CN111135306A - 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法 - Google Patents

基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法 Download PDF

Info

Publication number
CN111135306A
CN111135306A CN202010058923.8A CN202010058923A CN111135306A CN 111135306 A CN111135306 A CN 111135306A CN 202010058923 A CN202010058923 A CN 202010058923A CN 111135306 A CN111135306 A CN 111135306A
Authority
CN
China
Prior art keywords
folic acid
polyethylene glycol
glycol modified
targeting
targeted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010058923.8A
Other languages
English (en)
Other versions
CN111135306B (zh
Inventor
石云峰
王军杰
张宪硕
雷改英
李婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN202010058923.8A priority Critical patent/CN111135306B/zh
Publication of CN111135306A publication Critical patent/CN111135306A/zh
Application granted granted Critical
Publication of CN111135306B publication Critical patent/CN111135306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明属于基因载体基础材料的合成技术领域,具体涉及一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法。利用叶酸靶向聚乙二醇修饰型超支化聚胺四氧化三铁纳米晶体以构筑叶酸和磁性双靶向型非病毒基因载体,能够赋予非病毒基因载体以叶酸和磁性双重靶向特性,从而实现载体对肿瘤等的主动靶向和磁靶向,可以用于基因治疗、磁热疗等领域。

Description

基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双 靶向型非病毒基因载体的方法
技术领域
本发明属于基因载体基础材料的合成技术领域,具体涉及一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法。
背景技术
超支化聚胺具有三维准球形结构和大量的胺基,是一类非常优异的非病毒基因载体。同时,它还是一类理想的纳米反应器,可用来合成量子点、金属纳米晶体和磁性氧化物纳米晶体。利用超支化聚胺原位制备磁性氧化铁纳米晶体,可得到一类磁性的非病毒基因载体。
经对现有技术的文献检索发现,目前利用超支化聚胺原位制备磁性非病毒基因载体已有一定的报道[Shi, Y.F.; Zhou, L.Z.; Wang, R.B.; Pang, Y.; Xiao, W.C.; Li,H.Q.; Su, Y.; Wang, X.L.; Zhu, B.S.; Zhu, X.Y.; Yan, D.Y. and Gu, H.C.Nanotechnology2010, 21, 115103.; Shi, Y.F.; Du, J. M.; Zhou, L. Z.; Li, X.T.; Zhou, Y. H.; Li, L. L.; Zhu, X. Y. J. Mater. Chem.2012, 22, 355-360.;Mykhaylyk, O.; Antequera, Y.S.; Vlaskou, D.; Plank, C. Nat. Protoc.2007, 2,2391-2411.] 在这些报道中,人们利用超支化聚乙烯亚胺及其超分子组装体制备原位制备磁性非病毒基因载体,但是目前尚未有利用叶酸靶向聚乙二醇修饰型超支化聚胺原位制备叶酸和磁性双靶向型非病毒基因载体的报道。利用叶酸靶向聚乙二醇修饰型超支化聚胺原位叶酸和磁性双靶向型非病毒基因载体,能够赋予非病毒基因载体以叶酸和磁性双重靶向特性,从而实现载体对肿瘤等的主动靶向和磁靶向,利于基因治疗。
发明内容
本发明的目的是提供一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法。
为实现上述目的,本发明采用的技术方案是:
一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法,包括以下步骤:
(1)将叶酸靶向聚乙二醇修饰型超支化聚胺溶解于水中,并通氩气除氧,得到叶酸靶向聚乙二醇修饰型超支化聚胺水溶液;
(2)氩气保护下,向步骤(1)得到的水溶液中加入七水硫酸亚铁的无氧水溶液,磁力搅拌1-6h,得到Fe(OH)2/叶酸靶向聚乙二醇修饰型超支化聚胺复合物水溶液;
(3)将步骤(2)所得的产物于90-130℃下微波加热0.5-2h,即可得到Fe3O4/叶酸靶向聚乙二醇修饰型超支化聚胺复合物;
(4)将步骤(3)所得的产物在2-8℃条件下透析3-5d,抽滤除去沉淀,冷冻干燥,即可得到所述叶酸和磁性双靶向型非病毒基因载体。
优选的,步骤(1)中所述叶酸靶向聚乙二醇修饰型超支化聚胺为叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺、叶酸靶向聚乙二醇修饰型超支化聚酰胺-胺或叶酸靶向聚乙二醇修饰型超支化聚丙烯亚胺。
优选的,步骤(1)中叶酸靶向聚乙二醇修饰型超支化聚胺是以叶酸、聚乙二醇和超支化聚胺作为原料制备得到的,其中超支化聚胺为超支化聚乙烯亚胺(HPEI)、超支化聚酰胺-胺(HPAMAM)或超支化聚丙烯亚胺(PPI)。
优选的,步骤(1)中叶酸靶向聚乙二醇修饰型超支化聚胺水溶液的浓度为2.5-200g/L,体积为10-100mL。
优选的,步骤(2)中所述七水硫酸亚铁水溶液的浓度为2-1500 g/L,体积为2-20mL。
优选的,步骤(3)中的微波功率为100-600W。
采用上述方法制备的叶酸和磁性双靶向型非病毒基因载体。
本发明产生的有益效果是:本发明利用叶酸靶向聚乙二醇修饰型超支化聚胺原位制备了叶酸和磁性双靶向型非病毒基因载体,该方法合成简单,避免了传统方法(先合成磁性纳米晶体再用超支化聚胺修饰)的繁琐过程,且制备的基因载体在转染过程中转染效率高于传统方法(先合成磁性纳米晶体再用超支化聚胺修饰)制备的非病毒基因载体。该方法实现了非病毒基因载体的叶酸和磁性双靶向特性,利于基因载体靶向至肿瘤等部位进行基因治疗。
附图说明
图1为本发明的合成过程示意图;
图2为实施例1基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的流体力学尺寸(a)和电位图(b);
图3为实施例1基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的透射电镜图;
图4为实施例1基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的饱和磁化强度图;
图5为实施例1基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的细胞毒性图;
图6为实施例1基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的基因转染效率图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。
实施例所使用的超支化聚乙烯亚胺(HPEI)购买自Sigma-Aldrich (M w=25000, 支化度=50%, PDI = 2.5)。实施例所使用的超支化聚酰胺-胺(HPAMAM)(M w = 3.8 × 103,PDI = 1.27)是根据参考文献[Shi, Y. F.; Lei, G.Y.;Zhou, L.Z.; Li, Y.Y.; Zhang,X.M.; Yang, Y.J.; Peng, H.; Peng, R.; Wang, H.C.; Cai, X.F.; Chen, X.L.;Wang, M.Y.; Wang, G. Polymers2019, 11, 1926.]合成的。
叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺和叶酸靶向聚乙二醇修饰型超支化聚酰胺-胺是根据参考文献[Cho, K.C.; Jeong, J.H.; Chung, H.J.; Joe, C. O.; Kim,S.W.; Park, T, G. Journal of Controlled Release2005, 108, 121.]合成的。合成的工艺过程是,利用NH2-PEG-COOH和活化的叶酸脱水反应,得到FA-PEG-COOH,随后将活化的FA-PEG-COOH和超支化聚乙烯亚胺或超支化聚酰胺-胺以不同的摩尔比反应,即可得到叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺或叶酸靶向聚乙二醇修饰型超支化聚酰胺-胺。
实施例1
一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法,具体包括以下步骤:
(1)在100mL反应瓶中加入1g叶酸(FA)靶向聚乙二醇(PEG)修饰型超支化聚乙烯亚胺(FA-PEG3.3-HPEI,即每个超支化聚乙烯亚胺(HPEI)分子平均接枝3.3个FA-PEG分子),再加入40mL超纯水,搅拌溶解,通氩气除氧,得到FA-PEG3.3-HPEI水溶液;
(2)取10mL浓度为100g/L的七水硫酸亚铁无氧水溶液(本实施例是在水溶液中通入氩气除氧来实现无氧条件的),在氩气保护下,加入到步骤(1)制备的FA-PEG3.3-HPEI水溶液中,磁力搅拌6h,得到Fe(OH)2/FA-PEG3.3-HPEI复合物水溶液;
(3)将步骤(2)制备的Fe(OH)2/FA-PEG3.3-HPEI复合物水溶液于100℃、200W功率下微波加热1h,得到Fe3O4/FA-PEG3.3-HPEI纳米复合物水溶液;
(4)将步骤(3)制备的Fe3O4/FA-PEG3.3-HPEI纳米复合物水溶液于5℃下透析(透析袋截留分子量:8000 Da)3d,抽滤除沉淀,冷冻干燥,即可得到基于叶酸靶向聚乙二醇修饰型超支化聚胺制备的叶酸和磁性双靶向型非病毒基因载体(Fe3O4/FA-PEG3.3-HPEI),该非病毒基因载体具有叶酸基团,可实现对肿瘤部位的主动结合和靶向,该非病毒基因载体同时含有磁性Fe3O4纳米晶体,能够在磁场作用下靶向至特定部位。
图1为本发明的合成过程示意图。本实施例所制备的基于叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺制备的叶酸和磁性双靶向型非病毒基因载体的流体力学尺寸如图2a所示,图2b为该非病毒基因载体的电位图,从图2a中可以看出流体力学尺寸为37.2纳米,图2b可以看出电位为+10.9 mV。
图3为实施例1制备的非病毒基因载体的透射电镜图,由图3可知,该非病毒基因载体中的Fe3O4纳米晶体具有球形和立方体结构,其尺寸约为16纳米。
图4为实施例1制备的非病毒基因载体的饱和磁化强度图,从图3中可以看出其饱和磁化强度为66.0 emu/gFe。
图5为不同浓度下实施例1制备的非病毒基因载体与HPEI和FA-PEG3.3-HPEI的细胞毒性图,其中该非病毒基因载体与HPEI和FA-PEG3.3-HPEI的浓度分别设置1μg/mL、5μg/mL、10μg/mL、15μg/mL、20μg/mL、50μg/mL、100μg/mL,从图4中可以看出所述非病毒基因载体的细胞活性与HPEI和FA-PEG3.3-HPEI相比都有一定程度的提高,但是随着浓度的提高非病毒基因载体与HPEI和FA-PEG3.3-HPEI的细胞毒性均呈现下降趋势。
图6为实施例1制备的非病毒基因载体的基因转染效率图,由图5可知,在不同的Fe/DNA质量比下,该非病毒基因载体的荧光素酶表达量最高分别是HPEI基因载体转染和FA-PEG3.3-HPEI基因载体转染的21倍和14倍。
实施例2
一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法,具体包括以下步骤:
(1)在100mL反应瓶中加入1g叶酸(FA)靶向聚乙二醇(PEG)修饰型超支化聚乙烯亚胺(FA-PEG5.9-HPEI,即每个超支化聚乙烯亚胺(HPEI)分子平均接枝5.9个FA-PEG分子),再加入40mL超纯水,搅拌溶解,通氩气除氧,得到FA-PEG5.9-HPEI水溶液;
(2)取10mL浓度为100 g/L的七水硫酸亚铁无氧水溶液(本实施例是在水溶液中通入氩气除氧来实现无氧条件的),在氩气保护下,加入到步骤(1)制备的FA-PEG5.9-HPEI水溶液中,磁力搅拌6 h,得到Fe(OH)2/FA-PEG5.9-HPEI复合物水溶液;
(3)将步骤(2)制备的Fe(OH)2/FA-PEG5.9-HPEI复合物水溶液于100℃、200W功率下微波加热1h,得到Fe3O4/FA-PEG5.9-HPEI纳米复合物水溶液;
(4)将步骤(3)制备的Fe3O4/FA-PEG5.9-HPEI纳米复合物水溶液于5℃下透析(透析袋截留分子量:8000 Da)3 d,抽滤除沉淀,冷冻干燥,即可得到基于叶酸靶向聚乙二醇修饰型超支化聚胺制备的叶酸和磁性双靶向型非病毒基因载体(Fe3O4/FA-PEG5.9-HPEI)。
实施例3
一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法,具体包括以下步骤:
(1)在100mL反应瓶中加入1g叶酸(FA)靶向聚乙二醇(PEG)修饰型超支化聚酰胺-胺(FA-PEG-HPAMAM,即每个超支化聚酰胺-胺(HPAMAM)分子平均接枝1个FA-PEG分子),再加入40mL超纯水,搅拌溶解,通氩气除氧,得到FA-PEG-HPAMAM水溶液;
(2)取10mL浓度为100 g/L的七水硫酸亚铁无氧水溶液(本实施例是在水溶液中通入氩气除氧来实现无氧条件的),在氩气保护下,加入到步骤(1)制备的FA-PEG-HPAMAM水溶液中,磁力搅拌6h,得到Fe(OH)2/ FA-PEG-HPAMAM复合物水溶液;
(3)将步骤(2)制备的Fe(OH)2/FA-PEG-HPAMAM复合物水溶液于100℃、200W功率下微波加热1h,得到Fe3O4/FA-PEG-HPAMAM纳米复合物水溶液;
(4)将步骤(3)制备的Fe3O4/FA-PEG-HPAMAM纳米复合物水溶液于5℃下透析(透析袋截留分子量:8000 Da)3 d,抽滤除沉淀,冷冻干燥,即可得到基于叶酸靶向聚乙二醇修饰型超支化聚酰胺-胺制备的叶酸和磁性双靶向型非病毒基因载体(Fe3O4/FA-PEG-HPAMAM)。
实施例2-3制备的叶酸和磁性双靶向型非病毒基因载体和实施例1的非病毒基因载体均具有较高的转染效率,同时还具有叶酸和磁性双靶向特性,其能够靶向至肿瘤部位进行基因治疗。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (7)

1.一种基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法,其特征在于,包括以下步骤:
(1)将叶酸靶向聚乙二醇修饰型超支化聚胺溶解于水中,并通氩气除氧,得到叶酸靶向聚乙二醇修饰型超支化聚胺水溶液;
(2)氩气保护下,向步骤(1)得到的水溶液中加入七水硫酸亚铁的无氧水溶液,磁力搅拌1-6h,得到Fe(OH)2/叶酸靶向聚乙二醇修饰型超支化聚胺复合物水溶液;
(3)将步骤(2)所得的产物于90-130℃下微波加热0.5-2h,即可得到Fe3O4/叶酸靶向聚乙二醇修饰型超支化聚胺复合物;
(4)将步骤(3)所得的产物在2-8℃条件下透析3-5d,抽滤除去沉淀,冷冻干燥,即可得到所述叶酸和磁性双靶向型非病毒基因载体。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述叶酸靶向聚乙二醇修饰型超支化聚胺为叶酸靶向聚乙二醇修饰型超支化聚乙烯亚胺、叶酸靶向聚乙二醇修饰型超支化聚酰胺-胺或叶酸靶向聚乙二醇修饰型超支化聚丙烯亚胺。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中叶酸靶向聚乙二醇修饰型超支化聚胺是以叶酸、聚乙二醇和超支化聚胺作为原料制备得到的,其中超支化聚胺为超支化聚乙烯亚胺、超支化聚酰胺-胺或超支化聚丙烯亚胺。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中叶酸靶向聚乙二醇修饰型超支化聚胺水溶液的浓度为2.5-200g/L,体积为10-100mL。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述七水硫酸亚铁水溶液的浓度为2-1500g/L,体积为2-20mL。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中的微波功率为100-600W。
7.采用权利要求1-6方法制备的叶酸和磁性双靶向型非病毒基因载体。
CN202010058923.8A 2020-01-19 2020-01-19 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法 Active CN111135306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010058923.8A CN111135306B (zh) 2020-01-19 2020-01-19 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010058923.8A CN111135306B (zh) 2020-01-19 2020-01-19 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法

Publications (2)

Publication Number Publication Date
CN111135306A true CN111135306A (zh) 2020-05-12
CN111135306B CN111135306B (zh) 2023-03-10

Family

ID=70525991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010058923.8A Active CN111135306B (zh) 2020-01-19 2020-01-19 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法

Country Status (1)

Country Link
CN (1) CN111135306B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961759A (zh) * 2012-12-04 2013-03-13 东华大学 一种包裹纳米金颗粒的叶酸功能化聚酰胺胺树状大分子载体的靶向基因转染方法
CN103933584A (zh) * 2014-04-30 2014-07-23 东华大学 一种叶酸修饰的超顺磁氧化铁纳米颗粒的制备方法
CN104004196A (zh) * 2014-05-04 2014-08-27 健雄职业技术学院 一种可降解超支化聚酰胺胺的制备方法及其应用
US20170216455A1 (en) * 2014-08-06 2017-08-03 National University Of Ireland, Galway HYPERBRANCHED POLY (ß-AMINO ESTER) FOR GENE THERAPY
CN107375235A (zh) * 2017-07-24 2017-11-24 桂林医学院 一种叶酸介导抗肿瘤药物超顺磁肿瘤靶向纳米粒及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961759A (zh) * 2012-12-04 2013-03-13 东华大学 一种包裹纳米金颗粒的叶酸功能化聚酰胺胺树状大分子载体的靶向基因转染方法
CN103933584A (zh) * 2014-04-30 2014-07-23 东华大学 一种叶酸修饰的超顺磁氧化铁纳米颗粒的制备方法
CN104004196A (zh) * 2014-05-04 2014-08-27 健雄职业技术学院 一种可降解超支化聚酰胺胺的制备方法及其应用
US20170216455A1 (en) * 2014-08-06 2017-08-03 National University Of Ireland, Galway HYPERBRANCHED POLY (ß-AMINO ESTER) FOR GENE THERAPY
CN107375235A (zh) * 2017-07-24 2017-11-24 桂林医学院 一种叶酸介导抗肿瘤药物超顺磁肿瘤靶向纳米粒及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KYUNG CHUL CHO, ET AL.: "Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis", 《JOURNAL OF CONTROLLED RELEASE》 *
YUNFENG SHI,ET AL.: "Facile Preparation of Magnetic Nanocrystals Using Amphiphilic Hyperbranched Polymers as Unimolecular Nanoreactors and Magnetofection In Vitro", 《POLYMER COMPOSITES》 *
YUNFENG SHI,ET AL.: "In situ preparation of non-viral gene vectors with folate/magnetism dual targeting by hyperbranched polymers", 《EUROPEAN POLYMER JOURNAL》 *
YUNFENG SHI,ET AL.: "Size-controlled preparation of magnetic iron oxide nanocrystals within hyperbranched polymers and their magnetofection in vitro", 《J. MATER. CHEM.》 *
石云峰: "超支化聚合物在无机纳米晶体制备与组装中的应用", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN111135306B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
Cai et al. Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@ polypyrrole core-shell nanohybrids for cancer therapy
Gao et al. Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties
Yew et al. An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer
Marcelo et al. Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator
Liu et al. Preparation and characterization of multi stimuli-responsive photoluminescent nanocomposites of graphene quantum dots with hyperbranched polyethylenimine derivatives
Zhou et al. Development of multifunctional folate-poly (ethylene glycol)-chitosan-coated Fe 3 O 4 nanoparticles for biomedical applications
CN110680927B (zh) 一种zif-8纳米球同时负载Au NPs和Fe3O4 NPs的方法
Yang et al. Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles
CN107551275B (zh) 一种磁性纳米药物载体的制备及其负载盐酸阿霉素的方法
Wang et al. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β-cyclodextrin assemblied Fe3O4 nanoparticles
CN113385143B (zh) 一种磁性纳米碳点/四氧化三铁复合材料及其制备方法和应用
Cao et al. Functionalized graphene oxide with hepatocyte targeting as anti-tumor drug and gene intracellular transporters
Le Thi et al. Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and–coated Fe3O4 nanoparticles
CN111135306B (zh) 基于叶酸靶向聚乙二醇修饰型超支化聚胺制备叶酸和磁性双靶向型非病毒基因载体的方法
Zhao et al. A general and facile method for improving carbon coat on magnetic nanoparticles with a thickness control
Zhao et al. Synthesis and properties of magnetite nanoparticles coated with poly (ethylene glycol) and poly (ethylene imine)
Zhang et al. One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation
Faham et al. Peg decorated glycine capped mn-ferrite nanoparticles synthesized by co-precipitation method for biomedical application
Yang et al. Succinate functionalization of hyperbranched polyglycerol-coated magnetic nanoparticles as a draw solute during forward osmosis
KR101513137B1 (ko) 유도용질용 자성 나노입자 및 그 제조방법
CN109010834B (zh) 一种基于碳纳米管的磁性基因载体及其制备方法
Xiao et al. Immobilization of Candida rugosa lipase (CRL) on a hierarchical magnetic zeolitic imidazole framework-8 for efficient biocatalysis
CN108864699B (zh) 硅烷偶联剂辅助制备磁性树状大分子纳米复合材料的方法
CN101899161A (zh) 聚乙二醇修饰氧化铁纳米探针的制备方法
Nazaria et al. Multifunctional hyperbranched polyglycerol-grafted silica-encapsulated superparamagnetic iron oxide nanoparticles as novel and reusable draw agents in forward osmosis process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant