CN111116930B - 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法 - Google Patents

超分散剂、热塑性树脂基碳纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN111116930B
CN111116930B CN201911415742.XA CN201911415742A CN111116930B CN 111116930 B CN111116930 B CN 111116930B CN 201911415742 A CN201911415742 A CN 201911415742A CN 111116930 B CN111116930 B CN 111116930B
Authority
CN
China
Prior art keywords
carbon fiber
hyperdispersant
thermoplastic resin
nano
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911415742.XA
Other languages
English (en)
Other versions
CN111116930A (zh
Inventor
黄逸夫
阮文红
章明秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201911415742.XA priority Critical patent/CN111116930B/zh
Publication of CN111116930A publication Critical patent/CN111116930A/zh
Application granted granted Critical
Publication of CN111116930B publication Critical patent/CN111116930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/127Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种超分散剂、热塑性树脂基碳纤维复合材料及其制备方法,所述超分散剂为核壳结构,包括作为核层的偶联剂改性的无机纳米粒子和作为壳层的超支化聚合物。所述热塑性树脂基碳纤维复合材料主要由热塑性树脂、碳纤维和上述超分散剂制备得到。本发明提供的超分散剂能够有效改善碳纤维的分散性,并实现对碳纤维表面树脂流动性和界面作用的调控,从而改善加工性能,还能够显著提高热塑性树脂基碳纤维复合材料的力学性能。

Description

超分散剂、热塑性树脂基碳纤维复合材料及其制备方法
技术领域
本发明涉及碳纤维复合材料成型加工技术领域,更具体地,涉及一种超分散剂、热塑性树脂基碳纤维复合材料及其制备方法。
背景技术
碳纤维是一种丝状的碳基材料,具有轻质、高强度、高模量等优异的力学性能。作为增强体,碳纤维可通过与热塑性树脂等基体材料复合,制得性能优异的碳纤维复合材料。热塑性树脂可经历多次反复加热熔融、冷却成型。热塑性树脂基碳纤维复合材料的制备多采用热成型方式,成型时间在几分钟到几十分钟,即熔体浸渍技术。
熔体浸渍技术是指在一定压力作用下,使得熔融的热塑性树脂基体浸润增强碳纤维,其关键技术之一就是解决碳纤维的良好分散问题。然而,热塑性树脂熔体粘度较高,难以有效浸渍碳纤维,特别是碳纤维比例较高的情形,例如碳纤维添加量达到30%。为了良好浸渍增强纤维,需要通过外界作用的手段,如施加较大压力增加树脂的流动性,但容易使得碳纤维受损,影响纤维性能,而提高加工温度,则容易造成树脂分解。中国专利申请CN109181288A公开了一种碳纤维PA6热塑性复合材料的制备工艺,为了使PA6基材能够充分包覆碳纤维,需要将浸渍有PA6的碳纤维束材料重复熔融压制。
可见,现有技术制备碳纤维含量较高的热塑性树脂基碳纤维复合材料时,加工困难,不能很好地分散碳纤维,复合材料力学性能不足。
因此,碳纤维含量较高的热塑性树脂基碳纤维复合材料的难加工、力学性能不足的问题急需解决。
发明内容
本发明为克服上述现有技术所述的热塑性树脂基碳纤维复合材料高碳纤维含量下难加工、力学性能不足的缺陷,提供一种用于热塑性树脂基碳纤维复合材料的超分散剂,提供的超分散剂能够有效改善碳纤维的分散性,并实现对碳纤维表面树脂流动性和界面作用的调控,从而改善加工性能,还能够显著提高热塑性树脂基碳纤维复合材料的力学性能。
本发明的另一目的在于提供上述超分散剂的制备方法。
本发明的又一目的在于提供上述超分散剂制备的热塑性树脂基碳纤维复合材料。
本发明的又一目的在于提供上述热塑性树脂基碳纤维复合材料的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
一种用于热塑性树脂基碳纤维复合材料的超分散剂,所述超分散剂为核壳结构,包括作为核层的偶联剂改性的无机纳米粒子和作为壳层的超支化聚合物。
优选地,所述核层的直径为5~200nm,所述壳层的厚度为5~200nm。所述超分散剂的尺寸在纳米级到微米级之间。
优选地,所述无机纳米粒子为纳米二氧化硅、纳米二氧化钛、纳米氧化铝、纳米氧化铁、纳米氧化镁、纳米偏铝酸锂、纳米碳酸钙、纳米水滑石或碳基纳米粒子中的一种或几种。
优选地,所述无机纳米粒子为碳基纳米粒子。所述碳基纳米粒子可以为炭黑、碳纳米管或石墨烯中的一种或几种。
所述偶联剂包括硅烷系偶联剂、钛酸酯系偶联剂或铝酸酯系偶联剂的一种或几种。所述硅烷系偶联剂为乙烯基硅烷、氨基硅烷、环氧基硅烷、巯基硅烷或甲基丙烯酰氧基硅烷中的一种或几种。所述钛酸酯偶联剂为异丙基三(二辛基焦磷酸酰氧基)钛酸酯、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯或双(二辛氧基焦磷酸酯基)乙撑钛酸酯中的一种或几种。所述铝酸酯系偶联剂为SG-Al821(二硬脂酰氧异丙基铝酸酯)、DL-411、DL-411AF、DL-411D、DL-411DF或防沉降性铝酸酯ASA中的一种或几种。
优选地,超支化聚合物含有酰胺键、酯键或胺-酯键中一种或几种。
本发明还保护上述超分散剂的制备方法,所述制备方法包括如下步骤:
S1.无机纳米粒子改性:将无机纳米粒子、偶联剂和分散剂混合后进行球磨,得到偶联剂改性的无机纳米粒子;
S2.合成超分散剂:将偶联剂改性的无机纳米粒子加入超支化聚合物的原料中,进行聚合反应,得到所述超分散剂。
优选地,步骤S1.中,无机纳米粒子为100份(质量),偶联剂为0.5~50份(质量),分散剂为200~500份(质量)。
步骤S1.中球磨完成后,进行干燥,如烘干并真空干燥,得到偶联剂改性的无机纳米粒子。
优选地,球磨时间为0.5~24h。
优选地,所述分散剂为乙醇、丙酮或水的一种或几种。
优选地,所述超支化聚合物主要由多官能团单体和含反应性基团的长链烷烃制备得到。
步骤S2.具体为,将偶联剂改性的无机纳米粒子分散在溶剂中,加入多官能团单体、含反应性基团的长链烷烃和催化剂,混合后升高温度,进行聚合反应,然后旋蒸除去溶剂,得到超分散剂粗产物。
进一步地,所述超分散剂粗产物采用乙醚或丙酮进行抽提,除去未反应单体,干燥后得到超分散剂。
需要说明的是,未经提纯的超分散剂可以直接应用于热塑性树脂基碳纤维复合材料的加工。
优选地,所述溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲苯或甲苯的一种或几种。
优选地,步骤S2.中,偶联剂改性的无机纳米粒子为0.1~20份(质量),多官能团单体为50~100份(质量),含反应性基团的长链烷烃为30~100份(质量)。
优选地,所述多官能团单体为含有羧基、酸酐基团、羟基或氨基的单体中的一种或几种。
优选地,所述含反应性基团的长链烷烃为接枝马来酸酐的聚烯烃、长链烷酸或长链烷醇中一种或几种。
优选地,所述长链烷酸为十二烷酸、十六烷酸或十八烷酸中一种或几种。
优选地,所述长链烷醇为十二烷醇、十六烷醇或十八烷醇中一种或几种。
所述聚合反应包括自由基共聚合或共缩聚反应,或者两者聚合反应机理共存的情形,所形成分子具有树枝状、分支状或多支化特征。
优选地,所述催化剂为4-甲基苯磺酸、浓硫酸、乙醇钠或醋酸锌的一种或几种。所述催化剂的投料质量占总质量的0.1wt%~0.8wt%。
所述超分散剂中核层的无机纳米粒子与壳层的超支化聚合物之间为化学键合和/或物理包覆。
本发明还保护一种热塑性树脂基碳纤维复合材料,所述热塑性树脂基碳纤维复合材料主要由热塑性树脂、碳纤维和上述超分散剂制备得到。
优选地,所述超分散剂与热塑性树脂的质量比值为0.01%~1%。
优选地,所述热塑性树脂为含胺-酯键、酰胺键、酯键或卤原子特征结构的高分子聚合物。例如,高分子量尼龙、乙烯-醋酸乙烯酯共聚物、聚乳酸、聚氯乙烯。
上述热塑性树脂基碳纤维复合材料的制备方法也在本发明的保护范围内,所述制备方法包括如下步骤:
M1.通过浸渍法使碳纤维表面附着超分散剂,得到表面浸渍处理的碳纤维;
M2.将表面浸渍处理的碳纤维与热塑性树脂混合,加热成型。
优选地,步骤M1.中浸渍法为,将所述超分散剂分散在溶剂中,得到浸渍液,将所述碳纤维浸入所述浸渍液,取出干燥。
优选地,步骤M1.具体为,通过超声作用,将超分散剂预先分散乙醇、丙酮或白矿油中,制备一定浓度的浸渍液,并将碳纤维浸渍其中,取出烘干处理。
优选地,所述浸渍液中超分散剂的质量浓度为5%~50%.
与现有技术相比,本发明的有益效果是:
本发明利用无机纳米粒子核与碳纤维表面的亲和作用,诱导壳层超支化聚合物分子在熔体加工过程中产生分布差异,改善碳纤维的分散性,并实现对碳纤维表面树脂流动性和界面作用的调控。
本发明通过超分散剂中壳层超支化聚合物与热塑性材料在加工过程中可发生断链、支化或释放小分子增塑剂,如酯交换或酯分解效应,对树脂的低分子量分布范围有调节作用。其中树脂材料中低分子量分布的改善可显著提高熔融树脂在碳纤维表面的流动性,从超分子聚合物释放出来的小分子也可对热塑性树脂基体起到增塑作用,另外超分散剂的支化结构与热塑性分子链的缠结或酯交换产生的交联作用增强了碳纤维与树脂之间的界面强度,反而显著提高了复合材料的力学性能。
与现有技术相比,本发明超分散剂用量少,改善熔融热塑性树脂对碳纤维表面的包覆浸渍效果显著,增强了热塑性碳纤维复合材料的力学性能,在连续或非连续纤维增强热塑性复合材料成型技术开发方面具有应用前景。
附图说明
图1为本发明实施例1的用于热塑性树脂基碳纤维复合材料的超分散剂的形貌图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例中的原料均可通过市售得到;
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
一种用于热塑性树脂基碳纤维复合材料的超分散剂,该超分散剂为核壳结构,包括作为核层的偶联剂改性的无机纳米粒子和作为壳层的超支化聚合物。
本实施例的超分散剂的制备方法如下:
S1.无机纳米粒子改性:气相纳米二氧化硅的预处理
称取一定量的气相纳米二氧化硅和KH550偶联剂置于球磨罐中,质量比为2∶1,加入少量95%乙醇为溶剂,将偶联剂稀释到0.8%质量浓度,球磨24h。烘干,得到改性的纳米二氧化硅。
S2.合成超分散剂:合成含胺-酯键的超分散剂
称取20.0g甲基丙烯酸甲酯和20.0g二乙醇胺加入到装有温度计、搅拌器、冷凝管的四颈烧瓶中,加入0.5wt%乙醇钠,保持温度为40℃反应一周,然后在60℃水浴中旋蒸除去未反应物,得到含胺-酯键的多官能团单体,即N,N—二羟乙基-3-胺基甲基丙酸甲酯。
将1g改性纳米二氧化硅、90g含胺-酯键的多官能团单体、10g马来酸酐接枝聚丙烯(接枝率>1.0%,广州鹿山新材料股份有限公司)和0.5g 4-甲基苯磺酸加热分散溶解在溶剂中。其中,溶剂选择二甲苯和N-N’二甲基甲酰胺的混合溶剂(体积比1:1)。将混合物置于四颈烧瓶中进行反应,烧瓶中分别加有温度计、搅拌器和冷凝管。将混合物加热到120℃。反应6~20h后,旋蒸除去溶剂,干燥,得到富含胺-酯键的超分散剂粗产物。不进行抽提,直接作为超分散剂使用。
实施例2
本实施例为本发明的用于热塑性树脂基碳纤维复合材料的超分散剂的第二实施例,本实施例的超分散剂的制备方法如下:
S1.无机纳米粒子改性:氧化石墨烯的预处理
称取一定量的氧化石墨烯和三异硬酯酸钛酸异丙酯置于球磨罐中,质量比为10∶1,加入少量95%乙醇为溶剂,将偶联剂稀释到0.5%质量浓度,球磨24h。烘干,得到改性的氧化石墨烯。
S2.合成超分散剂:合成含酯键的超分散剂
配置有搅拌器、干燥管和通氮气的四口烧瓶中,依次加入溶剂80mL二甲基乙酰胺、1g改性的氧化石墨烯,1.2g草酸、18g偏苯三酸酐、2g季戊四醇三丙烯酸酯,10g硬脂酸和0.3wt%催化剂p-TSA。在搅拌和通氮气条件下,开启加热升高温度至120℃,反应12-20h。升温至140~170℃,旋蒸除去溶剂,得到超分散剂粗产物。不进行抽提,直接作为超分散剂使用。
实施例3
本实施例为本发明的用于热塑性树脂基碳纤维复合材料的超分散剂的第三实施例,本实施例的超分散剂的制备方法如下:
S1.无机纳米粒子改性:碳纳米管的预处理
称取一定量的经强酸处理后的碳纳米管和DL-411-A偶联剂置于球磨罐中,质量比为5∶1,加入少量95%乙醇为溶剂,将偶联剂稀释到0.5%质量浓度,球磨24h。烘干,得到改性的碳纳米管。
S2.合成超分散剂:合成含酯键的超分散剂
在配置有搅拌器、干燥管和通氮气的四口烧瓶中,依次加入溶剂10mL甲苯、80mL二甲苯、30mL二甲基乙酰胺、1g改性碳纳米管、26g均苯三甲酸、10g新戊二醇、4g十二烷醇和0.8wt%浓硫酸。在搅拌和通氮气条件下,开启加热升高温度至150℃,反应12~20h。升温至170℃,继续反应5h。旋蒸去除溶剂,将得到的粗产物用无水乙醚抽提24h,干燥得到超分散剂。
实施例4
一种热塑性树脂基碳纤维复合材料,由热塑性树脂、碳纤维和超分散剂制备得到。
制备方法如下:
M1.通过超声作用,将超分散剂预先分散乙醇中,制备浸渍液,并将碳纤维浸渍其中,取出烘干处理,使碳纤维表面附着超分散剂,得到表面浸渍处理的碳纤维。
M2.将表面浸渍处理后的碳纤维与热塑性树脂,通过注射成型工艺加工。测试加工参数,并测定制得的热塑性树脂基碳纤维复合材料的力学性能。
本实施例中,热塑性树脂为PA6;碳纤维为德国公司爱彼思回收的跑车、自行车等碳纤维增强部件分离得到的短碳纤维,碳纤维与与热塑性树脂的质量比值为30%;超分散剂为实施例1的超分散剂,超分散剂与热塑性树脂的质量比值为0.4%。
实施例5
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,超分散剂为实施例2的超分散剂,超分散剂与热塑性树脂的质量比值为0.2%;
其他原料和制备方法与实施例4相同。
实施例6
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,超分散剂为实施例3的超分散剂,超分散剂与热塑性树脂的质量比值为0.1%;
其他原料和制备方法与实施例4相同。
实施例7
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,碳纤维与与热塑性树脂的质量比值为40%,超分散剂为实施例3的超分散剂;
其他原料和制备方法与实施例4相同。
实施例8
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,热塑性树脂为PA66;
其他原料和制备方法与实施例4相同。
实施例9
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,热塑性树脂为PA66,超分散剂为实施例2的超分散剂,超分散剂与热塑性树脂的质量比值为0.2%;
其他原料和制备方法与实施例4相同。
实施例10
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,热塑性树脂为PA66,超分散剂为实施例3的超分散剂,超分散剂与热塑性树脂的质量比值为0.1%;
其他原料和制备方法与实施例4相同。
实施例11
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,热塑性树脂为PA66,碳纤维与与热塑性树脂的质量比值为40%,超分散剂为实施例3的超分散剂;
其他原料和制备方法与实施例4相同。
对比例1
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,不添加超分散剂;
其他原料和制备方法与实施例4相同。
对比例2
与实施例4区别在于,本实施例的热塑性树脂基碳纤维复合材料中,热塑性树脂为PA66,且不添加超分散剂;
其他原料和制备方法与实施例4相同。
性能测试
(1)超分散剂的形貌测试
采用透射电镜观察样品形貌,将少量样品分散在适量的乙醇中,超声均匀分散,然后以铜网捞取后真空干燥,进行透射电镜观察。
(2)加工性能:熔融指数
采用熔融流动速率仪,参照GB/T3682-2000、ASTM D1238-98标准,熔融温度:230℃。
(3)力学性能测试:
拉伸强度、拉伸模量、伸长率和缺口冲击测试方法参照GBT 1040-92,GBT 1040.5-2008,GBT 1843-2008等标准。
测试结果
实施例1制得的超分散剂如图1所示,由图1可知,该超分散剂的核层直径为80~100nm,壳层的厚度为60~90nm。
实施例4~11及对比例1~2的热塑性树脂基碳纤维复合材料的测试结果如表1所示。由表1可知,利用本发明实施例1~3制得的超分散剂制得的热塑性树脂基碳纤维复合材料(即实施例4~11)的加工性能明显优于不加超分散剂的对比例1和对比例2,而且,实施例4~11的热塑性树脂基碳纤维复合材料的伸长率和缺口冲击性能得到较大提升,显著优于对比例1~2。所以,本发明提供的超分散剂能够有效改善碳纤维的分散性,并实现对碳纤维表面树脂流动性和界面作用的调控,从而改善加工性能,还能够显著提高热塑性树脂基碳纤维复合材料的力学性能。
表1实施例4~11及对比例1~2的热塑性树脂基碳纤维复合材料的测试结果
Figure BDA0002351151310000091
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种用于热塑性树脂基碳纤维复合材料的超分散剂,其特征在于,所述超分散剂为核壳结构,包括作为核层的偶联剂改性的无机纳米粒子和作为壳层的超支化聚合物;所述核层的直径为5~200nm,所述壳层的厚度为5~200nm;超支化聚合物含有酰胺键、酯键或胺-酯键中一种或几种。
2.根据权利要求1所述的超分散剂,其特征在于,所述无机纳米粒子为纳米二氧化硅、纳米二氧化钛、纳米氧化铝、纳米氧化铁、纳米氧化镁、纳米偏铝酸锂、纳米碳酸钙、纳米水滑石或碳基纳米粒子中的一种或几种。
3.权利要求1或2所述超分散剂的制备方法,其特征在于,包括如下步骤:
S1.无机纳米粒子改性:将无机纳米粒子、偶联剂和分散剂混合后进行球磨,得到偶联剂改性的无机纳米粒子;
S2.合成超分散剂:将偶联剂改性的无机纳米粒子加入超支化聚合物的原料中,进行聚合反应,得到所述超分散剂。
4.根据权利要求3所述的制备方法,其特征在于,所述超支化聚合物主要由多官能团单体和含反应性基团的长链烷烃制备得到。
5.一种热塑性树脂基碳纤维复合材料,其特征在于,主要由热塑性树脂、碳纤维和权利要求1或2所述超分散剂制备得到。
6.根据权利要求5所述的热塑性树脂基碳纤维复合材料,其特征在于,所述超分散剂与热塑性树脂的质量比值为0.01%~0.4%。
7.权利要求5或6所述热塑性树脂基碳纤维复合材料的制备方法,其特征在于,包括如下步骤:
M1.通过浸渍法使碳纤维表面附着超分散剂,得到表面浸渍处理的碳纤维;
M2.将表面浸渍处理的碳纤维与热塑性树脂混合,加热成型。
8.根据权利要求7所述的制备方法,其特征在于,步骤M1.中浸渍法为,将所述超分散剂分散在溶剂中,得到浸渍液,将所述碳纤维浸入所述浸渍液,取出干燥。
CN201911415742.XA 2019-12-31 2019-12-31 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法 Active CN111116930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911415742.XA CN111116930B (zh) 2019-12-31 2019-12-31 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911415742.XA CN111116930B (zh) 2019-12-31 2019-12-31 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111116930A CN111116930A (zh) 2020-05-08
CN111116930B true CN111116930B (zh) 2021-11-16

Family

ID=70506746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911415742.XA Active CN111116930B (zh) 2019-12-31 2019-12-31 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111116930B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930051B (zh) * 2021-11-03 2023-07-14 一汽解放汽车有限公司 碳基复合材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733841B2 (en) * 2001-11-01 2004-05-11 Joseph William Frisk Hydrophilic treatment of a carbon fiber construction
CN103408764B (zh) * 2013-07-15 2015-11-25 中山大学 一种可光转换的超支化聚合物及其制备方法
CN104562698A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种增强热塑性树脂用碳纤维上浆剂的制备方法
KR102050362B1 (ko) * 2017-05-22 2019-12-02 재단법인 한국탄소융합기술원 탄소섬유를 이용한 3d 프린터용 고분자 복합재 제조방법
CN110423367B (zh) * 2019-08-14 2022-04-08 哈尔滨工业大学 一种碳纤维增强热塑性复合材料的制备方法

Also Published As

Publication number Publication date
CN111116930A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Prashantha et al. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition
Guo et al. CuO nanoparticle filled vinyl-ester resin nanocomposites: Fabrication, characterization and property analysis
US20050127329A1 (en) Method of forming nanocomposite materials
US9115220B2 (en) Method for functionalization of nanoscale fibers and nanoscale fiber films
KR100852386B1 (ko) 나노튜브 분산 복합체와 그의 제조방법
US11613464B2 (en) Modified boron nitride nanotubes and solutions thereof
Yu et al. Effect of surface functional modification of nano-alumina particles on thermal and mechanical properties of epoxy nanocomposites
Zhang et al. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: a novel methodology for fiber/matrix composites
Dai et al. Mechanical properties of carbon nanotubes-polymer composites
Akbari et al. Synthesis of high dispersible hydrophilic poly (ethylene glycol)/vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite
Zhao et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites
CN111232967A (zh) 一种氨基化氧化石墨烯的制备方法
CN111116930B (zh) 超分散剂、热塑性树脂基碳纤维复合材料及其制备方法
US7569161B2 (en) Electrically conducting polymer and production method and use thereof
Yao et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface
US11807739B2 (en) Fibrous nanoparticle-filled poly (methyl methacrylate) composites and methods of fabrication
Narro-Céspedes et al. Surface modification of sodium montmorillonite nanoclay by plasma polymerization and its effect on the properties of polystyrene nanocomposites
Mathur et al. Properties of PMMA/carbon nanotubes nanocomposites
CN112029284A (zh) 一种氧化石墨烯助分散蒙脱土改性聚硫橡胶及其制备方法
CN114016286B (zh) 一种官能化氧化石墨烯电泳沉积修饰碳纤维的方法及其碳纤维复合材料
Sarfraz Upgrading electrical, mechanical, and chemical properties of CNTs/polybond® nanocomposites: pursuit of electroconductive structural polymer nanocomplexes
Park et al. Surface modification of carbon nanotubes for high-performance polymer composites
Dai et al. Toughening of vinyl ester resins by two-dimensional MXene nanosheets
Yong et al. Monodisperse SiC/vinyl ester nanocomposites: Dispersant formulation, synthesis, and characterization
Hariprasadarao et al. Effect of Thermal Aging on Mechanical Properties and Fatigue Behavior of PP/HDPE Thermoplastic Polymer Nanoclay Composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant