CN111112755B - 一种变传动比齿条插齿力的预测方法 - Google Patents

一种变传动比齿条插齿力的预测方法 Download PDF

Info

Publication number
CN111112755B
CN111112755B CN201911267097.1A CN201911267097A CN111112755B CN 111112755 B CN111112755 B CN 111112755B CN 201911267097 A CN201911267097 A CN 201911267097A CN 111112755 B CN111112755 B CN 111112755B
Authority
CN
China
Prior art keywords
coordinate system
rack
cutter
cutting
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911267097.1A
Other languages
English (en)
Other versions
CN111112755A (zh
Inventor
韩星会
华林
徐曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201911267097.1A priority Critical patent/CN111112755B/zh
Publication of CN111112755A publication Critical patent/CN111112755A/zh
Application granted granted Critical
Publication of CN111112755B publication Critical patent/CN111112755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/14Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having the same profile as a tooth or teeth of a rack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种变传动比齿条插齿力的预测方法,包括以下步骤:S1、建立刀具轮齿模型并离散化,同时在工件坐标系中建立被加工齿条模型;S2、计算齿条离散点到插齿刀中心的极角和极径;S3、筛选出该离散点为被切除点,所有筛选离散点的数量即为切削面积的大小a;S4、判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系;S5、在被加工齿条被加工表面上同一位置,筛选出该离散点,所有筛选离散点的数量即为切触长度的大小b;S6、将切削面积a和切触长度b代入金属切削力模型,完成变传动比齿条插齿加工各向插齿力的预测计算。本发明提出了一种新的切削面积和切触长度的精确计算方法,实现了对变传动比齿条插齿力进行准确预测。

Description

一种变传动比齿条插齿力的预测方法
技术领域
本发明属于插齿加工工艺技术领域,具体涉及一种变传动比齿条插齿力的预测方法。
背景技术
变传动比齿条作为机械式变传动比转向器的实现行驶过程中平衡转向轻便性和转向灵敏性的关键零部件,研究变传动比齿条的插齿加工过程中切削力的变化对于控制插齿加工过程稳定性,提高加工精度具有重要意义。由于需要实现变化的传动比,变传动比齿条在沿长度方向上具有复杂的变化的非标准齿形,导致变传动比齿条插齿加工过程中切削不均匀,容易产生切削振动,对加工成型的齿面精度有很大影响,且现有的关于插齿力预测的研究主要集中在标准圆柱齿轮,切削过程较为均匀稳定,而关于切削不均匀的变传动比齿条的插齿加工过程插齿力的预测相对较少,加上每一步切削时切削面积和切触长度均不同,导致变传动比齿条插齿加工过程中插齿力预测难度较大,因此,基于变传动比齿条插齿加工过程中刀具和工件的运动关系,提出一种新的精确高效地算法对切削面积和切触长度进行计算,进而实现插齿力的预测具有重要意义。目前还没有关于基于插齿加工过程的变传动比齿条的插齿力预测的报道。
发明内容
本发明的目的在于提供一种变传动比齿条插齿力的预测方法,它基于变传动比齿条的实际插齿加工过程,建立与之对应的刀具的包络模型,通过建立变传动比齿条的插齿加工精确数学模型,提出了一种新的切削面积和切触长度的精确计算算法,并在此基础上实现对插齿力进行准确预测,具有计算精度高、效率高等优点。
本发明解决其技术问题所采用的技术方案是:提供一种变传动比齿条插齿力的预测方法,包括以下步骤:
S1、根据插齿刀参数在插齿刀坐标系中建立刀具轮齿模型并按一定精度离散化,同时在工件坐标系中建立被加工齿条模型并按一定精度离散化,插齿刀坐标系为插齿刀具随动坐标系,工件坐标系为被加工齿条随动坐标系;
S2、固定插齿刀坐标系,令工件坐标系绕着插齿刀坐标系转动的同时沿着切线方向平移运动,将所有被加工齿条离散点坐标变换至插齿刀坐标系中,计算所有被加工齿条离散点到插齿刀中心的极角和极径;
S3、在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a;
S4、固定工件坐标系,令插齿刀坐标系自转的同时沿着被加工齿条长度方向平移运动,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系;
S5、在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b;
S6、将切削面积a和切触长度b代入以下模型:切削方向Ft=aKtc+bKte,进给方向Ff=aKfc+bKfe,径向方向Fr=aKrc+bKre中,完成变传动比齿条插齿加工各向插齿力的预测计算。
在上述方案中,步骤S1中,在插齿刀坐标系中根据刀具参数进行建模并按一定精度离散化,所有插齿刀离散点存储于T=[xj yj 0]中,在工件坐标系中对被加工齿条进行建模并按一定精度离散化,所有被加工齿条离散点存储于N=[xi yi 0]中,变传动比齿条的初始离散模型为长为L宽为D的矩形。每一步切削完成后,变传动比齿条模型通过去除切屑部分完成更新。插齿刀坐标系为OT-XTYT,工件坐标系为OW-XWYW
在上述方案中,步骤S2中,固定插齿刀坐标系OT-XTYT,令工件坐标系OW-XWYW绕着插齿刀坐标系转动的同时沿着切线方向平移运动,同时引入以插齿刀节圆和被加工齿条节曲线交点(即节点)为原点的辅助坐标系OA-XAYA,且XA轴方向平行于插齿刀节圆切线方向,YA轴方向沿着插齿刀节圆法向方向反方向。辅助坐标系OA-XAYA相对于插齿刀坐标系OT-XTYT旋转角为
Figure GDA0002742460030000021
工件坐标系OW-XWYW相对于辅助坐标系OA-XAYA平移距离为s。插齿刀坐标系OT-XTYT到辅助坐标系OA-XAYA的坐标变换矩阵为MT-A″,辅助坐标系OA-XAYA到工件坐标系OW-XWYW的坐标变换矩阵为MA-W″,则从插齿刀坐标系OT-XTYT到工件坐标系OW-XWYW的坐标变换矩阵MT-W″可以由以下公式计算获得:
Figure GDA0002742460030000022
其中,r为插齿刀中心到节点节圆半径,可由以下公式计算获得:
Figure GDA0002742460030000031
Figure GDA0002742460030000032
为变传动比函数。
MT-A″则可由以下公式计算获得:
Figure GDA0002742460030000033
且MA-W″可由以下公式计算获得:
Figure GDA0002742460030000034
在上述方案中,步骤S2中,将被加工齿条模型离散点由工件坐标系OW-XWYW坐标变换至插齿刀坐标系OT-XTYT中,得到各离散点在插齿刀坐标系的坐标,具体可由以下公式计算获得:
U=MT-W″N=[xk yk 0] (5)
在上述方案中,步骤S2中,计算所有被加工齿条离散点到插齿刀中心的极角和极径,极径p1为该离散点到插齿刀坐标系中心的距离,极角a1为极径到x轴的夹角。
在上述方案中,步骤S3中,在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a。筛选结果可由以下公式计算获得:
(1)当极角a1位于-β+iθ<a1<β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足rf<p1<ra,则可筛选出位于插齿刀轮齿齿廓齿顶圆对应扇形区域内离散点,其中,θ为单个齿对应圆周角,rf为齿根圆半径,ra为齿顶圆半径,β为单个齿齿顶圆对应圆周角的一半,由以下公式计算获得:
Figure GDA0002742460030000035
其中,θk0为分度圆展角,θka为齿顶圆展角,分别由以下公式计算获得:
Figure GDA0002742460030000036
Figure GDA0002742460030000037
(2)当极角a1位于β+iθ<a1<β+θk1+iθ和-β-θk1+iθ<a1<-β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足以下判据时,筛选出位于插齿刀轮齿齿廓渐开线对应扇形区域内离散点:
若满足β+iθ<a1<β+θk1+iθ,筛选一次,计算筛选出的各离散分布点的展角ck3=(i+0.25)θ+θk1-a1,若满足0<ck3<θk1,再筛选一次,则将展角ck3代入渐开线方程中解得对应展角的渐开线半径rc3,若满足rc3>p1,则筛选出右渐开线扇形区域内离散分布点。
若满足-β-θk1+iθ<a1<-β+iθ,筛选一次,计算筛选出的各离散点的展角ck4=a1-(i-0.25)θ+θk1,若满足0<ck4<θk1,再筛选一次,则将展角ck4代入渐开线方程中解得对应展角的渐开线半径rc4,若满足rc4>p1,则筛选出左渐开线扇形区域内离散点。
为了去除两次切削过程中重复切削的部分,在被加工齿条原有离散模型中去除上一步切削过程的切屑部分离散点,坐标变换至原工件坐标系中,进而更新被加工齿条模型。
在上述方案中,步骤S4中,固定工件坐标系OW-XWYW,令插齿刀坐标系OT-XTYT自转的同时沿着被加工齿条长度方向平移运动,同时引入以以插齿刀节圆和被加工齿条节曲线交点(即节点)为原点的辅助坐标系OA-XAYA,且XA轴方向平行于XW方向,YA轴方向平行于YW方向。辅助坐标系OA-XAYA相对于工件坐标系OW-XWYW沿XA方向平移距离为s,插齿刀坐标系OT-XTYT相对于辅助坐标系OA-XAYA沿YA方向平移距离为d,相对旋转角度为
Figure GDA0002742460030000041
从辅助坐标系OA-XAYA到插齿刀坐标系OT-XTYT到的坐标变换矩阵为MA-T′,从工件坐标系OW-XWYW到辅助坐标系OA-XAYA到的坐标变换矩阵为MW-A′,则从工件坐标系OW-XWYW到插齿刀坐标系OT-XTYT的坐标变换矩阵MW-T′可以由以下公式计算获得:
Figure GDA0002742460030000042
其中d=r+hk,r可由公式(2)计算获得,插齿刀法向进给量hk∈(h1,H),h1为初始进给量,H为总进给量,均根据切削条件设定。
MA-T′可由以下公式计算获得:
Figure GDA0002742460030000043
MW-A′可由以下公式计算获得:
Figure GDA0002742460030000044
将插齿刀具模型T=[xj yj 0]坐标变换至被加工齿条坐标系中,计算公式如下:
Q=MW-T′T=[xm ym 0] (12)。
在上述方案中,步骤S1中,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系,令P(x,y)为被加工齿条被加工表面上任意一点坐标,hk为第k次切削循环径向进给量,插齿刀离散点与被加工齿条被加工面的垂直位置关系可由以下公式判断:
n=ym-(y-(k-1)hk) (13)。
在上述方案中,步骤S5中,在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b。筛选过程如下:
设定筛选精度σ=0.001,存在离散点的坐标满足|x2-x|≤σ且n≤0,即该插齿刀离散点位于被加工齿条被加工面的内侧,可确定为切削接触点,在一次切削下,所有筛选离散点的数量即为切触长度的大小b。
在上述方案中,步骤S6中,将切削面积a和切触长度b代入以下模型:切削方向Ft=aKtc+bKte,进给方向Ff=aKfc+bKfe,径向方向Fr=aKrc+bKre中,完成变传动比齿条插齿加工各向插齿力的预测计算,其中,Ktc,Kfc,Krc为切向切削系数、进给切削系数、径向切削系数,Kte,Kfe,Kre为切向边缘系数、进给边缘系数、径向边缘系数。
实施本发明的变传动比齿条插齿力的预测方法,具有以下有益效果:
本发明基于变传动比齿条的实际插齿加工过程,从齿廓成型原理和包络原理出发,建立变传动比齿条的插齿加工精确数学模型,且基于相关计算模型,将插齿力的计算转化为对切削面积和切触长度的求解,利用插齿过程中刀具轴、工件轴及其他辅助轴的运动关系,基于数据离散原理和相应的判据,提出了一种新的切削面积和切触长度的精确计算算法。因此,只需要给出插齿刀参数、变传动比函数、切削条件,即可实现变传动比齿条插齿力的精确预测,具有计算精度高、效率高等优点。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为插齿刀加工变传动比齿条等距曲线的某一瞬时示意图;
图2为工件坐标系与插齿刀坐标系位置关系示意图;
图3为插齿刀切削齿条计算切削面积时第一步筛选点的示意图;
图4为插齿刀切削齿条计算切削面积时第二步筛选点的示意图;
图5为插齿刀切削齿条第二次径向进给筛选点的示意图;
图6为在插齿刀齿廓上分布均匀点集的模型图;
图7为插齿刀切削齿条计算切触长度时第一步筛选点的示意图;
图8为插齿刀切削齿条计算切触长度时第二次径向进给筛选点的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在此以一种变传动比齿条为例,利用上述方法预测出变传动比齿条插齿力。插齿刀的基本参数如表1所示:
表1插齿刀具基本参数
Figure GDA0002742460030000061
变传动比函数公式如下所示:
Figure GDA0002742460030000062
变传动比齿条的节曲线弧长计算公式为:
Figure GDA0002742460030000063
其中
Figure GDA0002742460030000064
为插齿刀具转角。
本发明变传动比齿条插齿加工切削力的预测方法,包括以下步骤:
S1、根据插齿刀参数在插齿刀坐标系中建立刀具轮齿模型并按一定精度离散化,同时在工件坐标系中建立被加工齿条模型并按一定精度离散化,插齿刀坐标系为插齿刀具随动坐标系,工件坐标系为被加工齿条随动坐标系;
S2、固定插齿刀坐标系,令工件坐标系绕着插齿刀坐标系转动的同时沿着切线方向平移运动,将所有被加工齿条离散点坐标变换至插齿刀坐标系中,计算所有被加工齿条离散点到插齿刀中心的极角和极径;
S3、在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a;
S4、固定工件坐标系,令插齿刀坐标系自转的同时沿着被加工齿条长度方向平移运动,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系;
S5、在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b;
S6、将切削面积a和切触长度b代入以下模型:切削方向Ft=aKtc+bKte,进给方向Ff=aKfc+bKfe,径向方向Fr=aKrc+bKre中,完成变传动比齿条插齿加工各向插齿力的预测计算。
上述实施方案步骤S1中,在插齿刀坐标系中根据刀具参数进行建模并按一定精度离散化,所有插齿刀离散点存储于T=[xj yj 0]中,在工件坐标系中对被加工齿条进行建模并按一定精度离散化,所有被加工齿条离散点存储于N=[xi yi 0]中,变传动比齿条的初始离散模型为长为L宽为D的矩形。每一步切削完成后,变传动比齿条模型通过去除切屑部分完成更新。插齿刀坐标系为OT-XTYT,工件坐标系为OW-XWYW
上述实施方案步骤S2中,固定插齿刀坐标系OT-XTYT,令工件坐标系OW-XWYW绕着插齿刀坐标系转动的同时沿着切线方向平移运动,同时引入以插齿刀节圆和被加工齿条节曲线交点(即节点)为原点的辅助坐标系OA-XAYA,且XA轴方向平行于插齿刀节圆切线方向,YA轴方向沿着插齿刀节圆法向方向反方向。辅助坐标系OA-XAYA相对于插齿刀坐标系OT-XTYT旋转角为
Figure GDA0002742460030000071
工件坐标系OW-XWYW相对于辅助坐标系OA-XAYA平移距离为s。插齿刀坐标系OT-XTYT到辅助坐标系OA-XAYA的坐标变换矩阵为MT-A″,辅助坐标系OA-XAYA到工件坐标系OW-XWYW的坐标变换矩阵为MA-W″,则从插齿刀坐标系OT-XTYT到工件坐标系OW-XWYW的坐标变换矩阵MT-W″可以由以下公式计算获得:
Figure GDA0002742460030000072
其中,r为插齿刀中心到节点节圆半径,可由以下公式计算获得:
Figure GDA0002742460030000073
Figure GDA0002742460030000074
为变传动比函数。
MT-A″则可由以下公式计算获得:
Figure GDA0002742460030000075
且MA-W″可由以下公式计算获得:
Figure GDA0002742460030000076
上述实施方案步骤S2中,将被加工齿条模型离散点由工件坐标系OW-XWYW坐标变换至插齿刀坐标系OT-XTYT中,得到各离散点在插齿刀坐标系的坐标,具体可由以下公式计算获得:
U=MT-W″N=[xk yk 0] (5)。
上述实施方案步骤S2中,计算所有被加工齿条离散点到插齿刀中心的极角和极径,极径p1为该离散点到插齿刀坐标系中心的距离,极角a1为极径到x轴的夹角。
上述实施方案步骤S3中,在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a。筛选结果可由以下公式计算获得:
(1)当极角a1位于-β+iθ<a1<β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足rf<p1<ra,则可筛选出位于插齿刀轮齿齿廓齿顶圆对应扇形区域内离散点,其中,θ为单个齿对应圆周角,rf为齿根圆半径,ra为齿顶圆半径,β为单个齿齿顶圆对应圆周角的一半,由以下公式计算获得:
Figure GDA0002742460030000081
其中,θk0为分度圆展角,θka为齿顶圆展角,分别由以下公式计算获得:
Figure GDA0002742460030000082
Figure GDA0002742460030000083
(2)当极角a1位于β+iθ<a1<β+θk1+iθ和-β-θk1+iθ<a1<-β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足以下判据时,筛选出位于插齿刀轮齿齿廓渐开线对应扇形区域内离散点:
若满足β+iθ<a1<β+θk1+iθ,筛选一次,计算筛选出的各离散分布点的展角ck3=(i+0.25)θ+θk1-a1,若满足0<ck3<θk1,再筛选一次,则将展角ck3代入渐开线方程中解得对应展角的渐开线半径rc3,若满足rc3>p1,则筛选出右渐开线扇形区域内离散分布点。
若满足-β-θk1+iθ<a1<-β+iθ,筛选一次,计算筛选出的各离散点的展角ck4=a1-(i-0.25)θ+θk1,若满足0<ck4<θk1,再筛选一次,则将展角ck4代入渐开线方程中解得对应展角的渐开线半径rc4,若满足rc4>p1,则筛选出左渐开线扇形区域内离散点。
为了去除两次切削过程中重复切削的部分,在被加工齿条原有离散模型中去除上一步切削过程的切屑部分离散点,坐标变换至原工件坐标系中,进而更新被加工齿条模型。
上述实施方案步骤S4中,固定工件坐标系OW-XWYW,令插齿刀坐标系OT-XTYT自转的同时沿着被加工齿条长度方向平移运动,同时引入以以插齿刀节圆和被加工齿条节曲线交点(即节点)为原点的辅助坐标系OA-XAYA,且XA轴方向平行于XW方向,YA轴方向平行于YW方向。辅助坐标系OA-XAYA相对于工件坐标系OW-XWYW沿XA方向平移距离为s,插齿刀坐标系OT-XTYT相对于辅助坐标系OA-XAYA沿YA方向平移距离为d,相对旋转角度为
Figure GDA0002742460030000084
从辅助坐标系OA-XAYA到插齿刀坐标系OT-XTYT到的坐标变换矩阵为MA-T′,从工件坐标系OW-XWYW到辅助坐标系OA-XAYA到的坐标变换矩阵为MW-A′,则从工件坐标系OW-XWYW到插齿刀坐标系OT-XTYT的坐标变换矩阵MW-T′可以由以下公式计算获得:
Figure GDA0002742460030000085
其中,d=r+hk,r可由公式(2)计算获得,插齿刀法向进给量hk∈(h1,H),h1为初始进给量,H为总进给量,H=4.5mm。
MA-T′可由以下公式计算获得:
Figure GDA0002742460030000091
MW-A′可由以下公式计算获得:
Figure GDA0002742460030000092
将插齿刀具模型T=[xj yj 0]坐标变换至被加工齿条坐标系中,计算公式如下:
Q=MW-T′T=[xm ym 0] (12)
上述实施方案步骤S4中,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系,令P(x,y)为被加工齿条被加工表面上任意一点坐标,hk为第k次切削循环径向进给量(hk=1.5,1.5,1.5),插齿刀离散点与被加工齿条被加工面的垂直位置关系可由以下公式判断:
n=ym-(y-(k-1)hk) (13)
上述实施方案步骤S5中,在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b。筛选过程如下:
设定筛选精度σ=0.001,存在离散点的坐标满足|x2-x|≤σ且n≤0,即该插齿刀离散点位于被加工齿条被加工面的内侧,可确定为切削接触点,在一次切削下,所有筛选离散点的数量即为切触长度的大小b。
上述实施方案步骤S6中,将切削面积a和切触长度b代入以下模型:切削方向Ft=aKtc+bKte,进给方向Ff=aKfc+bKfe,径向方向Fr=aKrc+bKre中,完成变传动比齿条插齿加工各向插齿力的预测计算,由于变传动比齿条插齿加工过程中插齿刀沿竖直方向向下切削,径向方向的切削力几乎可以忽略不计,而由于三分量测力仪测量结果显示为三坐标形式,切向切削系数、进给切削系数分别为Krc=21.42N/mm2,Kfc=18.32N/mm2,切向边缘系数、进给边缘系数分别为Kte=7.591N/mm,Kfe=8.22N/mm。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (7)

1.一种变传动比齿条插齿力的预测方法,其特征在于,包括以下步骤:
S1、根据插齿刀参数在插齿刀坐标系中建立刀具轮齿模型并离散化,同时在工件坐标系中建立被加工齿条模型并离散化,插齿刀坐标系为插齿刀具随动坐标系,工件坐标系为被加工齿条随动坐标系;
S2、固定插齿刀坐标系,令工件坐标系绕着插齿刀坐标系转动的同时沿着切线方向平移运动,将所有被加工齿条离散点坐标变换至插齿刀坐标系中,计算所有被加工齿条离散点到插齿刀中心的极角和极径;
S3、在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a;
S4、固定工件坐标系,令插齿刀坐标系自转的同时沿着被加工齿条长度方向平移运动,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系;
S5、在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b;
S6、将切削面积a和切触长度b代入以下模型:切削方向Ft=aKtc+bKte,进给方向Ff=aKfc+bKfe,径向方向Fr=aKrc+bKre中,完成变传动比齿条插齿加工各向插齿力的预测计算;,其中,Ktc为切向切削系数,Kfc为进给切削系数,Krc为径向切削系数,Kte为切向边缘系数,Kfe为进给边缘系数,Kre为径向边缘系数;
在所述步骤S1中,在插齿刀坐标系中根据刀具参数进行建模并按一定精度离散化,所有插齿刀离散点存储于T=[xj yj 0]中,在工件坐标系中对被加工齿条进行建模并按一定精度离散化,所有被加工齿条离散点存储于N=[xi yi 0]中,变传动比齿条的初始离散模型为长为L宽为D的矩形;每一步切削完成后,变传动比齿条模型通过去除切屑部分完成更新,插齿刀坐标系为OT-XTYT,工件坐标系为OW-XWYW
在所述步骤S2中,固定插齿刀坐标系OT-XTYT,令工件坐标系OW-XWYW绕着插齿刀坐标系转动的同时沿着切线方向平移运动,同时引入以插齿刀节圆和被加工齿条节曲线交点为原点的辅助坐标系OA-XAYA,且XA轴方向平行于插齿刀节圆切线方向,YA轴方向沿着插齿刀节圆法向方向反方向;辅助坐标系OA-XAYA相对于插齿刀坐标系OT-XTYT旋转角为
Figure FDA0002742460020000025
工件坐标系OW-XWYW相对于辅助坐标系OA-XAYA平移距离为s;插齿刀坐标系OT-XTYT到辅助坐标系OA-XAYA的坐标变换矩阵为MT-A″,辅助坐标系OA-XAYA到工件坐标系OW-XWYW的坐标变换矩阵为MA-W″,则从插齿刀坐标系OT-XTYT到工件坐标系OW-XWYW的坐标变换矩阵MT-W″由以下公式计算获得:
Figure FDA0002742460020000021
其中,r为插齿刀中心到节点节圆半径,由以下公式计算获得:
Figure FDA0002742460020000022
Figure FDA0002742460020000026
为变传动比函数;
MT-A″则由以下公式计算获得:
Figure FDA0002742460020000023
且MA-W″由以下公式计算获得:
Figure FDA0002742460020000024
2.根据权利要求1所述的变传动比齿条插齿力的预测方法,其特征在于,在所述步骤S2中,将被加工齿条模型离散点由工件坐标系OW-XWYW坐标变换至插齿刀坐标系OT-XTYT中,得到各离散点在插齿刀坐标系的坐标,具体由以下公式计算获得:
U=MT-W″N=[xk yk 0] (5)。
3.根据权利要求2所述的变传动比齿条插齿力的预测方法,其特征在于,步骤S2中计算所有被加工齿条离散点到插齿刀中心的极角和极径,极径p1为该离散点到插齿刀坐标系中心的距离,极角a1为极径到x轴的夹角。
4.根据权利要求3所述的变传动比齿条插齿力的预测方法,其特征在于,在所述步骤S3中,在同一极角位置,若被加工齿条离散点极径小于插齿刀齿廓上对应点极径,则筛选出该离散点为被切除点,在一次切削冲程下,所有筛选离散点的数量即为切削面积的大小a;筛选结果由以下公式计算获得:
(1)当极角a1位于-β+iθ<a1<β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足rf<p1<ra,则可筛选出位于插齿刀轮齿齿廓齿顶圆对应扇形区域内离散点;其中,θ为单个齿对应圆周角,rf为齿根圆半径,ra为齿顶圆半径,β为单个齿齿顶圆对应圆周角的一半,由以下公式计算获得:
Figure FDA0002742460020000031
其中,θk0为分度圆展角,θka为齿顶圆展角,分别由以下公式计算获得:
Figure FDA0002742460020000032
Figure FDA0002742460020000033
(2)当极角a1位于β+iθ<a1<β+θk1+iθ和-β-θk1+iθ<a1<-β+iθ范围内时,若在同一极角位置,极径p1与插齿刀齿廓点极径大小满足以下判据时,筛选出位于插齿刀轮齿齿廓渐开线对应扇形区域内离散点:
若满足β+iθ<a1<β+θk1+iθ,筛选一次,计算筛选出的各离散分布点的展角ck3=(i+0.25)θ+θk1-a1,若满足0<ck3<θk1,再筛选一次,则将展角ck3代入渐开线方程中解得对应展角的渐开线半径rc3,若满足rc3>p1,则筛选出右渐开线扇形区域内离散分布点;
若满足-β-θk1+iθ<a1<-β+iθ,筛选一次,计算筛选出的各离散点的展角ck4=a1-(i-0.25)θ+θk1,若满足0<ck4<θk1,再筛选一次,则将展角ck4代入渐开线方程中解得对应展角的渐开线半径rc4,若满足rc4>p1,则筛选出左渐开线扇形区域内离散点。
5.根据权利要求4所述的变传动比齿条插齿力的预测方法,其特征在于,在所述步骤S4中,固定工件坐标系OW-XWYW,令插齿刀坐标系OT-XTYT自转的同时沿着被加工齿条长度方向平移运动,同时引入以以插齿刀节圆和被加工齿条节曲线交点为原点的辅助坐标系OA-XAYA,且XA轴方向平行于XW方向,YA轴方向平行于YW方向;辅助坐标系OA-XAYA相对于工件坐标系OW-XWYW沿XA方向平移距离为s,插齿刀坐标系OT-XTYT相对于辅助坐标系OA-XAYA沿YA方向平移距离为d,相对旋转角度为
Figure FDA0002742460020000034
从辅助坐标系OA-XAYA到插齿刀坐标系OT-XTYT到的坐标变换矩阵为MA-T′,从工件坐标系OW-XWYW到辅助坐标系OA-XAYA到的坐标变换矩阵为MW-A′,则从工件坐标系OW-XWYW到插齿刀坐标系OT-XTYT的坐标变换矩阵MW-T′由以下公式计算获得:
Figure FDA0002742460020000041
其中,d=r+hk,r由公式(2)计算获得,插齿刀法向进给量hk∈(h1,H),h1为初始进给量,H为总进给量,均根据切削条件设定;
MA-T′由以下公式计算获得:
Figure FDA0002742460020000042
MW-A′由以下公式计算获得:
Figure FDA0002742460020000043
将插齿刀具模型
Figure FDA0002742460020000044
坐标变换至被加工齿条坐标系中,计算公式如下:
Q=MW-T′T=[xm ym 0] (12)。
6.根据权利要求5所述的变传动比齿条插齿力的预测方法,其特征在于,在所述步骤S4中,将所有插齿刀离散点坐标变换至工件坐标系中,判断所有插齿刀离散点与被加工齿条被加工面的垂直位置关系,令P(x,y)为被加工齿条被加工表面上任意一点坐标,hk为第k次切削循环径向进给量,插齿刀离散点与被加工齿条被加工面的垂直位置关系由以下公式判断:
n=ym-(y-(k-1)hk) (13)。
7.根据权利要求6所述的变传动比齿条插齿力的预测方法,其特征在于,在所述步骤S5中,在被加工齿条被加工表面上同一位置,若插齿刀离散点位于被加工齿条被加工面的内侧,则筛选出该离散点为插齿刀与被加工齿条的切削接触点,在一次切削冲程下,所有筛选离散点的数量即为切触长度的大小b;筛选过程如下:
设定筛选精度σ=0.001,存在离散点的坐标满足|x2-x|≤σ且n≤0,即该插齿刀离散点位于被加工齿条被加工面的内侧,可确定为切削接触点,在一次切削下,所有筛选离散点的数量即为切触长度的大小b。
CN201911267097.1A 2019-12-11 2019-12-11 一种变传动比齿条插齿力的预测方法 Active CN111112755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911267097.1A CN111112755B (zh) 2019-12-11 2019-12-11 一种变传动比齿条插齿力的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911267097.1A CN111112755B (zh) 2019-12-11 2019-12-11 一种变传动比齿条插齿力的预测方法

Publications (2)

Publication Number Publication Date
CN111112755A CN111112755A (zh) 2020-05-08
CN111112755B true CN111112755B (zh) 2021-01-26

Family

ID=70498731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911267097.1A Active CN111112755B (zh) 2019-12-11 2019-12-11 一种变传动比齿条插齿力的预测方法

Country Status (1)

Country Link
CN (1) CN111112755B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719472B (zh) * 2020-12-16 2022-03-01 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种智能圆形插齿刀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU499067A1 (ru) * 1972-05-26 1976-01-15 Центральный Научно-Исследовательский Институт Технологии Машиностроения Способ обработки зубьев цилиндрических колес
CN108629120A (zh) * 2018-05-08 2018-10-09 武汉理工大学 非圆柱齿轮插齿加工切削力的预测方法
CN108681631A (zh) * 2018-05-08 2018-10-19 武汉理工大学 圆柱齿轮插齿加工切削力预测的方法
CN109027186A (zh) * 2018-08-03 2018-12-18 武汉理工大学 转向器变速比齿条的离散化包络设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU499067A1 (ru) * 1972-05-26 1976-01-15 Центральный Научно-Исследовательский Институт Технологии Машиностроения Способ обработки зубьев цилиндрических колес
CN108629120A (zh) * 2018-05-08 2018-10-09 武汉理工大学 非圆柱齿轮插齿加工切削力的预测方法
CN108681631A (zh) * 2018-05-08 2018-10-19 武汉理工大学 圆柱齿轮插齿加工切削力预测的方法
CN109027186A (zh) * 2018-08-03 2018-12-18 武汉理工大学 转向器变速比齿条的离散化包络设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
变速比齿条离散化包络设计建模方法;代银;《机械传动》;20191130;第43卷(第11期);第69-72页 *

Also Published As

Publication number Publication date
CN111112755A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Tsay et al. Accurate 5-axis machining of twisted ruled surfaces
CN105414616B (zh) 螺旋铣孔过程中切削力预报和稳定性判别方法
CN110153514B (zh) 旋印电解加工过程中最小加工间隙及平均蚀除速率预测法
CN1392950A (zh) 移动装置的位置误差评价方法和根据其评价结果改善移动精度的方法
CN107942931B (zh) 一种正弦柱面超精密车削螺旋刀具轨迹生成方法
CN108563848B (zh) 一种平底螺旋立铣刀的铣削力建模方法
Katz et al. Virtual model of gear shaping—part i: Kinematics, cutter–workpiece engagement, and cutting forces
CN108681631B (zh) 圆柱齿轮插齿加工切削力预测的方法
CN104090528A (zh) 一种适用于摆线高速铣削的加工路径的方法
CN111112755B (zh) 一种变传动比齿条插齿力的预测方法
CN106312850A (zh) 螺杆磨削刀具的设计方法
Hou et al. The variable radial depth of cut in finishing machining of thin-walled blade based on the stable-state deformation field
CN108629120B (zh) 非圆柱齿轮插齿加工切削力的预测方法
Hrytsay et al. Improved method of gear hobbing computer aided simulation
CN112883505B (zh) 考虑刀具工件相对振动的超精密端面车削表面建模方法
CN110727246B (zh) 一种基于刀位文件的刀具与工件瞬时接触轮廓提取方法
CN111539084A (zh) 一种渐开线齿廓的非圆齿轮副三维实体建模方法
CN109341629B (zh) 滚刀安装轴交角误差对加工齿轮表面误差影响的分析方法
Zhang et al. Intelligent machining of complex aviation components
JPWO2006022336A1 (ja) 研ぎ直しピニオンカッタの刃形輪郭の評価方法
Ewald et al. Evolutionary-based optimization strategy in a hybrid manufactured process using LMD
CN113064383B (zh) 基于三维cad软件的圆柱齿轮滚切未变形切屑建模方法
CN104148397A (zh) 一种螺旋孔型斜轧轧辊柔性设计方法
CN110899782B (zh) 一种对开机匣外型面自适应铣削的加工方法
Radzevich A novel design of cylindrical hob for machining of precision involute gears

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant