CN111115548A - 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用 - Google Patents

一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用 Download PDF

Info

Publication number
CN111115548A
CN111115548A CN201911165378.6A CN201911165378A CN111115548A CN 111115548 A CN111115548 A CN 111115548A CN 201911165378 A CN201911165378 A CN 201911165378A CN 111115548 A CN111115548 A CN 111115548A
Authority
CN
China
Prior art keywords
super
pdms
mushroom
nano composite
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911165378.6A
Other languages
English (en)
Inventor
姚瑶
侯茂祥
陈云
施达创
陈燕辉
陈新
高健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201911165378.6A priority Critical patent/CN111115548A/zh
Publication of CN111115548A publication Critical patent/CN111115548A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0089Chemical or biological characteristics, e.g. layer which makes a surface chemically active
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/126Halogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

本发明属于微纳加工技术领域,公开了一种蘑菇状超疏水‑超疏油PDMS微纳复合阵列及其制备方法和应用。该PDMS微纳复合阵列是先利用化学气相沉积法在预处理的硅片表面生长氮化硅层;在氮化硅层的表面旋涂光刻胶,用所掩模板覆盖在光刻胶上,对光刻胶进行曝光,显影,对显影区域进行刻蚀;刻蚀去除未被光刻胶覆盖的部分氮化硅层;再刻蚀去除贵金属催化剂,在该硅片表面涂覆PDMS层,在150~180℃固化,再用碱溶液溶解硅片,得到蘑菇状PDMS微结构阵列,对其表面氟化处理制得。该阵列具有超疏水‑超疏性,其接触角为150~160°,滚动角为5~10°,可应用在催化、防水防油或生物医疗领域中。

Description

一种蘑菇状超疏水-超疏油PDMS微纳复合阵列及其制备方法 和应用
技术领域
本发明属于微纳加工技术领域,更具体地,涉及一种蘑菇状超疏水-超疏油PDMS微纳复合阵列及其制备方法和应用。
背景技术
表面的浸润性与许多物理化学过程,如吸附、润滑、粘合、分散和摩擦等密切相关。在催化、采油、选矿、润滑、涂饰、防水和生物医用材料等众多领域中,表面浸润性都有着重要的应用。
由于具有极好的疏水、排水及自洁功能,超疏水表面在微流管道高效输运、卫星天线防尘、电缆防冰、潜艇表面降阻以及日常生活等方面有着广泛的应用前景。由Wenzel模型和Cassie模型可知,微纳米尺度的粗糙度能增强疏水表面的疏水性。可以采用两种方法加工加工具有自清洁功能的超疏水表面:一是在低表面能物质表面构建合适的粗糙微观结构;二是先在表面能较高的材料表面构筑合适尺度的粗糙表面,再使用低表面能的含氟、硅氧烷的化合物对表面改性修饰,使表面达到超疏水的效果。目前加工超疏水表面较常用的方法有等离子体法、刻蚀法、溶胶-凝胶法、沉积法、模板法、层-层自组装法与其他方法等。
2007年,美国麻省理工学院Anish Tuteja等在《Science》上首次提出用一种上宽下窄型微观悬臂结构来加工超疏油表面,上宽下窄的形状中,梯形结构还需进一步降低表面能;T型结构不用降低表面能即可加工出超疏水表面。2014年,美国加州大学洛杉矶分校Chang-jin Kim等在《Science》上发文提出双重悬臂结构来加工超疏油表面,无需进一步降低表面能即可获得疏油性。该方法是上部顶盖结构和下部底柱结构分开加工,先用激光加工出底部柱状阵列,然后用电化学沉积的方法加工出顶盖结构。该悬臂结构氟化后具有超疏油性,对水和油的接触角达150°以上。此外,PDMS的生物兼容性为仿生疏水表面在医学上的应用提供了条件,而良好的透光性则使其能够适用于对光学变化要求较高的领域。PDMS的化学性能稳定,一旦形成疏水表面便不易改变,且其价格低廉、容易获取。因此,以PDMS倒模加工出的微观超双疏水疏油结构具有很高的研究价值和现实意义。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供了一种蘑菇状超疏水-超疏油PDMS微纳复合阵列。
本发明另一目的在于提供了上述蘑菇状超疏水-超疏油PDMS微纳复合阵列的制备方法。
本发明再一目的在于提供了上述蘑菇状超疏水-超疏油PDMS微纳复合阵列的应用。
本发明的目的通过以下技术方案来实现:
一种蘑菇状超疏水-超疏油的PDMS微纳复合阵列,所述PDMS微纳复合阵列是先利用化学气相沉积法在预处理的硅片表面生长氮化硅层;然后在氮化硅层的表面旋涂光刻胶,用所需图形的掩模板覆盖在光刻胶上,通过紫外线对涂覆在氮化硅层的表面的光刻胶进行曝光,再用显影液进行显影,氮化硅层的显影区域在CHF3/O2气体氛围下进行反应离子刻蚀;用反应离子刻蚀法去除未被光刻胶覆盖的部分氮化硅层;通过各向异性的金属辅助化学刻蚀法,将蒸镀贵金属层作为催化剂,在硅片上按照所需图形进行刻蚀以去除贵金属催化剂;然后用刻蚀液进行各向同性刻蚀,将硅片取出清洗干净,在该硅片表面涂覆PDMS层,在真空中除气泡并在150~180℃加热固化,待PDMS固化后取出;用碱溶液溶解硅片,得到以硅片作为牺牲模板的蘑菇状PDMS微结构阵列,再对微结构阵列进行表面氟化处理制得。
优选地,所述氮化硅层的厚度为180~220nm;所述光刻胶的厚度为10~10000nm;所述掩膜版中图形的中心距为90~100μm;所述反应离子刻蚀的深度为5~8μm;所述PDMS层的厚度为80~90μm
优选地,所述显影液为四甲基氢氧化铵、二甲苯或乙酸正丁酯。
优选地,所述贵金属为金、银、铂;所述刻蚀液的配方为:50wt%的HF:60wt%的HNO3:98wt%的CH3COOH的体积比为(1~3):(18~27):(8~11)。
优选地,所述固化的时间为30~50min;所述真空的压力为110~130Pa。
优选地,所述碱溶液为KOH或NaOH;所述碱溶液的浓度为1~1.5mol/L。
优选地,所述PDMS微纳复合阵列的底柱高度为氮化硅层的厚度与光刻胶层的厚度之和;所述底柱高度为H=60~70μm;所述微纳复合阵列的底柱直径为掩膜版中单个图案的直径D=10~15μm;节距P为掩膜版中各图形的中心距为90~100μm;半球体的半径R为各向同性刻蚀的速率与时间的乘积,所述半球半径R为10~12μmR。
优选地,所述蘑菇状超疏水-超疏油PDMS微纳复合阵列的液滴接触角为150~160°,滚动角为5~10°。
所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列的制备方法,包括如下具体步骤:
S1.依次用无水乙醇、浓硫酸/过氧化氢溶液,在100~120℃的氢氟酸、去离子水对硅片进行超声清洗,再用氮气吹干;
S2.利用化学气相沉积法在硅片表面生长氮化硅层;
S3.在氮化硅层的表面旋涂光刻胶,然后用所需图形的掩模板覆盖在光刻胶上,通过紫外线对涂覆在氮化硅层的表面的光刻胶进行曝光,再用显影液进行显影,氮化硅层的显影区域在CHF3/O2气体氛围下进行反应离子刻蚀;用反应离子刻蚀法去除未被光刻胶覆盖的部分氮化硅层;
S4.通过各向异性的金属辅助化学刻蚀法,将蒸镀贵金属层作为催化剂,在硅片上按照所需图形进行刻蚀;去除贵金属催化剂,然后用刻蚀液进行各向同性刻蚀,将硅片取出清洗干净;
S5.在步骤S4处理的硅片表面涂覆PDMS层,在真空中除气泡并在150~180℃加热固化,待PDMS固化后取出;用碱溶液溶解硅片,得到以硅片作为牺牲模板的蘑菇状PDMS微结构阵列,再对微结构阵列进行表面氟化处理,得到蘑菇状超疏水-超疏油的PDMS微纳复合阵列。
优选地,步骤S1中所述浓硫酸/过氧化氢混合液中浓硫酸和过氧化氢的体积比为1:(1~1.2);所述氢氟酸的浓度为1.5~2.5wt%,所述氢氟酸的清洗时间为8~12min;所述去离子水的清洗时间为1~2min。
所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列在催化、防水防油或生物医疗领域中的应用。
本发明PDMS表面疏水性能的大幅改善源于微米级突起,这些微型突起之间充满了空气,而水滴尺寸远大于这些微型突起,因此,在PDMS表面上的水滴并不能完全填充到突起中间,在水滴与PDMS之间会含有一部分空气。根据Cassie-baxter模型原理,这种复合式的接触方式增加了PDMS表面的疏水性能。测试结果表明,通过对低表面自由能的PDMS表面进行微型结构修饰,增加其表面的粗糙度能显著增加PDMS表面的静态接触角,改善其疏水性能。
本发明结构实现超疏水超疏油功能的原理是:液体在接触该微纳结构粗糙表面时,会湿润顶部表面,并沿着垂直悬臂的侧壁向下流动;然后液体会在垂直悬臂的底部停止前进,由于表面张力的方向转向上方,从而使得该蘑菇状微纳结构具有超双疏水疏油的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明的蘑菇状PDMS微纳复合阵列的液滴的接触角为150~160°,滚动角为5~10°,该微纳复合阵列表现为超疏水和超疏油的双重性质。
2.本发明用PDMS倒模一次获得的结构是微米-纳米复合并且具有双超疏水超疏油的润湿性质。
3.本分明是采用化学气相沉积、反应离子刻蚀、金属辅助化学刻蚀等化学方法加工。以聚二甲基硅氧烷(PDMS)作为倒模材料,与以往的金属及硅等刚性材料相比,PDMS具有很好的柔韧性,可以任意对折弯曲,使得基于PDMS的仿生疏水表面可以应用在非规则形状的设备或器件上。
附图说明
图1为本发明蘑菇状超疏水-超疏油PDMS微纳复合阵列的加工工艺流程示意。
图2为实施例1中蘑菇状超疏水-超疏油PDMS微纳复合阵列的加工流程示意图。
图3为本发明蘑菇状超疏水-超疏油PDMS微纳复合阵列示意图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
图1为本发明蘑菇状超疏水-超疏油PDMS微纳复合阵列的加工工艺流程示意,具体步骤如下:
1.依次用99.7wt%的无水乙醇、体积比为1:1的96wt%的浓硫酸与30wt%的过氧化氢混合溶液、在100~120℃的1.5wt%的氢氟酸溶液、去离子水对硅片101进行超声清洗8min,再用氮气吹干;
2.利用化学气相沉积(CVD)法在硅片101表面(如图2中(a)所示)生长一层厚度为T1=180nm的氮化硅层201(如图2中(b)所示);
3.在氮化硅层201表面旋涂一层厚度为T2=100nm的光刻胶301(如图2中(c)所示),通过加工有特定图形的掩模板,通过紫外线对氮化硅层表面的光刻胶进行曝光,再用显影液四甲基氢氧化铵(TMAH)进行显影;
4.氮化硅层的显影区域在CHF3/O2气体氛围下进行反应离子刻蚀深度为8μm,利用反应离子刻蚀方法将没有光刻胶覆盖的部分氮化硅层去除(如图2中(d)所示);
5.蒸镀贵金属层(金、银或铂)401作为催化剂(如图2中(e)所示),通过各向异性的金属辅助化学刻蚀方法,在硅片上按照特定图形,加工出一定深度h,得到图2中(f)的结构;去除贵金属催化剂401,然后用刻蚀液(刻蚀液为:50wt%的HF:60wt%的HNO3:98wt%的CH3COOH的体积比为1:18:8)进行各向同性刻蚀得到图2中(g)的结构,反应8~12min后,将硅片101取出清洗干净;
6.在硅片表面涂覆厚度为80μm的PDMS层501(如图2中(h)所示),在真空干燥箱中除气泡并在150℃加加热固化50min,待PDMS固化后取出;
7.用1mol/L的KOH碱溶解硅片,得到以硅片作为牺牲模板的蘑菇状PDMS微结构阵列,再利用F2/N2混合气体(体积比(1~2):(2~3),经过在线或离线工艺对微结构阵列进行表面氟化改性处理,得到蘑菇状超疏水-超疏油PDMS微纳复合阵列601(如图2中(i)所示)。
性能测试:用接触角测量仪测得,该长有微纳复合柱阵列结构的PDMS表面的液滴(水滴和油滴)接触角均大于160°,滚动角小于10°,具有很高的超疏水-超疏油性质。
图2为本发明蘑菇状超疏水-超疏油PDMS微纳复合阵列的加工流程示意图。结合图2可知,其中,101为硅衬底;201为氮化硅层;301为光刻胶;401为贵金属层;501为PDMS;601为表面经氟化的PDMS。501经表面氟化得到601,601蘑菇状PDMS表面的须状为微纳复合阵列,这些微纳复合阵列是将301、201、101都溶解后得到。可以根据设计调整沟道尺寸考虑是否增加金属辅助化学刻蚀。通过改变刻蚀的深度以改变后续T型悬臂微结构的形状,进而调节疏水疏油的性能。
图3为本发明蘑菇状超疏水-超疏油PDMS微纳复合阵列示意图。该蘑菇状超疏水-超疏油PDMS微纳复合阵列为底柱及其上面的半球体。其中,底柱直径D,底柱高度H,半球半径R,相邻立柱中心到中心的距离,即节距P。在本发明的实施例中加工出的蘑菇状双超疏水超疏油微纳结构几何参数如下:底柱直径D=10μm,底柱高度H=70μm,半球半径R=10μm,节距P=100μm。该结构实现超疏水超疏油功能的原理是:液体在接触该微纳结构粗糙表面时,会湿润顶部表面,并沿着垂直悬臂的侧壁向下流动;然后液体会在垂直悬臂的底部停止前进,由于表面张力的方向转向上方,从而使得该蘑菇状微纳结构具有超双疏水疏油的性质。
实施例2
与实施例1不同的在于:步骤1中所述浓硫酸/过氧化氢混合液中浓硫酸和过氧化氢的体积比为1:1.2;所述氢氟酸的浓度为2.5wt%,所述氢氟酸的清洗时间为12min。步骤2中所述氮化硅层的厚度为220nm;所述光刻胶的厚度为10nm;步骤3中所述显影液为乙酸正丁酯;步骤4中所述反应离子刻蚀的深度为5μm;步骤5中所述刻蚀液为:50wt%的HF:60wt%的HNO3:98wt%的CH3COOH的体积比为3:27:11;步骤6中所述PDMS层的厚度为90μm;固化温度为180℃,固化的时间为30min;步骤7中所述碱溶液为1.5mol/L的NaOH;所述F2/N2混合气体中F2/N2体积比1:3。所述氟化改性处理采用氟化试剂表面化学改性法或等离子体氟化法。
所述PDMS微纳复合阵列的底柱高度为氮化硅层的厚度与光刻胶层的厚度之和;所述底柱高度为H=60μm;所述微纳复合阵列的底柱直径为掩膜版中单个图案的直径D=15μm;节距P为掩膜版中各图形的中心距为90μm;半球体的半径R为各向同性刻蚀的速率与时间的乘积,所述半球半径R为12μmR;所述蘑菇状超疏水-超疏油PDMS微纳复合阵列的液滴接触角为150~160°,滚动角为5~10°。
本发明制得的PDMS微纳复合阵列是一种生长在材料表面上的微结构,由于材料表面长了这个微结构才使得材料具有超疏水-超疏油的性质,形成了一种新型表面材料。超疏水-超疏油表面材料在有潜在的应用。例如,用于石油管道,能够有效降低石油和管道的摩擦力;用于微型水上交通工具,能够增强交通工具在油污污染水域的负载能力;这种表面还可以用于制作拒水拒油家具布等。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述PDMS微纳复合阵列是先利用化学气相沉积法在预处理的硅片表面生长氮化硅层;然后在氮化硅层的表面旋涂光刻胶,用所需图形的掩模板覆盖在光刻胶上,通过紫外线对涂覆在氮化硅层的表面的光刻胶进行曝光,再用显影液进行显影,氮化硅层的显影区域在CHF3/O2气体氛围下进行反应离子刻蚀;用反应离子刻蚀法去除未被光刻胶覆盖的部分氮化硅层;通过各向异性的金属辅助化学刻蚀法将蒸镀贵金属层作为催化剂,在硅片上按照所需图形进行刻蚀以去除贵金属催化剂;然后用刻蚀液进行各向同性刻蚀,将硅片取出清洗干净,在该硅片表面涂覆PDMS层,在真空中除气泡并在150~180℃加热固化,待PDMS固化后取出;用碱溶液溶解硅片,得到以硅片作为牺牲模板的蘑菇状PDMS微结构阵列,再对微结构阵列进行表面氟化处理制得。
2.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述氮化硅层的厚度为180~220nm;所述光刻胶的厚度为10~10000nm;所述反应离子刻蚀的深度为5~8μm;所述PDMS层的厚度为80~90μm。
3.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述显影液为四甲基氢氧化铵、二甲苯或乙酸正丁酯。
4.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述贵金属为金、银、铂;所述刻蚀液为:50wt%的HF:60wt%的HNO3:98wt%的CH3COOH的体积比为(1~3):(18~27):(8~11)。
5.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述固化的时间为30~50min;所述真空的压力为110~130Pa。
6.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述碱溶液为KOH或NaOH;所述碱溶液的浓度为1~1.5mol/L。
7.根据权利要求1所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列,其特征在于,所述PDMS微纳复合阵列的底柱高度为氮化硅层的厚度与光刻胶层的厚度之和;所述底柱高度为H=60~70μm;所述微纳复合阵列的底柱直径为掩膜版中单个图案的直径D=10~15μm;节距P为掩膜版中各图形的中心距为90~100μm;半球体的半径R为各向同性刻蚀的速率与时间的乘积,所述半球半径R为10~12μmR;所述蘑菇状超疏水-超疏油PDMS微纳复合阵列的液滴接触角为150~160°,滚动角为5~10°。
8.一种根据权利要求1-7任一项所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列的制备方法,其特征在于,包括如下具体步骤:
S1.依次用无水乙醇、浓硫酸/过氧化氢溶液,在100~120℃的氢氟酸、去离子水对硅片进行超声清洗,再用氮气吹干;
S2.利用化学气相沉积法在硅片表面生长氮化硅层;
S3.在氮化硅层的表面旋涂光刻胶,然后用所需图形的掩模板覆盖在光刻胶上,通过紫外线对涂覆在氮化硅层的表面的光刻胶进行曝光,再用显影液进行显影,氮化硅层的显影区域在CHF3/O2气体氛围下进行反应离子刻蚀;用反应离子刻蚀法去除未被光刻胶覆盖的部分氮化硅层;
S4.通过各向异性的金属辅助化学刻蚀法,将蒸镀贵金属层作为催化剂,在硅片上按照所需图形进行刻蚀;去除贵金属催化剂,然后用刻蚀液进行各向同性刻蚀,将硅片取出清洗干净;
S5.在步骤S4处理的硅片表面涂覆PDMS层,在真空中除气泡并在150~180℃加热固化,待PDMS固化后取出;用碱溶液溶解硅片,得到以硅片作为牺牲模板的蘑菇状PDMS微结构阵列,再对微结构阵列进行表面氟化处理,得到蘑菇状超疏水-超疏油的PDMS微纳复合阵列。
9.根据权利要求8所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列的制备方法,其特征在于,步骤S1中所述浓硫酸/过氧化氢混合液中浓硫酸和过氧化氢的体积比为1:(1~1.2);所述氢氟酸的浓度为1.5~2.5wt%,所述氢氟酸的清洗时间为8~12min;所述去离子水的清洗时间为1~2min。
10.权利要求1-7任一项所述的蘑菇状超疏水-超疏油的PDMS微纳复合阵列在催化、防水防油或生物医疗领域中的应用。
CN201911165378.6A 2019-11-25 2019-11-25 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用 Pending CN111115548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911165378.6A CN111115548A (zh) 2019-11-25 2019-11-25 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911165378.6A CN111115548A (zh) 2019-11-25 2019-11-25 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111115548A true CN111115548A (zh) 2020-05-08

Family

ID=70496638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911165378.6A Pending CN111115548A (zh) 2019-11-25 2019-11-25 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111115548A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028010A (zh) * 2020-08-31 2020-12-04 华中科技大学 一种大面积高耐用性超疏水表面结构的制备方法及其产品
CN112079328A (zh) * 2020-08-20 2020-12-15 广东工业大学 一种t型悬臂梁微结构及其加工方法和应用
CN112266722A (zh) * 2020-10-29 2021-01-26 南通大学 一种具有减阻功能的超疏水航行体及其制备方法
CN112744783A (zh) * 2021-01-06 2021-05-04 南京大学 一种微纳复合结构的超疏水超疏油表面的制备方法
CN113651289A (zh) * 2021-07-07 2021-11-16 北京大学 吸盘结构成型模具的制备方法和吸盘结构的制备方法
CN114076196A (zh) * 2020-08-21 2022-02-22 中车时代电动汽车股份有限公司 一种用于电机的仿生油封
CN115073017A (zh) * 2022-06-13 2022-09-20 南京航空航天大学 一种具有凹角结构的双疏表面及其制备方法
CN115505926A (zh) * 2022-09-30 2022-12-23 西安交通大学 具有强稳定性的超滑表面复合涂层及制备方法、涂层结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229667A1 (en) * 2008-08-18 2011-09-22 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
CN102427083A (zh) * 2011-11-10 2012-04-25 中山大学 一种疏水疏油表面微结构及其制备方法
CN103219067A (zh) * 2012-12-22 2013-07-24 西安交通大学 一种基于碳纳米管阵列的各向异性导电膜及其制备方法
CN105220185A (zh) * 2015-10-29 2016-01-06 广东工业大学 一种超疏油微柱阵列表面织构的制备方法
CN105460885A (zh) * 2014-09-09 2016-04-06 中国科学院苏州纳米技术与纳米仿生研究所 一种仿生壁虎脚刚毛阵列的制作方法
WO2018226652A1 (en) * 2017-06-05 2018-12-13 Worcester Polytechnic Institute Superhydrophobic coatings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229667A1 (en) * 2008-08-18 2011-09-22 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
CN102427083A (zh) * 2011-11-10 2012-04-25 中山大学 一种疏水疏油表面微结构及其制备方法
CN103219067A (zh) * 2012-12-22 2013-07-24 西安交通大学 一种基于碳纳米管阵列的各向异性导电膜及其制备方法
CN105460885A (zh) * 2014-09-09 2016-04-06 中国科学院苏州纳米技术与纳米仿生研究所 一种仿生壁虎脚刚毛阵列的制作方法
CN105220185A (zh) * 2015-10-29 2016-01-06 广东工业大学 一种超疏油微柱阵列表面织构的制备方法
WO2018226652A1 (en) * 2017-06-05 2018-12-13 Worcester Polytechnic Institute Superhydrophobic coatings

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
代学玉 等: "超疏水-超疏油表面的研究进展", 《山东化工》 *
白雪花 等: "超疏水/超疏油表面制备方法研究进展", 《现代经济信息》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079328A (zh) * 2020-08-20 2020-12-15 广东工业大学 一种t型悬臂梁微结构及其加工方法和应用
CN114076196A (zh) * 2020-08-21 2022-02-22 中车时代电动汽车股份有限公司 一种用于电机的仿生油封
CN112028010A (zh) * 2020-08-31 2020-12-04 华中科技大学 一种大面积高耐用性超疏水表面结构的制备方法及其产品
CN112028010B (zh) * 2020-08-31 2023-08-25 华中科技大学 一种大面积高耐用性超疏水表面结构的制备方法及其产品
CN112266722A (zh) * 2020-10-29 2021-01-26 南通大学 一种具有减阻功能的超疏水航行体及其制备方法
CN112744783A (zh) * 2021-01-06 2021-05-04 南京大学 一种微纳复合结构的超疏水超疏油表面的制备方法
CN112744783B (zh) * 2021-01-06 2024-04-09 南京大学 一种微纳复合结构的超疏水超疏油表面的制备方法
CN113651289A (zh) * 2021-07-07 2021-11-16 北京大学 吸盘结构成型模具的制备方法和吸盘结构的制备方法
CN113651289B (zh) * 2021-07-07 2024-06-04 北京大学 吸盘结构成型模具的制备方法和吸盘结构的制备方法
CN115073017A (zh) * 2022-06-13 2022-09-20 南京航空航天大学 一种具有凹角结构的双疏表面及其制备方法
CN115505926A (zh) * 2022-09-30 2022-12-23 西安交通大学 具有强稳定性的超滑表面复合涂层及制备方法、涂层结构

Similar Documents

Publication Publication Date Title
CN111115548A (zh) 一种蘑菇状超疏水-超疏油pdms微纳复合阵列及其制备方法和应用
Zuo et al. Micro‐/nanostructured interface for liquid manipulation and its applications
Kim et al. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings
CN102427083A (zh) 一种疏水疏油表面微结构及其制备方法
Dorrer et al. Mimicking the Stenocara Beetle Dewetting of Drops from a Patterned Superhydrophobic Surface
CN102167280B (zh) 一种超疏水硅微纳复合结构及其制备方法
US7632417B2 (en) Method for forming nanostructure having high aspect ratio and method for forming nanopattern using the same
KR100949374B1 (ko) 극소수성 표면 가공방법 및 이 방법으로 제조된 극소수성표면 구조물을 갖는 고체 기재
US20160207083A1 (en) Liquid-repellent surfaces made of any materials
Sharma et al. Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport
CN107497301A (zh) 一种双重仿生构筑膜蒸馏用超疏水膜的方法
CN112744783B (zh) 一种微纳复合结构的超疏水超疏油表面的制备方法
Bisetto et al. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis
CN103626119A (zh) 一种纳米金属球碗阵列结构的制备方法
Zheng et al. Salvinia-effect-inspired “sticky” superhydrophobic surfaces by meniscus-confined electrodeposition
Pal et al. Silicon micromachining based on surfactant-added tetramethyl ammonium hydroxide: etching mechanism and advanced applications
CN103231518A (zh) 一种聚二甲基硅氧烷阵列微孔薄膜制备方法
Wang et al. Bioinspired ribbed hair arrays with robust superhydrophobicity fabricated by micro/nanosphere lithography and plasma etching
Mao-Gang et al. Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure
US10503063B2 (en) Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
CN103157525B (zh) 基于硅纳米柱阵列的微流体单向阀门器件的制备方法
CN106517813A (zh) 疏油疏水防雾玻璃及其涂层的制备方法
CN111644067A (zh) 一种纳米微柱超双疏复合膜的制备方法
Aura et al. Porous inorganic–organic hybrid material by oxygen plasma treatment
KR101374095B1 (ko) 초발수 및 초발유성 표면 구현을 위한 나노 구조물 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200508