CN111141798A - 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用 - Google Patents

一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用 Download PDF

Info

Publication number
CN111141798A
CN111141798A CN201911425528.2A CN201911425528A CN111141798A CN 111141798 A CN111141798 A CN 111141798A CN 201911425528 A CN201911425528 A CN 201911425528A CN 111141798 A CN111141798 A CN 111141798A
Authority
CN
China
Prior art keywords
baicalein
bpbc
solution
mwnct
gce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911425528.2A
Other languages
English (en)
Inventor
李光九
刘娟
程辉
孙云秀
牛燕燕
周婷
杨秋月
孙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201911425528.2A priority Critical patent/CN111141798A/zh
Publication of CN111141798A publication Critical patent/CN111141798A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明以芭蕉皮为原料通过碳化和碱处理活化合成芭蕉皮生物质炭(BPBC),然后混合多壁碳纳米管(MWCNT)制备MWCNT‑BPBC复合材料。以玻碳电极(GCE)为基底电极,采用滴涂法制备了BPBC‑MWNCT/GCE修饰电极并应用于黄芩素的电化学检测。通过循环伏安法(CV)和差分脉冲伏安法(DPV)研究了黄芩素在BPBC‑MWNCT/GCE的电化学响应,其线性范围为0.004~1.0μmol/L和2.0~100.0μmol/L,检测限为1.33nmol/L(3σ)。将BPBC‑MWNCT/GCE应用于双黄连口服液中黄芩素含量的定量分析,结果令人满意。

Description

一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的 制备与黄芩素检测的应用
技术领域:
本发明属于化学修饰电极及药物电化学分析技术领域。具体涉及一种 BPBC-MWNCT复合材料修饰电极的制备及检测黄芩素含量的方法。
背景技术:
生物质炭是生物质原料(如动植物、农作物和畜牧业产生的粪便)在绝氧或缺氧条件下经高温热裂解而制备的一类富含碳元素、高度芳香化和稳定性高的固体碳材料,具有丰富的孔隙结构、较大的比表面积且表面含有较多的含氧活性基团,是一种多功能材料。通常,生物质多孔碳材料的制备需要进行活化和碳化过程,在化学活化时常用NaOH和KOH作为活化剂,通过活化剂与生物质原料充分混合,在保护气体存在下进行高温碳化,最后洗去残留的活化剂。
碳纳米管(CNTs)具有特定电学、化学和机械性能而被应用于材料科学、化学和物理学等领域。作为电极材料,CNT具有高表面积,优异的电子传导性,热稳定性和化学稳定性等优点,可以促进电极上的电子转移,为构建化学传感器或生物传感器提供了新的途径。基于碳纳米管的电化学传感器表现出高灵敏度和良好的稳定性。
黄芩素是在植物黄芩根中发现的一种黄酮类化合物,是一种常用的中药活性成分,有抗炎,抗HIV,抗癌和抗氧化作用。目前检测黄芩素的方法主要有紫外分光光度法,化学发光,薄层色谱(TLC),高效液相色谱(HPLC)和毛细管电泳(CE)。然而这些分析方法需要复杂的预浓缩过程,耗时且费用昂贵等缺点,限制了它们的进一步应用。电化学方法具有响应快,操作简单,省时,灵敏度高,选择性和原位实时检测等优点而被广泛应用于药物分析中。
发明内容:
本发明所要解决的技术问题是提供一种基于生物质多孔碳基复合材料修饰电极的制备及检测黄芩素含量的方法。
本发明所采用的技术方案如下:
1、一种基于多壁碳纳米管-芭蕉皮基生物质炭复合材料电化学传感器的制备与黄芩素检测的应用,其特征在于,按以下步骤进行:
芭蕉皮基生物质炭(BPBC)的制备:
a、取芭蕉皮用丙酮浸泡1h后用蒸馏水冲洗干净,干燥后取出;
b、称取一定质量干燥后的样品,然后切成小块,浸泡于50mL硫酸溶液后转移至100mL反应釜中,于适当温度加热反应,待冷却至室温后过滤洗涤干燥,其中干燥后芭蕉皮的质量为5g,硫酸溶液的浓度为1mol/L;
通过管式炉在Ar气氛下煅烧获得BPBC:
c、将干燥的产品与KOH 1:1混合溶于蒸馏水浸渍一段时间后干燥,再将所得样品放入管式炉中以5℃/min的加热速率加热至一定温度后进行碳化反应,其中水热反应的条件为160℃下加热12h,浸渍时间为6h,管式炉中碳化反应的条件为900℃下反应1h,干燥的条件为60℃下干燥24h;
d、最后取出样品用蒸馏水和稀盐酸洗涤至溶液呈中性,再将其过滤洗涤干燥后即得BPBC;
制备BPBC-MWNCT/GCE工作电极:
e、移取MWNCT与BPBC按一定比例混合后,分散于2mL蒸馏水中,超声分散数小时得到均匀混合溶液。移取一定体积分散液涂布于预先处理的GCE表面,分散液的体积为8μL,自然干燥后即得到修饰电极(BPBC-MWNCT/GCE),其中MWNCT与BPBC的比例为1:1,超声分散时间为3h;
黄芩素的含量检测:
f、配制黄芩素标准溶液和双黄连口服液样品溶液,其中
1.0×10-3mol/L黄芩素标准溶液的配制方法为称取0.271g黄芩素,用乙醇溶解,再用蒸馏水定容至100mL容量瓶,实验时采用逐级稀释法用pH=2.0的0.1mol/L PBS缓冲溶液将黄芩素溶液稀释成一系列浓度梯度的溶液;
双黄连口服液样品溶液的配制方法为移取10μL双黄连口服液样品,用pH=2.0 的PBS缓冲溶液定容至25mL容量瓶作为样品溶液备用;
g、以BPBC-MWNCT/GCE为工作电极,铂丝为对电极,银/氯化银为参比电极,通过示差脉冲伏安法检测不同浓度的黄芩素标准溶液,记录氧化峰电流值与其浓度的关系并建立标准曲线;
h、对步骤f制备的样品溶液进行测定,利用标准曲线法求解浓度,进一步采用标准加入法将黄芩素标准溶液加入到双黄连口服液样品溶液中,测定回收率。
与现有技术相比,本发明的有益效果是:
本发明用多壁碳纳米管-芭蕉皮基生物质碳复合材料修饰电极,增大了工作电极的表面积和导电性,有效提高电极的传感性能,将其用于黄芩素含量的测定,具有灵敏度高、检测限低、稳定性和重现性好等特点。
附图说明:
图1 pH 2.0PBS中5.0×10-5mol/L的黄芩素在(a)GCE,(b)BPBC/GCE和(c) BPBC-MWNCT/GCE上的循环伏安图,扫速为100mV/s。
图2 5.0×10-5mol/L的黄芩素在BPBC-MWNCT/GCE上不同pH值缓冲溶液中(pH 从a到g依次为2.0,2.5,3.0,3.5,4.0,4.5,5.0)的循环伏安图,扫速为100mV/s。
图3 5.0×10-5mol/L的黄芩素在BPBC-MWNCT/GCE上不同扫速下(扫速从a到l 依次为30,80,150,200,300,400,500,600,700,800,900,1000mV/s)的循环伏安图。
图4不同浓度黄芩素在BPBC-MWNCT/GCE上的示差脉冲伏安曲线,从a到m 浓度依次为0.004,0.04,0.2,0.4,0.6,0.8,1.0,2.0,10,30,50,70,100μmol/L。
具体实施方式:
下面结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制于本发明的范围。
实施例1
黄芩素在修饰电极表面的循环伏安曲线
研究了5.0×10-5mol/L黄芩素在不同修饰电极上的循环伏安曲线,结果如图 1所示。在GCE(曲线a)上的氧化还原峰电流分别为2.579μA(Ipa)和0.759μA (Ipc),峰电位差(ΔEp)为42mV。在BPBC/GCE(曲线b)上氧化还原峰电流增加到3.03μA(Ipa)和1.62μA(Ipc),峰电位差(ΔEp)为31mV,说明 BPBC的存在有效改善了电化学行为,增加了峰电流,降低了ΔEp,这是由于 BPBC具有大的表面积和高导电性,有效地加快了黄芩素的的电化学反应。在 BPBC-MWNCT/GCE(曲线c)上出现最大的氧化还原峰电流值,分别为5.043μA (Ipa)和3.143μA(Ipc),峰电位差(ΔEp)为20mV,氧化峰电流值大约是裸 GCE的2倍。因此,当BPBC-MWNCT同时存在时,进一步表现出良好的电化学行为,使黄芩素的氧化还原峰电流增加,ΔEp下降,峰形更加对称,表明此复合材料的存在加快了黄芩素在电极表面的电子转移,提高了反应的可逆性。
实施例2
pH值对黄芩素电化学行为的影响
研究了缓冲溶液pH值(2.0~7.0)对5.0×10-5mol/L黄芩素电化学行为的影响,循环伏安曲线如图2所示。缓冲溶液的pH值对黄芩素的氧化还原峰电流和峰电位有很大影响。随着pH的升高,氧化还原峰电流逐渐减小甚至消失,最大响应电流出现在pH 2.0,因此选择pH 2.0的PBS溶液作为支持电解质溶液。随着pH值的变化,氧化还原峰电位发生负移,表明黄芩素的电极反应需要质子的参与,且式电位(E0')与pH值具有良好的线性关系,线性回归方程为E0'(V)= -0.057pH+0.530(n=7,γ=0.995)。其斜率的绝对值(57mV/pH)略小于理论值 (59mV/pH),表明有相等的质子与电子参与了黄芩素的电化学反应过程。
实施例3
扫描速度对黄芩素电化学行为的影响
研究了扫描速度(30-1000mV/s)对5.0×10-5mol/L黄芩素的电化学行为的影响,循环伏安图如图3所示。随着扫描速度的增加,氧化还原峰电流逐渐增加,并呈现良好的线性关系,线性回归方程分别为Ipa(μA)=95.65υ(V/s)+2.69(n= 12,γ=0.998)和Ipc(μA)=-81.94υ(V/s)+0.94(n=12,γ=0.999),表明此电极反应是吸附控制的过程。氧化还原峰电位和lnυ之间也呈良好的线性关系,线性回归方程为Epa(V)=0.026lnυ+0.457(n=9,γ=0.991)和Epc(V)=-0.022lnυ+ 0.375(n=9,γ=0.994)。根据Laviron公式,计算得到电子转移系数(α),电子转移数(n)和电子转移速率常数(ks)分别为0.54,2.16和8.35s-1
实施例4
工作曲线
在最佳实验条件下,采用DPV方法对不同浓度的黄芩素进行电化学检测。黄芩素的氧化峰电流随浓度的增加而增加,在0.004~1.0μmol/L(图4A)和 2.0~100.0μmol/L(图4B)范围内有良好的线性关系,线性回归方程为Ipa(μA) =0.905C(μmol/L)+0.281(n=8,γ=0.995)和Ipa(μA)=0.3745C(μmol/L)- 1.116(n=7,γ=0.992),检出限计算为1.33nmol/L(3σ)。该传感器的高灵敏度可归因于BPBC-MWNCT的存在,其具有多孔结构,大的表面积,高的导电性和优异的电催化活性。
实施例5
分析应用
利用本方法对双黄连口服液中的黄芩素含量进行测定。步骤如下:取10μL 双黄连口服液样品,用pH=2.0的PBS缓冲溶液定容至25mL容量瓶作为样品溶液备用。通过标准加入方法计算的回收率为97.20%-104.75%,结果如表1所示。
表1样品中黄芩素的含量测定及回收率结果(n=3)
Figure BDA0002352609890000051
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (1)

1.一种基于多壁碳纳米管-芭蕉皮基生物质炭复合材料电化学传感器的制备与黄芩素检测的应用,其特征在于,按以下步骤进行:
芭蕉皮基生物质炭(BPBC)的制备:
a、取芭蕉皮用丙酮浸泡1h后用蒸馏水冲洗干净,干燥后取出;
b、称取一定质量干燥后的样品,然后切成小块,浸泡于50mL硫酸溶液后转移至100mL反应釜中,于适当温度加热反应,待冷却至室温后过滤洗涤干燥,其中干燥后芭蕉皮的质量为5g,硫酸溶液的浓度为1mol/L;
通过管式炉在Ar气氛下煅烧获得BPBC:
c、将干燥的产品与KOH 1:1混合溶于蒸馏水浸渍一段时间后干燥,再将所得样品放入管式炉中以5℃/min的加热速率加热至一定温度后进行碳化反应,其中水热反应的条件为160℃下加热12h,浸渍时间为6h,管式炉中碳化反应的条件为900℃下反应1h,干燥的条件为60℃下干燥24h;
d、最后取出样品用蒸馏水和稀盐酸洗涤至溶液呈中性,再将其过滤洗涤干燥后即得BPBC;
制备BPBC-MWNCT/GCE工作电极:
e、移取MWNCT与BPBC按一定比例混合后,分散于2mL蒸馏水中,超声分散数小时得到均匀混合溶液。移取一定体积分散液涂布于预先处理的GCE表面,分散液的体积为8μL,自然干燥后即得到修饰电极(BPBC-MWNCT/GCE),其中MWNCT与BPBC的比例为1:1,超声分散时间为3h;
黄芩素的含量检测:
f、配制黄芩素标准溶液和双黄连口服液样品溶液,其中:
1.0×10-3mol/L黄芩素标准溶液的配制方法为称取0.271g黄芩素,用乙醇溶解,再用蒸馏水定容至100mL容量瓶,实验时采用逐级稀释法用pH=2.0的0.1mol/L PBS缓冲溶液将黄芩素溶液稀释成一系列浓度梯度的溶液;
双黄连口服液样品溶液的配制方法为移取10μL双黄连口服液样品,用pH=2.0的PBS缓冲溶液定容至25mL容量瓶作为样品溶液备用;
g、以BPBC-MWNCT/GCE为工作电极,铂丝为对电极,银/氯化银为参比电极,通过示差脉冲伏安法检测不同浓度的黄芩素标准溶液,记录氧化峰电流值与其浓度的关系并建立标准曲线;
h、对步骤f制备的样品溶液进行测定,利用标准曲线法求解浓度,进一步采用标准加入法将黄芩素标准溶液加入到双黄连口服液样品溶液中,测定回收率。
CN201911425528.2A 2019-12-31 2019-12-31 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用 Pending CN111141798A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911425528.2A CN111141798A (zh) 2019-12-31 2019-12-31 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911425528.2A CN111141798A (zh) 2019-12-31 2019-12-31 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用

Publications (1)

Publication Number Publication Date
CN111141798A true CN111141798A (zh) 2020-05-12

Family

ID=70523181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911425528.2A Pending CN111141798A (zh) 2019-12-31 2019-12-31 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用

Country Status (1)

Country Link
CN (1) CN111141798A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866244A (zh) * 2021-04-14 2021-12-31 安徽大学 一种区分高良姜素及其同分异构体黄芩素的方法
CN114324513A (zh) * 2021-11-29 2022-04-12 郑州大学 聚l-苯丙氨酸/纳米金/希瓦氏菌mr-1/多壁碳纳米管修饰电极、制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519418A (zh) * 2018-03-28 2018-09-11 海南师范大学 纳米金-银-三维石墨烯复合材料修饰电极及其在黄芩素检测中的应用
CN108535339A (zh) * 2018-03-28 2018-09-14 海南师范大学 纳米金-生物质碳复合材料修饰电极及其在木犀草素检测中的应用
CN108680624A (zh) * 2018-04-19 2018-10-19 信阳师范学院 一种铜镍纳米材料/多壁碳纳米管复合膜修饰的玻碳电极及其制备方法及应用
CN109239161A (zh) * 2018-11-21 2019-01-18 海南师范大学 一种生物质多孔碳复合材料的制备方法及其在电化学传感器中的应用研究
CN109884147A (zh) * 2019-03-22 2019-06-14 石河子大学 一种核桃壳基炭材料修饰玻碳电极检测痕量重金属的电化学方法
CN110161096A (zh) * 2019-04-30 2019-08-23 海南师范大学 一种基于铂-生物质炭纳米复合材料的电化学传感器的制备与木犀草素检测的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519418A (zh) * 2018-03-28 2018-09-11 海南师范大学 纳米金-银-三维石墨烯复合材料修饰电极及其在黄芩素检测中的应用
CN108535339A (zh) * 2018-03-28 2018-09-14 海南师范大学 纳米金-生物质碳复合材料修饰电极及其在木犀草素检测中的应用
CN108680624A (zh) * 2018-04-19 2018-10-19 信阳师范学院 一种铜镍纳米材料/多壁碳纳米管复合膜修饰的玻碳电极及其制备方法及应用
CN109239161A (zh) * 2018-11-21 2019-01-18 海南师范大学 一种生物质多孔碳复合材料的制备方法及其在电化学传感器中的应用研究
CN109884147A (zh) * 2019-03-22 2019-06-14 石河子大学 一种核桃壳基炭材料修饰玻碳电极检测痕量重金属的电化学方法
CN110161096A (zh) * 2019-04-30 2019-08-23 海南师范大学 一种基于铂-生物质炭纳米复合材料的电化学传感器的制备与木犀草素检测的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUAN LIU 等: "A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin", 《MICROCHIMICA ACTA》 *
JUAN LIU 等: "Platinum nanoparticles decorating a biomass porous carbon nanocomposite-modified electrode for the electrocatalytic sensing of luteolin and application", 《RSC ADV.》 *
O. FASAKIN 等: "Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance", 《ELECTROCHIMICA ACTA》 *
刘娟 等: "多壁碳纳米管-芭蕉皮基生物质炭复合材料电化学传感检测黄芩素的研究", 《中国化学会第二十届全国有机分析及生物分析学术研讨会论文摘要集》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866244A (zh) * 2021-04-14 2021-12-31 安徽大学 一种区分高良姜素及其同分异构体黄芩素的方法
CN113866244B (zh) * 2021-04-14 2024-04-02 安徽大学 一种区分高良姜素及其同分异构体黄芩素的方法
CN114324513A (zh) * 2021-11-29 2022-04-12 郑州大学 聚l-苯丙氨酸/纳米金/希瓦氏菌mr-1/多壁碳纳米管修饰电极、制备方法和应用
CN114324513B (zh) * 2021-11-29 2023-11-03 郑州大学 聚l-苯丙氨酸/纳米金/希瓦氏菌mr-1/多壁碳纳米管修饰电极、制备方法和应用

Similar Documents

Publication Publication Date Title
Cao et al. Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance
Tajik et al. Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline
Guo et al. Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode
Zhu et al. Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid
Ensafi et al. Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry
Zhu et al. Sol–gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing
Sun et al. Electrochemical detection of rutin on nitrogen-doped graphene modified carbon ionic liquid electrode
CN107449816B (zh) 全固态离子选择性电极、制备方法和生物传感器
CN106226382A (zh) 纳米多孔铜/Cu(OH)2纳米线阵列传感器电极材料及其制备方法
Li et al. Core–shell TiC/C nanofiber arrays decorated with copper nanoparticles for high performance non-enzymatic glucose sensing
CN109001276B (zh) 基于COFs材料的电化学传感器的构建和应用
Prasad et al. Self-assembly synthesis of Co 3 O 4/multiwalled carbon nanotube composites: an efficient enzyme-free glucose sensor
Zeng et al. Development of a new electrochemical sensing platform based on MoO3-polypyrrole nanowires/MWCNTs composite and its application to luteolin detection
CN109342523A (zh) 基于富含氧空位二氧化锡修饰石墨烯复合材料的电阻型no2传感器、制备方法及其应用
Hadi et al. Sensitive detection of histamine at metal-organic framework (Ni-BTC) crystals and multi-walled carbon nanotubes modified glassy carbon electrode
CN109239161A (zh) 一种生物质多孔碳复合材料的制备方法及其在电化学传感器中的应用研究
Han et al. Nanoporous carbon derived from dandelion pappus as an enhanced electrode material with low cost for amperometric detection of tryptophan
Zhang et al. Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing
CN111141798A (zh) 一种基于多壁碳纳米管-芭蕉皮基生物质炭电化学传感器的制备与黄芩素检测的应用
Liu et al. A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin
Li et al. An electrochemical sensor based on platinum nanoparticles and mesoporous carbon composites for selective analysis of dopamine
Hjiri et al. Electrochemical properties of a novel Ni-doped nanoporous carbon
Zhan et al. A novel epinephrine biosensor based on gold nanoparticles coordinated polydopamine-functionalized acupuncture needle microelectrode
Shan et al. Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing
Rabie et al. Fabrication of a new electrochemical sensor based on carbon paste electrode modified by silica gel/MWCNTs for the voltammetric determination of salicylic acid in tomato

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200512