CN111106618A - 一种新能源发电装备接入电力系统的谐波分析方法及装置 - Google Patents

一种新能源发电装备接入电力系统的谐波分析方法及装置 Download PDF

Info

Publication number
CN111106618A
CN111106618A CN201811252315.XA CN201811252315A CN111106618A CN 111106618 A CN111106618 A CN 111106618A CN 201811252315 A CN201811252315 A CN 201811252315A CN 111106618 A CN111106618 A CN 111106618A
Authority
CN
China
Prior art keywords
voltage source
frequency
new energy
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811252315.XA
Other languages
English (en)
Other versions
CN111106618B (zh
Inventor
程鹏
李庆
张金平
李建立
贺敬
朱琼锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201811252315.XA priority Critical patent/CN111106618B/zh
Publication of CN111106618A publication Critical patent/CN111106618A/zh
Application granted granted Critical
Publication of CN111106618B publication Critical patent/CN111106618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种新能源发电装备接入电力系统的谐波分析方法及装置,包括:分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数,包括独立电压源的瞬时电压值、受控电压源的瞬时电压值和阻抗的阻抗值;根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。本发明提供的技术方案利用新能源发电装备接入电力系统的接口变流器等效模型中获取的电量参数,有效地分析了新能源发电装备输出电流的谐波特性,解决了新能源发电单元并网谐波电流难以评估的实际问题。

Description

一种新能源发电装备接入电力系统的谐波分析方法及装置
技术领域
本发明涉及新能源发电领域,具体涉及一种新能源发电装备接入电力系统的谐波分析方法及装置。
背景技术
随着电力电子装备的大量采用,电力系统的谐波问题日益严重,特别是在电力电子装备大量集中应用的新能源发电领域,发电装备的谐波问题愈发严重。因此,如何准确分析双馈发电机定子侧的谐波特性就显得尤为重要。
针对新能源发电装备的谐波建模与分析,由于其多采用最大功率追踪控制而只向电力系统输入,最初将其等效为多频理想电流源叠加的形式,即根据外部测量的各次谐波含量在对应频率点处设置相应幅值的理想电流源,多个频率电流源输出相互叠加共同构成新能源发电装备输出电流,从而模拟其谐波电流输出特性。然而,随着电力电子装备应用规模的扩大以及研究的深入,有学者发现电力电子装备由于其闭环控制结构,不再是单纯电流源表现形式,而根据戴维南等效电路或诺顿等效电路,呈现电压源与阻抗串联、电流源与阻抗并联的复合形式。美国弗吉尼亚理工大学在两相同步旋转dq坐标系中提出了基于dq轴阻抗模型的变流器谐波等效模型。然而,在两相同步旋转dq坐标系中,d轴阻抗和q轴阻抗存在耦合,并且这两个变量物理意义模糊,难以与实际物理量相对应。美国伦斯理工学院利用谐波线性化方法,根据对称分量理论,推导了三相并网逆变器在正序、负序下的等效阻抗表达式,并从其时域模型出发,在复频域内得出一个纯等效阻抗模型,并且其中同频正负序的谐波阻抗完全相等,因此得到的二端口网络只含受控源,进一步等效成了更为简单的纯阻抗模型。这些研究成果多应用于新能源发电装备接入的振荡风险分析以及其控制策略的自优化,很少关注新能源发电装备的谐波行为。
因此,现有研究成果在刻画新能源发电装备输出电流谐波特性方面存在不足,无法准确描述新能源发电装备接入电力系统的谐波电流。
发明内容
为了解决新能源发电装备接入电力系统的谐波特性分析不足的问题,本发明提供一种新能源发电装备接入电力系统的谐波分析方法及装置。通过本方法,确定了新能源发电装备接入电力系统的接口变流器等效模型的电量参数,并根据这些电量参数确定了新能源发电装备接入电力系统的谐波电流,本方法有效实现了对新能源发电装备谐波电流的模拟评估,有利于保障新能源发电装备接入电力系统的安全可靠性。
本发明提供的一种新能源发电装备接入电力系统的谐波分析方法,其改进之处在于,包括:
分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
优选的,所述新能源发电装备接入电力系统的接口变流器等效模型为串联的独立电压源、受控电压源和阻抗;
所述电量参数包括:独立电压源的瞬时电压值、受控电压源的瞬时电压值和阻抗的阻抗值。
进一步的,所述独立电压源的瞬时电压值的确定过程包括:利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure BDA0001841966790000021
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure BDA0001841966790000022
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
进一步的,所述受控电压源的瞬时电压值的确定过程包括:利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure BDA0001841966790000023
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000031
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000032
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure BDA0001841966790000033
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
进一步的,所述接口变流器模型中阻抗的阻抗值Zg的获取过程包括:
于新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率,测量获得小值电压扰动信号和新能源装备输出的同频率电流反馈;
根据所述小值电压扰动信号和新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
优选的,所述根据所述电量参数确定新能源发电装备接入电力系统的谐波电流,包括:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
一种新能源发电装备接入电力系统的谐波分析装置,其改进之处在于,包括:
获取模块,用于分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
确定模块,用于根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
优选的,所述获取模块,包括:
等效单元,用于将所述新能源发电装备接入电力系统的接口变流器等效模型为串联的独立电压源、受控电压源和阻抗;
第一确定单元,用于利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure BDA0001841966790000041
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure BDA0001841966790000042
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
第二确定单元,用于利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure BDA0001841966790000043
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000044
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000045
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure BDA0001841966790000046
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
第三确定单元,用于根据新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率测量得到的小值电压扰动信号和测量得到的新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
优选的,所述确定模块,用于:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
与最接近的现有技术比,本发明提供的技术方案具有以下优异效果:
本发明提供了一种新能源发电装备接入电力系统的谐波分析方法及装置,从建立新能源发电装备接入电力系统的接口变流器等效模型的角度,探索根据接口变流器等效模型的电量参数进行新能源发电装备接入电力系统的谐波电流的分析计算方法,解决了新能源发电装备并网谐波电流难以评估的实际问题,有利于保证新能源发电装备接入电力系统的安全可靠性。
附图说明
图1是本发明提供的新能源发电装备接入电力系统的谐波分析方法的流程图;
图2是本发明实施例中新能源发电装备接入电力系统的接口变流器等效模型示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明。
实施例一
本发明实施例提供一种新能源发电装备接入电力系统的谐波分析方法,流程图如图1所示,包括以下步骤:
分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
具体的,新能源发电装备接入电力系统的接口变流器等效模型,如图2所示,为串联的独立电压源、受控电压源和阻抗;接口变流器等效模型的电量参数包括:独立电压源的瞬时电压值、受控电压源的瞬时电压值和阻抗的阻抗值。
独立电压源的瞬时电压值的确定过程包括:利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure BDA0001841966790000061
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure BDA0001841966790000062
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
受控电压源的瞬时电压值的确定过程包括:利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure BDA0001841966790000063
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000064
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000065
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure BDA0001841966790000066
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
接口变流器模型中阻抗的阻抗值Zg的获取过程包括:
于新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率,测量获得小值电压扰动信号和新能源装备输出的同频率电流反馈;
根据所述小值电压扰动信号和新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
具体的,根据独立电压源的瞬时电压值、受控电压源的瞬时电压值和阻抗的阻抗值确定新能源发电装备接入电力系统的谐波电流,包括:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
实施例二
本发明实施例还提供一种新能源发电装备接入电力系统的谐波分析装置,包括:
获取模块,用于分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
确定模块,用于根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
具体的,所述获取模块,包括:
等效单元,用于将所述新能源发电装备接入电力系统的接口变流器等效模型为串联的独立电压源、受控电压源和阻抗;
第一确定单元,用于利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure BDA0001841966790000071
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure BDA0001841966790000072
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
第二确定单元,用于利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure BDA0001841966790000081
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000082
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure BDA0001841966790000083
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure BDA0001841966790000084
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
第三确定单元,用于根据新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率测量得到的小值电压扰动信号和测量得到的新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
具体的,所述确定模块,用于:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (9)

1.一种新能源发电装备接入电力系统的谐波分析方法,其特征在于,所述方法包括:
分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
2.如权利要求1所述的方法,其特征在于,所述新能源发电装备接入电力系统的接口变流器等效模型为串联的独立电压源、受控电压源和阻抗;
所述电量参数包括:独立电压源的瞬时电压值、受控电压源的瞬时电压值和阻抗的阻抗值。
3.如权利要求2所述的方法,其特征在于,所述独立电压源的瞬时电压值的确定过程包括:利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure FDA0001841966780000011
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure FDA0001841966780000012
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
4.如权利要求2所述的方法,其特征在于,所述受控电压源的瞬时电压值的确定过程包括:利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure FDA0001841966780000013
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure FDA0001841966780000021
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure FDA0001841966780000022
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure FDA0001841966780000023
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
5.如权利要求2所述的方法,其特征在于,所述接口变流器模型中阻抗的阻抗值Zg的获取过程包括:
于新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率,测量获得小值电压扰动信号和新能源装备输出的同频率电流反馈;
根据所述小值电压扰动信号和新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
6.如权利要求1所述的方法,其特征在于,所述根据所述电量参数确定新能源发电装备接入电力系统的谐波电流,包括:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
7.一种新能源发电装备接入电力系统的谐波分析装置,其特征在于,所述装置包括:
获取模块,用于分别获取新能源发电装备接入电力系统的接口变流器等效模型的电量参数;
确定模块,用于根据所述电量参数确定新能源发电装备接入电力系统的谐波电流。
8.如权利要求7所述的装置,其特征在于,所述获取模块,包括:
等效单元,用于将所述新能源发电装备接入电力系统的接口变流器等效模型为串联的独立电压源、受控电压源和阻抗;
第一确定单元,用于利用独立电压源频率和各次谐波电压幅值uA的对应关系,结合三相正弦波发生原理获取所述独立电压源的瞬时电压值;
按下式计算所述独立电压源在频率f∈(0,+∞)范围内的各次谐波电压幅值uA
Figure FDA0001841966780000031
上式中,s为拉普拉斯算子,j为复数因子,ω0为工频角频率,icref为接口变流器输出电流指令值,ug为电网相电压幅值;
其中,
Figure FDA0001841966780000032
kp、ki分别为电流控制闭环参数的比例系数和积分系数,Td=(0.5~1.5)Ts,为控制系统延迟时间,Ts为控制系统采样时间。
第二确定单元,用于利用受控电压源的频率及其对应的受控电压源电压幅值uB的对应关系以及受控电压源的角频率及其对应的受控电压源电压幅值uC的对应关系,结合三相正弦波发生原理获取所述受控电压源的瞬时电压值;
当所述受控电压源的频率为(2k-1)ω0时,按下式计算所述受控电压源的频率对应的电压幅值uB
Figure FDA0001841966780000033
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure FDA0001841966780000034
当所述受控电压源的角频率为kωc±nωr,且k=6m,n=2m-1,m为正整数时,按下式计算所述受控电压源电压幅值uC
Figure FDA0001841966780000035
上式中,k为正整数,ω0为工频频率,Tdt为调制死区时间,fsw为调制开关频率,Udc为直流电压,
Figure FDA0001841966780000036
为输出电流初始相位角,t为时间,ωc为载波角频率,ωr为调制波角频率,Ji为第一类贝塞尔函数,下标i为阶数,m为调制度。
第三确定单元,用于根据新能源装备与电网连接点的切口处施加的1-1000Hz范围内的频率测量得到的小值电压扰动信号和测量得到的新能源装备输出的同频率电流反馈,按照欧姆定理获取所述接口变流器模型中阻抗的阻抗值。
9.如权利要求7所述的装置,其特征在于,所述确定模块,用于:
按下式计算所述新能源发电装备接入电力系统的谐波电流id
id=(u-uabc1-uabc2)/Zg
上式中,u为电力系统电压,uabc1为独立电压源的瞬时电压值,uabc2为受控电压源的瞬时电压值。
CN201811252315.XA 2018-10-25 2018-10-25 一种新能源发电装备接入电力系统的谐波分析方法及装置 Active CN111106618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811252315.XA CN111106618B (zh) 2018-10-25 2018-10-25 一种新能源发电装备接入电力系统的谐波分析方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811252315.XA CN111106618B (zh) 2018-10-25 2018-10-25 一种新能源发电装备接入电力系统的谐波分析方法及装置

Publications (2)

Publication Number Publication Date
CN111106618A true CN111106618A (zh) 2020-05-05
CN111106618B CN111106618B (zh) 2023-10-20

Family

ID=70418308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811252315.XA Active CN111106618B (zh) 2018-10-25 2018-10-25 一种新能源发电装备接入电力系统的谐波分析方法及装置

Country Status (1)

Country Link
CN (1) CN111106618B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167133A (zh) * 2021-12-09 2022-03-11 广东电网有限责任公司 一种输电网内新建站点的谐波电压评估方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610446A (zh) * 2015-10-27 2017-05-03 中国电力科学研究院 一种基于功率区间自适应划分的风电机组谐波电流确定方法
CN106655195A (zh) * 2017-01-03 2017-05-10 国网安徽省电力公司电力科学研究院 一种主动式配电网高频谐波潮流的计算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610446A (zh) * 2015-10-27 2017-05-03 中国电力科学研究院 一种基于功率区间自适应划分的风电机组谐波电流确定方法
CN106655195A (zh) * 2017-01-03 2017-05-10 国网安徽省电力公司电力科学研究院 一种主动式配电网高频谐波潮流的计算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167133A (zh) * 2021-12-09 2022-03-11 广东电网有限责任公司 一种输电网内新建站点的谐波电压评估方法和装置
CN114167133B (zh) * 2021-12-09 2023-06-16 广东电网有限责任公司 一种输电网内新建站点的谐波电压评估方法和装置

Also Published As

Publication number Publication date
CN111106618B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
Gong et al. Impact analysis and mitigation of synchronization dynamics for DQ impedance measurement
CN111239491B (zh) 采用实物控制器扰动注入的广义阻抗实时实验测量方法
CN105978039B (zh) 微网孤岛下低频率偏移的三相多逆变器并联运行控制方法
CN108155643B (zh) 一种基于滑模观测器的单相电网电压参数的鲁棒估计方法
Martí et al. Shifted Frequency Analysis (SFA) concepts for EMTP modelling and simulation of Power System Dynamics
CN106410858A (zh) 一种基于双dq坐标变换的软件数字锁相方法
Wen et al. Approximate algorithm for fast calculating voltage unbalance factor of three-phase power system
CN111416344A (zh) 基于延时移相正交信号发生器的锁相环建模方法及系统
CN104393812B (zh) 永磁同步电机的磁链系数辨识方法
Zhong et al. CDSC-based adaptive impedance measurement method for grid-tied inverter system under adverse grid voltage conditions
CN114113792A (zh) 一种基于三阶段插值的电网阻抗快速准确测量方法
CN111106618B (zh) 一种新能源发电装备接入电力系统的谐波分析方法及装置
CN111800055B (zh) 一种双凸极电机平均转矩确定方法和装置
CN112865104A (zh) 一种电网换相换流器交直流侧谐波计算方法
CN110596455B (zh) 一种工频电参数提取方法、系统及计算机可读存储介质
CN104393813B (zh) 永磁同步电机的直轴电感测量方法
CN108984847B (zh) 一种基于分频阻抗补偿的实时数字混合仿真接口方法
CN105514976A (zh) 大规模光伏发电系统的仿真方法
CN110350533B (zh) 计及新能源发电控制策略的改进仿射谐波潮流计算方法
CN104820129A (zh) 一种基波正序有功电流的检测方法
Miao et al. Multiobjective Coordinated Control Strategy for Grid-Connected Inverter under Unbalanced Voltage Conditions
CN106771507B (zh) 基于电压基准分相同步的无功电流快速检测方法
CN117233503B (zh) 一种构网型变流器惯量和阻尼测试方法及相关装置
CN110824247A (zh) 一种电力系统频率测量方法、母线电压校正方法及装置
CN111435141A (zh) 一种电网阻抗测量装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant