CN111091511B - 一种用于显微图像的广谱去噪方法 - Google Patents

一种用于显微图像的广谱去噪方法 Download PDF

Info

Publication number
CN111091511B
CN111091511B CN201911303478.0A CN201911303478A CN111091511B CN 111091511 B CN111091511 B CN 111091511B CN 201911303478 A CN201911303478 A CN 201911303478A CN 111091511 B CN111091511 B CN 111091511B
Authority
CN
China
Prior art keywords
matrix
raw
denoising
row
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911303478.0A
Other languages
English (en)
Other versions
CN111091511A (zh
Inventor
程涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201911303478.0A priority Critical patent/CN111091511B/zh
Priority to PCT/CN2019/127308 priority patent/WO2021120231A1/zh
Priority to US16/845,110 priority patent/US20200242740A1/en
Publication of CN111091511A publication Critical patent/CN111091511A/zh
Application granted granted Critical
Publication of CN111091511B publication Critical patent/CN111091511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于显微图像的广谱去噪方法,将子块图像矩阵首尾相接转换为一维向量yraw,对测量矩阵A进行迭代优化处理,得到优化矩阵Ao,基于测量矩阵A和优化矩阵Ao计算过渡矩阵T,并对过渡矩阵T进行奇异值分解,得到USVT,将SVTyraw中大于阈值的值压缩到阈值,小于该阈值的值不变,从而达到去噪的目的,最后对压制噪声后的y'SV左乘T‑1U得到去噪后的YWSD,再切去边缘重叠部分,逐行或逐列拼接成完整的去噪后的图像。本发明提供的用于显微图像的广谱去噪方法适用于各种随机噪声,且去噪性能不受荧光分子分布密度影响。

Description

一种用于显微图像的广谱去噪方法
技术领域
本发明涉及图像去噪技术领域,更具体的说是涉及一种用于显微图像的广谱去噪方法。
背景技术
EMCCD(electron-multiplying charge-coupled device)采集的随机光学重建显微(stochastic optical reconstruction microscopy,STORM)原始图像的噪声主要包含服从泊松分布的散粒噪声、服从高斯分布的读出噪声和背景。
提高时间和空间分辨率一直是STORM研究的重点。噪声的存在使得相机的有效像素大小必须约等于成像系统PSF的标准差,这样才能取得较好的单分子定位效果。在基于压缩感知(compressed sensing,CS)的STORM研究中,也延续了这一传统。如果采用高分辨相机(相机有效像素远小于PSF标准差),就会使每个相机像素接收的光子数过少,导致噪声增大,从而使定位精度急剧降低。各种单分子定位算法的抗噪能力有限,无法有效利用高分辨相机采集的原始图像。CS可实现高密度荧光分子原始图像的采集和重构,大大提高了时间和空间分辨率。
如能实现对原始图像各种噪声的有效去噪,那么就能进一步提高基于CS或其他理论的时间和空间分辨率。并能进一步降低相关仪器设备的制造普及成本和实验操作难度。
目前,在显微和图像处理领域已有很多优秀的高性能去噪算法,例如,适用于高斯噪声的BM3D,适用于泊松和高斯混合噪声的GAV(应用广义Anscombe方差稳定化变换去噪,MAKITALO M,FOI A.Optimal inversion of the generalized Anscombe transformationfor Poisson-Gaussian noise[J].IEEE transactions on image processing,2012,22(1):91-103.)等。
但是在已发表的各种荧光分子定位文献中却少见对原始图像在定位前做去噪处理的报道。尽管,光激活定位显微(photoactivated localization microscopy,PALM)等单分子定位算法,在定位前会对原始图像做一定的带通滤波(bandpass filter)处理。但是会使原始图像损失大量信息,不适用于CS的重构和计算。基于CS的STORM,原始图像都没有做去噪处理,直接使用减去基线的原始图像,无法充分发挥CS的潜力。原始图像的噪声以泊松噪声主导,混杂多种其他噪声。尽管EMCCD相机性能越来越好,但是读出噪声等依然存在。
因此,如何提供一种针对显微图像的更高效的去噪方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种用于显微图像的广谱去噪方法,更加高效,能够适用于各种随机噪声,且去噪性能不受荧光分子分布密度影响。
为了实现上述目的,本发明采用如下技术方案:
一种用于显微图像的广谱去噪方法,包括:
S1:逐行或逐列提取预先获取的原始图像的边缘重叠的子块图像,得到子块图像矩阵Yraw
S2:将子块图像矩阵Yraw逐行或逐列首尾相接得到一维向量yraw
S3:对预先获取的测量矩阵A进行迭代优化处理,得到优化矩阵Ao;其中,测量矩阵A由成像系统的点扩散函数确定;
S4:基于测量矩阵A和优化矩阵Ao计算过渡矩阵T,并对过渡矩阵T进行奇异值分解,得到USVT
S5:基于USVT和一维向量yraw计算得到一维向量ySV=SVTyraw
S6:将一维向量ySV中的各元素值和阈值cri进行比较,若大于阈值cri,则将元素值设置为cri,得到y'SV
S7:计算压制噪声后的一维向量yWSD=T-1(Uy'SV);
S8:将压制噪声后的一维向量yWSD根据二维图像矩阵Yraw的行列数进行变形,得到去噪后的二维图像矩阵YWSD
S9:基于去噪后的二维图像矩阵YWSD,切去边缘重叠部分,逐行或逐列拼接成完整的去噪后的图像。
优选的,步骤S3具体包括:
对测量矩阵A各行进行正交规范化处理,各列进行单位化处理,完成一次处理,得到新的测量矩阵,并基于新的测量矩阵进行N1次迭代处理,得到优化矩阵Ao
或者,
对测量矩阵A各行进行正交规范化处理,得到优化矩阵Ao
优选的,所述点扩散函数包括:高斯函数、贝塞尔函数、成像系统生成的点扩散函数或者由实验数据拟合得到的点扩散函数。
优选的,阈值cri为一维向量ySV中从第istar个到第itail个元素中绝对值的最大值;
其中,istar是小于等于M×star的最邻近的整数,itail是小于等于M×tail的最邻近的整数,M为测量矩阵A的行数,star为起始值,tail为终止值。
优选的,起始值star为0.7,终止值tail为1。
优选的,起始值star为0.9,终止值tail为0.95。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种用于显微图像的广谱去噪方法,将SVTyraw中大于阈值的值压缩到阈值,小于该阈值的值不变,从而达到去噪的目的,最后对压制噪声后的y'SV左乘T-1U得到去噪后的YWSD,再切去边缘重叠部分,逐行或逐列拼接成完整的去噪后的图像。
而且,本发明提供的用于显微图像的广谱去噪方法适用于各种随机噪声,且去噪性能不受荧光分子分布密度影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明提供的基于多种方法的模拟STORM原始图像的去噪效果对比分析;
图2为本发明提供的基于WSD的模拟STORM原始图像去噪分析的示意图;
图3为本发明提供的基于WSD和CVX的真实STORM原始图像的去噪和重构结果示意图;
图4为本发明提供的基于WSD和PALM算法的低密度荧光分子的真实STORM原始图像的去噪前后的重构结果示意图;
图5为本发明提供的一种用于显微图像的广谱去噪方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见附图5,本发明实施例公开了一种用于显微图像的广谱去噪方法,包括如下步骤:
S1:逐行或逐列提取预先获取的原始图像的边缘重叠的子块图像,得到子块图像矩阵Yraw
S2:将子块图像矩阵Yraw逐行或逐列首尾相接得到一维向量yraw
S3:对预先获取的测量矩阵A进行迭代优化处理,得到优化矩阵Ao;其中,测量矩阵A由成像系统的点扩散函数确定;
S4:基于测量矩阵A和优化矩阵Ao计算过渡矩阵T,并对过渡矩阵T进行奇异值分解,得到USVT
S5:基于USVT和一维向量yraw计算得到一维向量ySV=SVTyraw
S6:将一维向量ySV中的各元素值和阈值cri进行比较,若大于阈值cri,则将元素值设置为cri,得到y'SV
S7:计算压制噪声后的一维向量yWSD=T-1(Uy'SV);
S8:将压制噪声后的一维向量yWSD根据二维图像矩阵Yraw的行列数进行变形,得到去噪后的二维图像矩阵YWSD
S9:基于去噪后的二维图像矩阵YWSD,切去边缘重叠部分,逐行或逐列拼接成完整的去噪后的图像。
为了进一步优化上述技术方案,步骤S3具体包括:
对测量矩阵A各行进行正交规范化处理,各列进行单位化处理,完成一次处理,得到新的测量矩阵,并基于新的测量矩阵进行N1次迭代处理,得到优化矩阵Ao
或者,
对测量矩阵A各行进行正交规范化处理,得到优化矩阵Ao
为了进一步优化上述技术方案,所述点扩散函数包括:高斯函数、贝塞尔函数、成像系统生成的点扩散函数或者由实验数据拟合得到的点扩散函数。
为了进一步优化上述技术方案,阈值cri为一维向量ySV中从第istar个到第itail个元素中绝对值的最大值;
其中,istar是小于等于M×star的最邻近的整数,itail是小于等于M×tail的最邻近的整数,M为测量矩阵A的行数,star为起始值,tail为终止值。
为了进一步优化上述技术方案,起始值star为0.7,终止值tail为1。优选的,起始值star为0.9,终止值tail为0.95。
本发明针对显微图像开发了一种理论上适用于各种随机噪声的去噪方法,且去噪性能不受荧光分子分布密度的影响,称该算法为广谱去噪算法(Wide SpectrumDenoising,WSD)。各种随机噪声和信号天然就有正交性,WSD的理论基础就是利用两者的正交性。实验证明,WSD可用于从极低密度到超高密度荧光分子分布情景,能将原始图像SNR提高约7dB。原始图像去噪后,使用CS重构,仅需20帧原始图像,时间分辨率0.8614秒,达到亚秒级的时间分辨率。
为了说明本发明提供的用于显微图像的广谱去噪方法的有效性,用压缩感知(compressed sensing,CS)的CVX技术来进行验证。
图1中RAW表示模拟的原始图像;WSD表示模拟的原始图像用WSD去噪;GAV表示模拟的原始图像用GAV去噪;BM3D表示模拟的原始图像用BM3D去噪。在不同的分子密度和稀疏度(即每次模拟中的分子数,K=1,2,4,816,32,64,128)时,分别做500次模拟,计算得到信噪比平均值的所有曲线。x轴表示分子密度和信号稀疏K。y轴表示信噪比。模拟的平均光子数为每个分子3000个,背景为每个像素16个光子,带有泊松噪声。图(a)中的模拟不包含高斯噪声;图(b)的模拟包含方差为0.001的高斯噪声;图(c)的模拟包含方差为0.01的高斯噪声。由图1可见WSD位于所有曲线的最上方。
图2中从左到右是模拟的初始图像X、含噪原始图像Yraw、无噪原始图像Yini和WSD去噪后的原始图像YWSD。模拟的平均光子数为每分子3000个,背景为每像素16个光子,带有泊松噪声。图2(a)和图2(b)中包含4个分子,为基于压缩感知的包含4个分子的STORM图像的去噪分析;图2(c)和图2(d)中包含64个分子,为基于压缩感知的包含64个分子的STORM图像的去噪分析。图2(b)和图2(d)额外包含方差为0.01的高斯噪声。比较YWSD与Yini可见,YWSD与Yini非常相似。比例尺:274nm。经过对比发现,利用本发明提供的去噪方法能够有效提高信噪比,充分说明本发明提供的去噪方法适用于各种随机噪声,且去噪性能不受荧光分子分布密度的影响。
图3(a)中从左到右是1帧真实原始图像和WSD去噪后的原始图像。图3(b)中从左到右是20帧真实原始图像和WSD去噪后的原始图像采用CVX算法重构后的叠加效果图,比例尺:274nm。通过图3(b)左边的图是图3(a)左边的图的重构结果,图3(b)左边的图整个图都是黑色的,说明重构失败。图3(b)右边的图是图3(a)右边的图的重构结果,说明经过去噪的图可以实现重构,充分说明了本发明提供的去噪方法是有效的。
图4中从左到右是10000张真实原始图像和WSD去噪后的原始图像采用PALM算法重构后的叠加效果图,比例尺:274nm。通过对比发现,经过去噪后的重构效果更好。
此外,还需要说明的是,实验结果图中右下角的横线为比例尺,比例尺274nm。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种用于显微图像的广谱去噪方法,其特征在于,包括:
S1:逐行或逐列提取预先获取的原始图像的边缘重叠的子块图像,得到子块图像矩阵Yraw
S2:将子块图像矩阵Yraw逐行或逐列首尾相接得到一维向量yraw
S3:对预先获取的测量矩阵A进行迭代优化处理,得到优化矩阵Ao;其中,测量矩阵A由成像系统的点扩散函数确定;
S4:基于测量矩阵A和优化矩阵Ao计算过渡矩阵T,并对过渡矩阵T进行奇异值分解,得到USVT
S5:基于USVT和一维向量yraw计算得到一维向量ySV=SVTyraw
S6:将一维向量ySV中的各元素值和阈值cri进行比较,若大于阈值cri,则将元素值设置为cri,得到y'SV
S7:计算压制噪声后的一维向量yWSD=T-1(Uy'SV);
S8:将压制噪声后的一维向量yWSD根据二维图像矩阵Yraw的行列数进行变形,得到去噪后的二维图像矩阵YWSD
S9:基于去噪后的二维图像矩阵YWSD,切去边缘重叠部分,逐行或逐列拼接成完整的去噪后的图像。
2.根据权利要求1所述的一种用于显微图像的广谱去噪方法,其特征在于,步骤S3具体包括:
对测量矩阵A各行进行正交规范化处理,各列进行单位化处理,完成一次处理,得到新的测量矩阵,并基于新的测量矩阵进行N1次迭代处理,得到优化矩阵Ao
或者,
对测量矩阵A各行进行正交规范化处理,得到优化矩阵Ao
3.根据权利要求1或2所述的一种用于显微图像的广谱去噪方法,其特征在于,所述点扩散函数包括:高斯函数、贝塞尔函数、成像系统生成的点扩散函数或者由实验数据拟合得到的点扩散函数。
4.根据权利要求1所述的一种用于显微图像的广谱去噪方法,其特征在于,阈值cri为一维向量ySV中从第istar个到第itail个元素中绝对值的最大值;
其中,istar是小于等于M×star的最邻近的整数,itail是小于等于M×tail的最邻近的整数,M为测量矩阵A的行数,star为起始值,tail为终止值。
5.根据权利要求4所述的一种用于显微图像的广谱去噪方法,其特征在于,起始值star为0.7,终止值tail为1。
6.根据权利要求4所述的一种用于显微图像的广谱去噪方法,其特征在于,起始值star为0.9,终止值tail为0.95。
CN201911303478.0A 2019-12-17 2019-12-17 一种用于显微图像的广谱去噪方法 Active CN111091511B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911303478.0A CN111091511B (zh) 2019-12-17 2019-12-17 一种用于显微图像的广谱去噪方法
PCT/CN2019/127308 WO2021120231A1 (zh) 2019-12-17 2019-12-23 一种用于显微图像的广谱去噪方法
US16/845,110 US20200242740A1 (en) 2019-12-17 2020-04-10 Wide spectrum denoising method for microscopic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911303478.0A CN111091511B (zh) 2019-12-17 2019-12-17 一种用于显微图像的广谱去噪方法

Publications (2)

Publication Number Publication Date
CN111091511A CN111091511A (zh) 2020-05-01
CN111091511B true CN111091511B (zh) 2023-05-26

Family

ID=70395757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911303478.0A Active CN111091511B (zh) 2019-12-17 2019-12-17 一种用于显微图像的广谱去噪方法

Country Status (2)

Country Link
CN (1) CN111091511B (zh)
WO (1) WO2021120231A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644513A (en) * 1989-12-22 1997-07-01 Rudin; Leonid I. System incorporating feature-oriented signal enhancement using shock filters
CN102708543A (zh) * 2012-04-19 2012-10-03 北京工商大学 基于盲反卷积和稀疏表示的荧光显微图像复原方法和装置
CN103198483A (zh) * 2013-04-07 2013-07-10 西安电子科技大学 基于边缘和光谱反射率曲线的多时相遥感图像配准方法
CN103632341A (zh) * 2013-08-30 2014-03-12 王勇 一种塔式分解和字典学习的带噪cs-mri重构方法
CN106204466A (zh) * 2016-06-24 2016-12-07 南京理工大学 一种针对傅立叶叠层显微成像技术的自适应去噪方法
CN107680058A (zh) * 2017-09-28 2018-02-09 哈尔滨工业大学深圳研究生院 Ct图像去噪中基于格林空间的固定滞后平滑滤波方法
CN110097513A (zh) * 2019-04-16 2019-08-06 北京工业大学 一种基于脉冲型ToF深度图像去噪的方法
CN110161667A (zh) * 2019-07-12 2019-08-23 上海大学 一种基于压缩感知超分辨显微成像方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181508A (ja) * 2008-01-31 2009-08-13 Sharp Corp 画像処理装置、検査システム、画像処理方法、画像処理プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
CN101441764B (zh) * 2008-12-31 2011-01-26 中国资源卫星应用中心 一种mtfc遥感图像复原方法
CN101984461A (zh) * 2010-11-05 2011-03-09 西安电子科技大学 基于可操纵金字塔的统计模型图像去噪方法
CN102054267B (zh) * 2010-12-08 2012-07-25 电子科技大学 一种针对无源毫米波图像的增强处理方法
US9501865B2 (en) * 2013-09-13 2016-11-22 Nvidia Corporation System, method, and computer program product for determining a quantity of light received by an element of a scene
CN104778670A (zh) * 2015-04-17 2015-07-15 广西科技大学 一种基于多元统计模型的分形小波自适应图像去噪方法
CN105701781A (zh) * 2016-01-11 2016-06-22 浙江传媒学院 一种基于多分辨率奇异值分解的图像去噪方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644513A (en) * 1989-12-22 1997-07-01 Rudin; Leonid I. System incorporating feature-oriented signal enhancement using shock filters
CN102708543A (zh) * 2012-04-19 2012-10-03 北京工商大学 基于盲反卷积和稀疏表示的荧光显微图像复原方法和装置
CN103198483A (zh) * 2013-04-07 2013-07-10 西安电子科技大学 基于边缘和光谱反射率曲线的多时相遥感图像配准方法
CN103632341A (zh) * 2013-08-30 2014-03-12 王勇 一种塔式分解和字典学习的带噪cs-mri重构方法
CN106204466A (zh) * 2016-06-24 2016-12-07 南京理工大学 一种针对傅立叶叠层显微成像技术的自适应去噪方法
CN107680058A (zh) * 2017-09-28 2018-02-09 哈尔滨工业大学深圳研究生院 Ct图像去噪中基于格林空间的固定滞后平滑滤波方法
CN110097513A (zh) * 2019-04-16 2019-08-06 北京工业大学 一种基于脉冲型ToF深度图像去噪的方法
CN110161667A (zh) * 2019-07-12 2019-08-23 上海大学 一种基于压缩感知超分辨显微成像方法

Also Published As

Publication number Publication date
WO2021120231A1 (zh) 2021-06-24
CN111091511A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
Ng et al. A total variation regularization based super-resolution reconstruction algorithm for digital video
Starck et al. Deconvolution in astronomy: A review
Li et al. Multiframe super-resolution reconstruction using sparse directional regularization
US20200242740A1 (en) Wide spectrum denoising method for microscopic images
US20140105515A1 (en) Stabilizing and Deblurring Atmospheric Turbulence
Yadav et al. Evaluation of image deblurring techniques
Witwit et al. Global motion based video super-resolution reconstruction using discrete wavelet transform
Liu et al. Total variation with overlapping group sparsity and Lp quasinorm for infrared image deblurring under salt-and-pepper noise
Sroubek et al. Simultaneous super-resolution and blind deconvolution
Chan et al. Wavelet deblurring algorithms for spatially varying blur from high-resolution image reconstruction
CN111091511B (zh) 一种用于显微图像的广谱去噪方法
CN112488920A (zh) 一种基于类高斯模糊核的图像正则化超分辨重建方法
Sundar et al. Design and analysis of fusion algorithm for multi-frame super-resolution image reconstruction using framelet
Faramarzi et al. Super resolution results in PANOPTES, an adaptive multi-aperture folded architecture
Li et al. Video denoising using shape-adaptive sparse representation over similar spatio-temporal patches
Mahendra et al. Improved deep multi-patch hierarchical network for handling saturation in image deblurring
Lu Out-of-focus blur: Image de-blurring
Aswathi et al. A review on image restoration in medical images
Panagiotopoulou et al. Super-resolution reconstruction of thermal infrared images
Abraham Sundar et al. Multi-frame super-resolution using adaptive normalized convolution
Xu et al. Image sequence fusion and denoising based on 3D shearlet transform
Kathiravan et al. An overview of sr techniques applied to images, videos and magnetic resonance images
He et al. Joint motion deblurring and superresolution from single blurry image
Güngör et al. A transform learning based deconvolution technique with super-resolution and microscanning applications
Bhushan et al. Super resolution blind reconstruction of low resolution images using framelets based fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant