CN111116977B - 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法 - Google Patents

一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法 Download PDF

Info

Publication number
CN111116977B
CN111116977B CN201911395373.2A CN201911395373A CN111116977B CN 111116977 B CN111116977 B CN 111116977B CN 201911395373 A CN201911395373 A CN 201911395373A CN 111116977 B CN111116977 B CN 111116977B
Authority
CN
China
Prior art keywords
polyurethane sponge
graphene
graphene oxide
polysulfide sealant
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911395373.2A
Other languages
English (en)
Other versions
CN111116977A (zh
Inventor
陈鹏鹏
陶文洁
周艺峰
聂王焰
徐颖
曾少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201911395373.2A priority Critical patent/CN111116977B/zh
Publication of CN111116977A publication Critical patent/CN111116977A/zh
Application granted granted Critical
Publication of CN111116977B publication Critical patent/CN111116977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J181/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
    • C09J181/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2255Oxides; Hydroxides of metals of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法,该石墨烯/聚氨酯海绵是通过将聚氨酯海绵充分浸入在含还原剂抗坏血酸的氧化石墨烯分散液中,再经一步水热反应,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,取出并干燥后,再在苯基乙烯基醚中充分浸泡,最后冷冻干燥,从而获得。将本发明的石墨烯/聚氨酯海绵用于对聚硫密封剂进行改性,可显著提高其导电和力学性能。

Description

一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性 方法
技术领域
本发明属于功能高分子材料领域,具体涉及一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法。
背景技术
聚硫密封剂是性能优异的一类弹性密封剂,具有优良的耐油、耐腐蚀、耐冲击、耐低温、低透气率等特性,因而在建筑、水利等领域都有着广泛的应用。在航空领域,聚硫密封剂成功应用于飞机整体油箱密封、机身防腐蚀密封、口盖密封等。然而,当可燃燃料运动产生静电时,就会引起安全问题。为了驱散这些危险电荷,对聚硫密封剂的导电性能提出了更高要求。
目前,聚硫密封剂的导电性能主要以液体聚硫橡胶为基体进行研究。将石墨烯作为导电填料引入液体聚硫橡胶中,可望赋予该类复合材料优良的力、热、电、磁等物理化学性能,但石墨烯的反应惰性及其易团聚、难分散的特点,限制了它在聚硫密封剂中的应用。中国发明专利CN106520058A通过将氧化石墨加入到橡胶中,得到一种石墨烯镍复合导电防腐蚀聚硫密封剂。中国发明专利CN104387771A通过对不同分子量液体聚硫橡胶的优选,使其可以和所用铜系导电填料良好的配合,可制得体积电阻率较低的导电聚硫密封剂。但是,上述方法使用石墨烯和镍粉复合或使用铜系导电填料,仍存在导电填料和聚硫橡胶的相容性差的问题,导致所得聚硫密封剂的导电性能仍不能满足需求。
发明内容
为避免上述现有技术的不足之处,本发明提供了一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法,以期可以有效改善聚硫密封剂的导电性能。
本发明为实现发明目的,采用如下技术方案:
本发明首先公开了一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵,其特点在于:所述石墨烯/聚氨酯海绵是通过将聚氨酯海绵充分浸入在含还原剂抗坏血酸的氧化石墨烯分散液中,再经一步水热反应,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,取出并干燥后,再在苯基乙烯基醚中充分浸泡,最后冷冻干燥,从而获得。
本发明所述石墨烯/聚氨酯海绵的制备方法,包括如下步骤:
(1)将氧化石墨烯超声分散在去离子水中,再加入抗坏血酸作为还原剂,氧化石墨烯与抗坏血酸的质量比为3:1,磁力搅拌均匀,获得前驱液,其中氧化石墨烯的质量浓度为1~9mg/mL;
(2)将聚氨酯海绵裁剪成所需形状,然后超声清洗、干燥备用;
(3)将聚氨酯海绵充分浸没在所述前驱液内,然后置于水热釜中,110~130℃水热反应10~12h,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,反应结束后冷却至室温,所得产物取出并用去离子水洗涤、干燥;
(4)将步骤(3)所得产物在苯基乙烯基醚中充分浸泡10~12h,然后取出并冷冻干燥,即获得石墨烯/聚氨酯海绵。
进一步地,氧化石墨烯通过改进的Hummer法制备,并且使用抗坏血酸进行化学还原(抗坏血酸是一种绿色环保且易除去的还原剂)。
本发明进一步公开了利用所述的石墨烯/聚氨酯海绵对聚硫密封剂进行改性的方法,其特点在于:将所述石墨烯/聚氨酯海绵浸入聚硫密封剂的体系中,常温真空条件下浸渍,使聚硫密封剂被充分吸入石墨烯/聚氨酯海绵中,然后再经光照,使聚硫密封剂中的巯基与苯基乙烯基醚中的双键发生点击反应,最后取出并干燥,即完成改性,提高了聚硫密封剂的导电和力学性能。
本发明的石墨烯/聚氨酯海绵适用于对市场各型号及配方体系的聚硫密封剂进行改性。
本发明的有益效果体现在:
1、本发明在聚硫密封剂中引入石墨烯/聚氨酯海绵,以聚氨酯海绵模板作为三维导电通路、以石墨烯为导电填料,由于导电网络的先一步构建,即使在导电填料含量很低时,也不需要克服导电粒子间的聚合物势垒,导电粒子的导电性能被充分利用,进而可显著提高聚硫密封剂的导电和力学性能。
2、本发明在石墨烯/聚氨酯海绵中引入苯基乙烯基醚,基于点击反应原理,显著提高了石墨烯/聚氨酯三维骨架和聚硫橡胶基体的界面相互作用。
附图说明
图1和图2为本发明实施例1中氧化石墨烯(GO)和还原氧化石墨烯(rGO)的X射线衍射光谱图(XRD);
图3为本发明实施例1中氧化石墨烯(GO)、聚氨酯海绵(PU)、氧化石墨烯/海绵(GO/PU)和石墨烯/聚氨酯海绵(rGO/PU)的傅里叶变换红外光谱图(FT-IR);
图4为本发明实施例1中氧化石墨烯(GO)、氧化石墨烯/聚氨酯海绵(GO/PU)和石墨烯/聚氨酯海绵(rGO/PU)的X射线光电子能谱图(XPS);
图5为本发明实施例2制备的石墨烯/聚氨酯海绵改性聚硫密封剂的体积电阻率分析图;
图6为本发明实施例2制备的石墨烯/聚氨酯海绵改性聚硫密封剂的压缩循环测试图。
具体实施方式
下面对本发明的实施例作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下述实施例所用氧化石墨烯的制备方法如下:将2g石墨粉与1g NaNO3粉末加入三口烧瓶中,再加入50mL质量浓度为98%的浓H2SO4,冰水浴下磁力搅拌,将6g KMnO4固体颗粒在5℃条件下分批加入三口烧瓶中,加完后升温至35℃搅拌反应24h;反应结束后向反应液中加入100mL去离子水,搅拌混合均匀后再加入250mL去离子水,随后向反应液中滴加15mL30wt%的双氧水,搅拌混合均匀,随后以4500r/min的转速离心,除去上层清液,用水洗涤并离心沉淀物直至pH接近中性;将离心后的沉淀物转移至500mL大烧杯中并加300mL去离子水,超声2h以上,再用4500r/min的转速离心溶液20min,收集离心管上部液体,即为棕色氧化石墨烯溶液,用截留分子量为12000-14000的透析袋透析一周后,再在-50℃下冷冻干燥24h,即获得氧化石墨烯。
通过改进的Hummers法制备片层氧化石墨烯,传统制备氧化石墨烯的方法对石墨结构的破坏程度大、且氧化程度低,本发明通过删除了95℃的高温氧化阶段,并且增加了35℃的中温反应阶段的反应时间,这样即使得石墨的氧化更加充分、氧化石墨烯的氧化程度更高,又使得氧化石墨烯的结构破坏程度更小。
实施例1、石墨烯/聚氨酯海绵的制备
(1)将氧化石墨烯超声分散在去离子水中,再加入抗坏血酸作为还原剂(氧化石墨烯与抗坏血酸质量比为3:1),磁力搅拌均匀,获得前驱液,前驱液中氧化石墨烯浓度分别为1mg/mL、3mg/mL、5mg/mL、9mg/mL;
(2)将商用聚氨酯海绵裁剪成4cm*3cm的圆柱形(4个),然后将其置于乙醇和水按体积比1:2的混合液中超声2h,再放置在80℃的烘箱中干燥4h,备用;
(3)将干净的聚氨酯海绵分别浸到步骤(1)获得的不同浓度的前驱液内,反复按压待其充分浸入后,放入高压水热反应釜中,120℃水热反应12h,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,反应结束后冷却至室温,所得产物取出并用去离子水洗涤多次、60℃干燥24h;
(4)将干燥后的产物浸入到足量的苯基乙烯基醚液体中,反复挤压充分浸泡保持12h。然后取出并冷冻干燥32h,获得石墨烯/聚氨酯海绵,依次记为样品(rGO/PU1)、样品(rGO/PU3)、样品(rGO/PU5)、样品(rGO/PU9)。
为验证石墨烯的还原效果,按相同的条件获得还原氧化石墨烯样品,具体如下:将氧化石墨烯超声分散在去离子水中,再加入抗坏血酸作为还原剂(氧化石墨烯与抗坏血酸质量比为3:1),磁力搅拌均匀,获得5mg/mL的前驱液;将前驱液放入高压水热反应釜中,120℃水热反应12h,反应结束后冷却至室温,所得产物取出并用去离子水洗涤多次、60℃干燥24h,即获得还原氧化石墨烯。图1与图2分别为氧化石墨烯GO和还原氧化石墨烯rGO的X射线衍射光谱图(XRD),从图中可看出:GO和rGO的XRD特征峰均为单一峰。GO的特征峰为窄而尖的单峰,峰位在9.95°;rGO的特征峰为稍宽的单峰,峰位在24.03°。根据布拉格公式,得到GO和rGO的晶面间距分别为0.842m和0.354nm。这可能是GO在制备的过程中,由于承受剧烈氧化环境而生成了大量的含氧基团,这些基团充斥在石墨层与层之间,起到支撑作用而使其层间距变得相对较大。而在还原的过程中逐步被消除,因而层间距降低至0.354nm,接近于石墨的层间距0.334nm。
为进行对比,本实施例按如下步骤制备氧化石墨烯/聚氨酯海绵:
(1)将氧化石墨烯超声分散在去离子水中,获得氧化石墨烯分散液,其中氧化石墨烯的质量浓度为5mg/mL;
(2)将聚氨酯海绵裁剪成4cm*3cm的圆柱形,然后将其置于乙醇和水按体积比1:2的混合液中超声2h,再放置在80℃的烘箱中干燥4h,备用;
(3)将聚氨酯海绵在氧化石墨烯分散液内充分浸泡,然后取出再进行冷冻干燥32h,即获得氧化石墨烯/聚氨酯海绵(GO/PU)。
图3为本实施例中氧化石墨烯(GO)、聚氨酯海绵(PU)、氧化石墨烯/聚氨酯海绵(GO/PU)和石墨烯/聚氨酯海绵(rGO/PU5)的傅里叶变换红外光谱图(FT-IR)。GO的红外特征吸收峰主要有:在3430cm-1处较强的宽峰为游离羟基伸缩共振吸收峰、在1725cm-1处的尖峰为氧化石墨烯上羧基碳氧双键的伸缩共振吸收峰、在1630cm-1处的尖峰为C-OH的弯曲共振吸收峰,1110cm-1处的峰则是碳氧键吸收峰,这能说明制备的氧化石墨烯含有了游离羟基、羧基、环氧基和碳氧双键。对比4条红外吸收曲线的特征峰的变化,PU上添加了GO后,PU本身的峰位有所减弱并表现出GO的吸收峰,而图中的rGO/PU的红外谱图显示的GO的特征吸收峰一定程度上减弱,这表明rGO/PU经化学还原后一部分含氧基团消失。
图4为本实施例中氧化石墨烯(GO)、氧化石墨烯/聚氨酯海绵(GO/PU)和石墨烯/聚氨酯海绵(rGO/PU)的X射线光电子能谱图(XPS)。由图可知,GO的扫描光谱显示出强烈的信号O1s(533.1eV),GO/PU出现强烈的O1s信号的同时在400.3eV处显示N1s的信号,说明氧化石墨烯成功组装到了聚氨酯海绵上。而rGO/PU的O1s信号明显减弱,说明氧化石墨烯经抗坏血酸以及水热进一步反应之后成功被还原。
实施例2、石墨烯/聚氨酯海绵对聚硫密封剂的导电和力学性能的影响
本实施例所用石墨烯/聚氨酯海绵(rGO/PU)为实施例1中的样品。
本实施例以如下组分的聚硫密封剂为例,验证本发明石墨烯/聚氨酯海绵对其性能的增强效果:
聚硫密封剂由液体聚硫橡胶和硫化膏按重量比10:1混合组成。
液体聚硫橡胶:LP-32液体聚硫橡胶(东丽精细化工株式会社);
硫化膏中各组分按重量份的构成为:
活性二氧化锰10份;
邻苯二甲酸二丁酯7份;
促进剂:0.2份二苯胍;0.4份四甲基二硫代秋兰姆。
本实施例利用石墨烯/聚氨酯海绵按如下步骤对聚硫密封剂进行改性:
(1)聚硫橡胶溶液的制备:量取占聚硫橡胶体积10%的丙酮作为稀释剂加入到液体聚硫橡胶中,充分搅拌形成聚硫橡胶溶液;
(2)硫化膏的制备:将硫化膏的各组分混合均匀,分批倒入三辊研磨机开始研磨,反复研磨三次,得到干湿均匀的黑色膏状物硫化膏;
(3)导电聚硫密封剂的制备:将硫化膏加入到聚硫橡胶溶液中充分搅拌均匀,然后在60°真空烘箱中放置2h以降低聚硫橡胶的粘度;
将实施例1制备的石墨烯/聚氨酯海绵浸入到聚硫密封剂的体系中,常温真空条件下浸渍4h,使聚硫密封剂被充分吸入石墨烯/聚氨酯海绵中;然后置于50W的紫外灯下光照1h,发生点击反应,使聚硫密封剂中的巯基与苯基乙烯基醚中的双键发生点击反应;最后取出并在60℃干燥12h,即完成改性,获得导电聚硫密封剂,依次记为样品(PSR1)、(PSR3)、(PSR5)、(PSR9),同时取纯的聚硫密封剂(PSR)作为空白对照样品。
图5为本实施例各样品的绝缘体积电阻率测试分析图,从图中可以看出:纯聚硫密封剂PSR的体积电阻率为1011Ω.m,基本属于绝缘体。通过石墨烯/聚氨酯海绵改性后的样品,电阻率明显降低。且对比多个改性后样品,样品PSR5的体积电阻率最小为104Ω.m,相应地,电导率值达到最大为10-4S/m,说明还原氧化石墨烯在橡胶基体中达到了渗透阈值。这是由于导电网络的先一步构建,因此即使在导电粒子含量很低时,也不需要克服导电粒子间的聚合物势垒,导电粒子的导电性能被充分利用。当继续增加填料的含量,由于导电填料引起过多的界面缺陷导致复合材料的导电性能下降。
图6为本实施例各样品的20个循环-压缩应力应变曲线图,可以看出:纯聚硫密封剂的第二次压缩加载卸载过程和第一次相比,释放过程的应力明显减小,但后面数次和第二次相比没有明显的变化。而改性后聚硫密封剂在此过程中的应力减小相对较小,这可能是由于石墨烯/聚氨酯海绵三维网络良好的压缩回弹性引起的。
图5和图6结果表明,相比于纯聚硫密封剂,通过本发明的石墨烯/聚氨酯海绵进行改性后的聚硫密封剂,导电和力学性能显著提高。

Claims (5)

1.一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵,其特征在于:所述石墨烯/聚氨酯海绵是通过将聚氨酯海绵充分浸入在含还原剂抗坏血酸的氧化石墨烯分散液中,再经一步水热反应,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,取出并干燥后,再在苯基乙烯基醚中充分浸泡,最后冷冻干燥,从而获得。
2.一种权利要求1所述石墨烯/聚氨酯海绵的制备方法,其特征在于,包括如下步骤:
(1)将氧化石墨烯超声分散在去离子水中,再加入抗坏血酸作为还原剂,磁力搅拌均匀,获得前驱液;
(2)将聚氨酯海绵裁剪成所需形状,然后超声清洗、干燥备用;
(3)将聚氨酯海绵充分浸没在所述前驱液内,然后置于水热釜中,110~130℃水热反应10~12h,使氧化石墨烯还原为石墨烯的同时均匀地自组装在聚氨酯海绵上,反应结束后冷却至室温,所得产物取出并用去离子水洗涤、干燥;
(4)将步骤(3)所得产物在苯基乙烯基醚中充分浸泡10~12h,然后取出并冷冻干燥,即获得石墨烯/聚氨酯海绵。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)中,氧化石墨烯与抗坏血酸的质量比为3:1。
4.根据权利要求2所述的制备方法,其特征在于:步骤(1)所得前驱液中,氧化石墨烯的质量浓度为1~9mg/mL。
5.一种利用权利要求1所述的石墨烯/聚氨酯海绵对聚硫密封剂进行改性的方法,其特征在于:将所述石墨烯/聚氨酯海绵浸入聚硫密封剂的体系中,常温真空条件下浸渍,使聚硫密封剂被充分吸入石墨烯/聚氨酯海绵中,然后再经光照,使聚硫密封剂中的巯基与苯基乙烯基醚中的双键发生点击反应,最后取出并干燥,即完成改性,提高了聚硫密封剂的导电和力学性能。
CN201911395373.2A 2019-12-30 2019-12-30 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法 Active CN111116977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911395373.2A CN111116977B (zh) 2019-12-30 2019-12-30 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911395373.2A CN111116977B (zh) 2019-12-30 2019-12-30 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法

Publications (2)

Publication Number Publication Date
CN111116977A CN111116977A (zh) 2020-05-08
CN111116977B true CN111116977B (zh) 2022-02-18

Family

ID=70505131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911395373.2A Active CN111116977B (zh) 2019-12-30 2019-12-30 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法

Country Status (1)

Country Link
CN (1) CN111116977B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010985B (zh) * 2022-06-23 2023-06-23 苏州大学 一种rGO/PU导电海绵、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329595A (zh) * 2011-08-10 2012-01-25 浙江大学 一种高强度聚硫密封胶
CN102838964A (zh) * 2012-08-29 2012-12-26 浙江大学 一种高耐候性聚硫密封胶
CN105295375A (zh) * 2015-10-23 2016-02-03 中国航空工业集团公司北京航空材料研究院 一种聚硫醚密封剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329595A (zh) * 2011-08-10 2012-01-25 浙江大学 一种高强度聚硫密封胶
CN102838964A (zh) * 2012-08-29 2012-12-26 浙江大学 一种高耐候性聚硫密封胶
CN105295375A (zh) * 2015-10-23 2016-02-03 中国航空工业集团公司北京航空材料研究院 一种聚硫醚密封剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effect of Filler on the Compression Set, Compression Stress–Strain Behavior, and Mechanical Properties ofPolysulfide Sealants;Yu Lu et al.;《Journal of Applied Polymer Science》;20101208;第120卷;第2001-2007页 *
氧化石墨烯改性聚硫密封胶;滕晓波等;《高分子材料科学与工程》;20130630;第29卷(第6期);第54-57页 *
聚氨酯改性聚硫橡胶的合成研究;王宇飞等;《山西化工》;20120630;第32卷(第3期);第10-13页 *

Also Published As

Publication number Publication date
CN111116977A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Deka et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin
Zhu et al. Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin
Purwanto et al. Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells
Jiang et al. Preparation and characterization of quaternized poly (vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity
CN114074927B (zh) 一种二维材料及其制备方法和复合膜
CN101362390B (zh) 一种含羰基铁粉的屏蔽宽频电磁波聚乙烯复合膜及其制备方法
KR20150026092A (ko) 부분 환원된 산화 그래핀을 포함하는 탄소 섬유 복합재 및 이의 제조방법
CN106654367B (zh) 电解质膜的制备方法及固态锂电池
CN101362389A (zh) 一种含镀镍碳纳米管的屏蔽宽频电磁波聚乙烯复合膜及其制备方法
CN111116977B (zh) 一种用于改性聚硫密封剂的石墨烯/聚氨酯海绵及其改性方法
CN104403275A (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
CN111232967A (zh) 一种氨基化氧化石墨烯的制备方法
CN110364687A (zh) 一种柔性薄膜电极的制备方法及所制备的电极和用途
CN114335570A (zh) 一种燃料电池用气体扩散层及其制备方法与应用
CN108034258A (zh) 一种高阻隔硅橡胶石墨烯复合材料及其制备方法
Kerche et al. Ionic liquid‐functionalized reinforcements in epoxy‐based composites: A systematic review
CN110438845B (zh) 亲水性石墨烯、纤维素基石墨烯柔性导电纳米纸及其制法
CN112615048B (zh) 一种离子液体接枝分子筛咪唑框架复合固态聚合物电解质及其制备方法
Wei et al. Synergistically improved hydroxide ions conduction of quaternized Poly (2.6 Dimethyl-1.4 phenylene Oxide)-Based anion exchange membrane with necklace shaped metal-organic Framework@ Carbon nanotube oxide
CN110452444B (zh) 具有超疏水特性的交联聚乙烯复合材料及制备方法、应用
Ling et al. Environmentally friendly sizing strategy for PBO fiber-reinforced composites through building carbon nanosphere coatings
CN105314630A (zh) 一种功能化氧化石墨的制备方法
CN108997750A (zh) 一种氧化石墨烯自修复聚合物的制备方法
Tan et al. Solid-state microwave synthesis CuO/CNT: a high-performance electrode material for supercapacitors
CN105869909A (zh) 一种复合电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant