的散射光强大;高斯圆锥体散射光强比较大。

Claims (4)

1.一种二维非高斯粗糙体目标散射特性的计算方法,其特征在于,具体按照以下步骤实施:
步骤1,求解散射场的双频互相关函数;
步骤2,经步骤1后,求解散射场的相干与非相干散射强度;
步骤3,经步骤2后,求解粗糙球体目标的散射场非相干分量比和粗糙锥体目标的散射强度函数。
2.根据权利要求1所述的一种二维非高斯粗糙体目标散射特性的计算方法,其特征在于,所述步骤1中,求解散射场的双频互相关函数,具体步骤如下:
设入射平面波
Figure FDA0002310674640000011
Figure FDA0002310674640000012
为入射波矢量,k=2π/λ为自由空间波数,λ为入射波的波长,其中,S′是粗糙目标的平均面,SΣ是凸体目标的起伏表面;矢量
Figure FDA0002310674640000013
为平均面S′的单位外法向矢量,
Figure FDA0002310674640000014
是起伏表面SΣ的外法向矢量;
Figure FDA0002310674640000015
是目标原点到表面的矢量距离,
Figure FDA0002310674640000016
是目标原点到面SΣ的矢径,
Figure FDA0002310674640000017
为观察点P与目标坐标系原点之间的矢量距离;θi
Figure FDA0002310674640000018
位置的局部入射角,θi′是在
Figure FDA0002310674640000019
位置的入射角;
Figure FDA00023106746400000110
是入射方位角,
Figure FDA00023106746400000111
是散射方位角;矢量
Figure FDA00023106746400000112
Figure FDA00023106746400000113
分别是入射矢量和散射矢量,省略掉入射波的时间因子exp(-iωt);
根据标量Helmholtz方程,散射场表达式如式(1)所示:
Figure FDA00023106746400000114
式(1)中,
Figure FDA00023106746400000115
Figure FDA00023106746400000116
为粗糙面SΣ上的总电场和它的法向导数;
Figure FDA0002310674640000021
为自由空间标量格林函数,其表达式如式(2)所示:
Figure FDA0002310674640000022
由式(1)可知,表面总电场
Figure FDA0002310674640000023
是入射场
Figure FDA0002310674640000024
与散射场
Figure FDA0002310674640000025
之和;入射到粗糙表面上的电场
Figure FDA0002310674640000026
满足式(3):
Figure FDA0002310674640000027
观察点P处的散射场表达式如式(4)所示:
Figure FDA0002310674640000028
当表面任一点的主曲率半径远大于入射波长,采用切平面近似;粗糙面上任一点
Figure FDA0002310674640000029
上的散射场和法向导数如式(5)、(6)所示:
Figure FDA00023106746400000210
Figure FDA00023106746400000211
其中,Ri为菲涅尔反射系数;
采用远场近似,式(1)中格林函数
Figure FDA00023106746400000212
的法向导数可以写成式(7):
Figure FDA00023106746400000213
采用远场近似,将式(1)可简化为式(8):
Figure FDA00023106746400000214
其中,
Figure FDA00023106746400000215
Figure FDA00023106746400000216
矢量距离
Figure FDA00023106746400000217
可近似满足式(9):
Figure FDA0002310674640000031
且有式(10)、(11):
Figure FDA0002310674640000032
Figure FDA0002310674640000033
假定观测点位于物体远区时,粗糙面的均方根斜率远小于1,则
Figure FDA0002310674640000034
将式(9)--式(12)代入式(8),得到散射场表达式,如式(13)所示:
Figure FDA0002310674640000035
假设目标为导体,则式(13)可进一步简化为式(14);
Figure FDA0002310674640000036
利用远场近似,式(14)中的距离可简化为
Figure FDA0002310674640000037
式(15)中,R为观察点P和光滑面S′之间的距离;
则粗糙目标的远场散射表达式,如式(16)所示:
Figure FDA0002310674640000038
由式(16)可知,可以得到平均散射场表达式,如式(17)所示:
Figure FDA0002310674640000039
双频互相关函数Γ可表示为相干Γc和非相干分量Γf之和,如式(18)、式(19)及式(20)所示:
Γ=Γcf (18);
Figure FDA0002310674640000041
Figure FDA0002310674640000042
3.根据权利要求2所述的一种二维非高斯粗糙体目标散射特性的计算方法,其特征在于,所述步骤2中,求解散射场的相干与非相干散射强度,具体步骤如下:
根据步骤1中式(18)--式(20)可知,可以得到双频互相关函数的相干散射强度,如式(21)所示:
Figure FDA0002310674640000043
双频互相关函数的非相干散射强度如式(22)所示:
Figure FDA0002310674640000044
式(22)中,K=exp[i(k1-k2)R]/(2πR)2,粗糙面起伏函数
Figure FDA0002310674640000045
服从修正指数分布,均方根高度为σ,相关长度为lc,得到修正指数函数的一阶、二阶特征函数如式(23)、(24)所示:
Figure FDA0002310674640000046
Figure FDA0002310674640000047
将式(24)进行泰勒级数展开,得到式(25):
Figure FDA0002310674640000048
式(25)中,
Figure FDA0002310674640000049
Figure FDA00023106746400000410
是V的单位矢量;
Figure FDA00023106746400000411
为粗糙面修正指数函数的归一化自相关函数,其表达式如式(26)所示:
Figure FDA0002310674640000051
将式(23)--式(26)带入式(21)中,得到双频互相关函数的相干分量表达式如式(27)所示:
Figure FDA0002310674640000052
双频互相关函数的非相干分量表达式如式(28)所示:
Figure FDA0002310674640000053
4.根据权利要求3所述的一种二维非高斯粗糙体目标散射特性的计算方法,其特征在于,所述步骤3中,求解粗糙球体目标的散射场非相干分量比和粗糙锥体目标的散射强度函数;具体为:
根据步骤2中式(27)和式(28),定义比值系数如式(29)所示:
Figure FDA0002310674640000054
Figure FDA0002310674640000055
其中,式(29)、(30)定义γ12数学含义为非高斯粗糙面非相干分量与相干分量的比值;入射平面波沿着-Z轴方向入射在粗糙球体上,球体中心位于坐标系的原点,设平面波入射波长λ=1.06μm,球体半径为a,σ为粗糙面的粗糙度,lc为相关长度,入射角θi=0°,方位角
Figure FDA0002310674640000061
其轴线与ks的夹角为θs,即ks=(sinθs,0,cosθs);
设平面波入射在圆锥体侧面,取圆锥底面中心为坐标原点,圆锥体底面半径为a,高为h,半锥角为α,锥面方程的表达式如式(31)所示:
Figure FDA0002310674640000062
Figure FDA0002310674640000063
设入射波在平面xoz内,即方位角为0;圆锥的散射波矢量为
Figure FDA0002310674640000064
法向矢量为
Figure FDA0002310674640000065
入射波矢量为
Figure FDA0002310674640000066
Figure FDA0002310674640000067
知,在稳相点处
Figure FDA0002310674640000068
在高频极限条件下,
Figure FDA0002310674640000069
Figure FDA00023106746400000610
θ0为镜向点处的入射角,则粗糙圆锥体的散射场表达式如式(32)所示;
Figure FDA00023106746400000611
则平均散射场表达式如式(33)所示;
Figure FDA00023106746400000612
利用高频近似,则式(33)中的积分可进行简化,如式(34)所示;
Figure FDA00023106746400000613
Figure FDA0002310674640000071
粗糙圆锥体的高度起伏满足修正指数分布,由(23)式可知,表面特征函数如式(35)所示;
χ(-2kicosθ0)=]1+ki 2σ2cos2θ0]-4 (35);
根据式(33)--(35)可得到粗糙锥体目标散射强度函数,如式(36)所示;
Figure FDA0002310674640000072
CN201911257424.5A 2019-12-10 2019-12-10 一种二维非高斯粗糙体目标散射特性的计算方法 Active CN111143757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911257424.5A CN111143757B (zh) 2019-12-10 2019-12-10 一种二维非高斯粗糙体目标散射特性的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911257424.5A CN111143757B (zh) 2019-12-10 2019-12-10 一种二维非高斯粗糙体目标散射特性的计算方法

Publications (2)

Publication Number Publication Date
CN111143757A true CN111143757A (zh) 2020-05-12
CN111143757B CN111143757B (zh) 2023-05-09

Family

ID=70517845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911257424.5A Active CN111143757B (zh) 2019-12-10 2019-12-10 一种二维非高斯粗糙体目标散射特性的计算方法

Country Status (1)

Country Link
CN (1) CN111143757B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695079A (zh) * 2020-06-11 2020-09-22 西安电子科技大学 基于二维傅里叶变换的基尔霍夫近似下激光散射回波计算

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548506A (en) * 1979-12-26 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Nondestructive analysis of multilayer roughness correlation
CN104573289A (zh) * 2015-02-06 2015-04-29 西安电子科技大学 一维导体粗糙海面与二维导体目标的电磁散射仿真方法
CN109100692A (zh) * 2018-06-19 2018-12-28 西安电子科技大学 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法
CN110489714A (zh) * 2019-07-17 2019-11-22 西安理工大学 一种二维随机粗糙面散射统计矩的计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548506A (en) * 1979-12-26 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Nondestructive analysis of multilayer roughness correlation
CN104573289A (zh) * 2015-02-06 2015-04-29 西安电子科技大学 一维导体粗糙海面与二维导体目标的电磁散射仿真方法
CN109100692A (zh) * 2018-06-19 2018-12-28 西安电子科技大学 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法
CN110489714A (zh) * 2019-07-17 2019-11-22 西安理工大学 一种二维随机粗糙面散射统计矩的计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
叶红霞;金亚秋;: "三维介质粗糙面上导体目标散射的解析-数值混合算法" *
牟媛;吴振森;赵豪;武光玲;: "粗糙金属和介质目标的太赫兹散射特性分析" *
田炜;任新成;: "基于基尔霍夫驻留相位近似法的深粗糙度高斯型粗糙面光散射" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695079A (zh) * 2020-06-11 2020-09-22 西安电子科技大学 基于二维傅里叶变换的基尔霍夫近似下激光散射回波计算

Also Published As

Publication number Publication date
CN111143757B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
Toporkov et al. Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis
Zhang et al. Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones
Afifi et al. Scattering by anisotropic rough layered 2D interfaces
CN110489714B (zh) 一种二维随机粗糙面散射统计矩的计算方法
CN113376597A (zh) 基于数字高程地图和gpu的复杂地形电磁散射快速仿真方法
Bourlier et al. Microwave analytical backscattering models from randomly rough anisotropic sea surface—Comparison with experimental data in C and Ku bands
Corbel et al. Rough surface RCS measurements and simulations using the physical optics approximation
CN111143757A (zh) 一种二维非高斯粗糙体目标散射特性的计算方法
Zhang et al. A unified bidirectional scattering distribution function for convex quadric surface
Bahar et al. Radar scatter cross sections for two-dimensional random rough surfaces-full wave solutions and comparisons with experiments
Wang et al. Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation
Xue et al. Inverse synthetic aperture lidar imaging and compensation in slant atmospheric turbulence with phase gradient algorithm compensation
Johnson et al. On the cutoff wavenumber in the geometrical optics theory of near specular scattering from the sea surface
Kyurkchan et al. Simulation of wave scattering by bodies with an absorbing coating and black bodies
Legenkiy Scattering from Elements of Bodies with Complex Shaped Surfaces
Smith et al. An FDTD investigation of orthogonality and the backscattering of HF waves in the presence of ionospheric irregularities
Vasilets et al. Methods for computing scattering characteristics of complex-shaped objects
Liang et al. An investigation on numerical characterization of scattering from target in a dielectric rough soil surface
Gorji et al. Physical optics analysis for RCS computation of a relatively small complex structure
Ding et al. Studying the effects of the rough sea surface on electromagnetic waves propagation
Dehmollaian et al. A forward scattering model for foliage camouflaged complex targets
Hermansson Models for scattering of light from rough surfaces with applications in IR signature simulations
Kolesnik et al. Mimic simulations of radio-wave propagation in a randomly irregular ionosphere
Shorokhova et al. Some features of electromagnetic wave scattering from statistically rough land covers in the millimeter-wave range of wavelengths
Mallahzadeh et al. Scattering computation from the target with lossy background

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant