CN111082755A - 低噪声放大器 - Google Patents

低噪声放大器 Download PDF

Info

Publication number
CN111082755A
CN111082755A CN201910243233.7A CN201910243233A CN111082755A CN 111082755 A CN111082755 A CN 111082755A CN 201910243233 A CN201910243233 A CN 201910243233A CN 111082755 A CN111082755 A CN 111082755A
Authority
CN
China
Prior art keywords
low noise
noise amplifier
lna
inverter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910243233.7A
Other languages
English (en)
Other versions
CN111082755B (zh
Inventor
杨开拓
文振财
德里希-康納
纪洁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics International Singapore Pte Ltd
Original Assignee
Delta Electronics International Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics International Singapore Pte Ltd filed Critical Delta Electronics International Singapore Pte Ltd
Publication of CN111082755A publication Critical patent/CN111082755A/zh
Application granted granted Critical
Publication of CN111082755B publication Critical patent/CN111082755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1246Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance
    • H03B5/1253Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance the transistors being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • H03D7/125Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes with field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1638Special circuits to enhance selectivity of receivers not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本公开提供一种低噪声放大器,包含输入端、输出端、逆变器、复数个开关电容单元及反馈电感。逆变器电连接于输入端与输出端之间。每一开关电容单元与逆变器并联连接,且包含相互串联连接的开关及电容。反馈电感与逆变器并联连接。

Description

低噪声放大器
技术领域
本公开涉及一种低噪声放大器,特别涉及一种具自校正频偏功能的低噪声放大器。
背景技术
传统接收器前端需要外部的表面声波(surface acoustic wave,SAW)滤波器来滤除阻滞与干扰,然而,表面声波滤波器的片外元件(off-chip component)通常体积较大并缺乏可调性,且较为昂贵。为减少成本及组成元件,以强化整合及系统表现,不具表面声波滤波器的接收器前端已被广泛研究与使用,但绝大多数不具表面声波滤波器的接收器前端是专注于频率低于3GHz的应用,而不适用于高频领域,例如802.11ac无线区域网络(wireless local area network,WLAN)。再者,无处不在的寄生效应(例如寄生电容)使得实际工作频率与预期有所不同,尤其在高频环境下,工作频率将大幅往低频偏移。
因此,如何发展一种可改善上述现有技术的低噪声放大器,实为目前迫切的需求。
发明内容
本公开的目的在于提供一种低噪声放大器,于低噪声放大器中,反馈电感与逆变器及复数个开关电容单元并联连接,以利用反馈电感平衡寄生电容的影响,进而使低噪声放大器的工作频率维持与复数个开关电容单元的中心频率相同,借此实现自校正频偏功能,并使低噪声放大器可工作在高频。
为达上述目的,本公开提供一种低噪声放大器,包含输入端、输出端、逆变器、复数个开关电容单元及反馈电感。逆变器电连接于输入端与输出端之间。每一开关电容单元与逆变器并联连接,且包含相互串联连接的开关及电容。反馈电感与逆变器并联连接。
附图说明
图1为本公开优选实施例的低噪声放大器的电路结构示意图。
图2为显示图1所示的复数个开关的占空比的示意图。
图3A及3B为图1所示的低噪声放大器的等效电路结构示意图。
图4为显示图1所示的低噪声放大器与不具反馈电感的低噪声放大器的输入电压、输出电压及反射损失的示意图。
图5为显示图1所示的低噪声放大器与不具反馈电感的低噪声放大器的噪声指数的示意图。
附图标记说明:
1:低噪声放大器
11:输入端
12:输出端
13:逆变器
14:开关电容单元
L:反馈电感
Vin:输入电压
Vout:输出电压
LO1、LO2、LO3、LO4、LOn:开关
C1、C2、Cn:电容
fo:中心频率
R:电阻
Rsw、Rp:等效电阻
Lp:等效电感
Cp:等效电容
Z:等效阻抗
Cp,in、Cp,out、Cp,f:寄生电容
S11:反射损失
NF:噪声指数
具体实施方式
体现本公开特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本公开能够在不同的实施方式上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及图示在本质上是当作说明之用,而非架构于限制本公开。
图1为本公开优选实施例的低噪声放大器的电路结构示意图,图2为显示图1所示的复数个开关的占空比的示意图。如图1所示,低噪声放大器1包含输入端11、输出端12、逆变器13、复数个开关电容单元14及反馈电感L,其中在输入端11及输出端12上分别具有输入电压Vin及输出电压Vout。逆变器13电连接于输入端11与输出端12之间。每一开关电容单元14均与逆变器13并联连接,且包含相互串联连接的开关(LO1、LO2…LOn)及电容(C1、C2…Cn),其中n为大于2的整数。复数个开关电容单元14具有中心频率fo。反馈电感L与逆变器13并联连接。于一些实施例中,低噪声放大器1还包含与逆变器13并联连接的电阻R。
如图2所示,复数个开关LO1、LO2…LOn分别于不同时间导通,并具有相同的占空比,且复数个开关LO1、LO2…LOn的占空比总和为100%。周期时间为1/fo。举例而言,若低噪声放大器1包含四个开关电容单元14,则每一开关(LO1、LO2、LO3及LO4)均以25%的占空比于不同时间导通,且四个开关LO1、LO2、LO3及LO4的占空比总和为100%。
请参阅图3A及3B,图3A及3B为图1所示的低噪声放大器的等效电路结构示意图。在理想情况下,低噪声放大器1的工作频率等同于复数个开关电容单元14的中心频率fo。然而,实际上,低噪声放大器1无可避免地包含复数个寄生电容Cp,in、Cp,out及Cp,f。复数个开关电容单元14可等效为相互串联的电阻Rsw与Rp-Lp-Cp并联电路。复数个寄生电容Cp,in、Cp,out及Cp,f导致工作频率下降,尤其在低噪声放大器1工作于高频(例如大于5GHz的频率)时,工作频率的下降更为明显。因此,本公开的低噪声放大器1是对应利用反馈电感L来平衡寄生电容Cp,in、Cp,out及Cp,f的影响。由于反馈电感L与复数个开关电容单元14并联连接,使得反馈电感L与复数个开关电容单元14的中心频率高于频率fo。通过具有适当电感值的反馈电感L,可平衡寄生电容Cp,in、Cp,out及Cp,f的影响,进而使低噪声放大器1的工作频率与中心频率fo相同。借此,可消除频率偏移并提升低噪声放大器1的性能。同时,反馈电感L的高品质因数(quality factor)使其本身仅产生可忽略不计的噪声,其中反馈电感L的品质因数越高,则其等效电阻越大且所产生的噪声越小。此外,复数个开关电容单元14的中心频率fo可通过等式(1)进行计算,等效阻抗Z可通过等式(2)进行计算,其中s为复数频率。
Figure BDA0002010314130000041
Figure BDA0002010314130000042
图4为显示图1所示的低噪声放大器与不具反馈电感的低噪声放大器的输入电压、输出电压及反射损失的示意图,图5为显示图1所示的低噪声放大器与不具反馈电感的低噪声放大器的噪声指数的示意图。图4及5示出了输入电压Vin、输出电压Vout、反射损失(return loss)S11及噪声指数(noise figure)NF的模拟结果,其中,具有反馈电感L的低噪声放大器1的模拟结果是以实线表示,并于图4中以不同实心符号区别各模拟结果,而不具有反馈电感L的低噪声放大器的模拟结果是以虚线表示,并于图4中以不同空心符号区别各模拟结果。于此实施例中,中心频率fo为5.5GHz,开关电容单元14的数量为四,并于表格(一)中示出各模拟结果的中心频率偏移及各模拟结果于中心频率fo(5.5GHz)的数值。如图4及表格(一)所示,在不具有反馈电感L的低噪声放大器中,输入电压Vin及输出电压Vout的中心频率均朝低频偏移约100MHz,反射损失S11的中心频率偏移甚至大于100MHz。反观具有反馈电感L的低噪声放大器1,其输入电压Vin、输出电压Vout及反射损失S11的中心频率均重新回到中心频率fo。换言之,低噪声放大器1的输入电压Vin、输出电压Vout、反射损失S11及噪声指数NF的中心频率均与复数个开关电容单元14的中心频率fo相同。此外,如图5及表格(一)所示,相较于不具有反馈电感L的低噪声放大器的噪声指数NF,具有反馈电感L的低噪声放大器1的噪声指数NF改善约0.2dB。因此,低噪声放大器1的增益及信号噪声比(signal-to-noise ratio,SNR)亦有所改善。
Figure BDA0002010314130000051
表格(一)各模拟结果的中心频率偏移及各模拟结果于中心频率fo(5.5GHz)的数值
综上所述,本公开提供一种低噪声放大器,于低噪声放大器中,反馈电感与逆变器及复数个开关电容单元并联连接,以利用反馈电感平衡寄生电容的影响,进而使低噪声放大器的工作频率维持与复数个开关电容单元的中心频率相同,借此实现自校正频偏功能,且使低噪声放大器可工作在高频。
须注意,上述仅是为说明本公开而提出的优选实施例,本公开不限于所述的实施例,本公开的范围由权利要求决定。且本公开得由本领域技术人员任施匠思而为诸般修饰,然皆不脱权利要求所欲保护者。

Claims (7)

1.一种低噪声放大器,包含:
一输入端;
一输出端;
一逆变器,电连接于该输入端与该输出端之间;
复数个开关电容单元,其中每一该开关电容单元与该逆变器并联连接,且包含相互串联连接的一开关及一电容;以及
一反馈电感,与该逆变器并联连接。
2.如权利要求1所述的低噪声放大器,其中该复数个开关分别于不同时间导通。
3.如权利要求2所述的低噪声放大器,其中该复数个开关的复数个占空比均相等,且该复数个占空比之和为100%。
4.如权利要求1所述的低噪声放大器,其中该低噪声放大器具有一工作频率,该复数个开关电容单元具有一中心频率。
5.如权利要求4所述的低噪声放大器,还包含复数个寄生电容,其中该复数个寄生电容导致该工作频率降低,该反馈电感是架构于平衡该复数个寄生电容的影响,使该工作频率等于该中心频率。
6.如权利要求4所述的低噪声放大器,其中该低噪声放大器的一输入电压、一输出电压、一反射损失及一噪声指数的中心频率均等于该复数个开关电容单元的中心频率。
7.如权利要求4所述的低噪声放大器,其中该工作频率及该中心频率大于5GHz。
CN201910243233.7A 2018-10-22 2019-03-28 低噪声放大器 Active CN111082755B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/167,039 2018-10-22
US16/167,039 US10659011B2 (en) 2018-10-22 2018-10-22 Low noise amplifier

Publications (2)

Publication Number Publication Date
CN111082755A true CN111082755A (zh) 2020-04-28
CN111082755B CN111082755B (zh) 2024-03-26

Family

ID=70281263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243233.7A Active CN111082755B (zh) 2018-10-22 2019-03-28 低噪声放大器

Country Status (3)

Country Link
US (1) US10659011B2 (zh)
CN (1) CN111082755B (zh)
TW (1) TWI692198B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296684B2 (en) * 2020-03-31 2022-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. Gated tri-state inverter, and low power reduced area phase interpolator system including same, and method of operating same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892540A (en) * 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US6211737B1 (en) * 1999-07-16 2001-04-03 Philips Electronics North America Corporation Variable gain amplifier with improved linearity
US20030151465A1 (en) * 2000-05-11 2003-08-14 John Wood Electronic pulse generator and oscillator
US20060238265A1 (en) * 2005-04-22 2006-10-26 International Business Machines Corporation Method to differentially control LC voltage-controlled oscillators
CN101499780A (zh) * 2008-02-01 2009-08-05 慧国(上海)软件科技有限公司 利用电容反馈的可重构低噪声放大器
CN101789760A (zh) * 2009-12-30 2010-07-28 复旦大学 采用并联反馈式结构的窄带低噪声放大器
CN101820252A (zh) * 2010-04-28 2010-09-01 复旦大学 中心频率自动调谐窄带低噪声放大器
CN103337945A (zh) * 2013-06-25 2013-10-02 合肥工业大学 一种带有串联谐振支路的无源逆变器输出滤波器
US9374063B1 (en) * 2015-02-05 2016-06-21 University Of Macau Gain-boosted N-path bandpass filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144113B2 (ja) 1999-05-20 2008-09-03 ソニー株式会社 低雑音増幅器回路
TWI387208B (zh) 2005-03-21 2013-02-21 Integrated Device Tech 用於單片式時脈產生器及時序/頻率參考器之低延遲的起動
US8655299B2 (en) 2010-06-03 2014-02-18 Broadcom Corporation Saw-less receiver with RF frequency translated BPF

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892540A (en) * 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US6211737B1 (en) * 1999-07-16 2001-04-03 Philips Electronics North America Corporation Variable gain amplifier with improved linearity
US20030151465A1 (en) * 2000-05-11 2003-08-14 John Wood Electronic pulse generator and oscillator
US20060238265A1 (en) * 2005-04-22 2006-10-26 International Business Machines Corporation Method to differentially control LC voltage-controlled oscillators
CN101499780A (zh) * 2008-02-01 2009-08-05 慧国(上海)软件科技有限公司 利用电容反馈的可重构低噪声放大器
CN101789760A (zh) * 2009-12-30 2010-07-28 复旦大学 采用并联反馈式结构的窄带低噪声放大器
CN101820252A (zh) * 2010-04-28 2010-09-01 复旦大学 中心频率自动调谐窄带低噪声放大器
CN103337945A (zh) * 2013-06-25 2013-10-02 合肥工业大学 一种带有串联谐振支路的无源逆变器输出滤波器
US9374063B1 (en) * 2015-02-05 2016-06-21 University Of Macau Gain-boosted N-path bandpass filter

Also Published As

Publication number Publication date
TW202017310A (zh) 2020-05-01
US10659011B2 (en) 2020-05-19
TWI692198B (zh) 2020-04-21
CN111082755B (zh) 2024-03-26
US20200127644A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
Lee Multiple-mode OTA-C universal biquad filters
Mirzaei et al. A low-power process-scalable super-heterodyne receiver with integrated high-$ Q $ filters
Ghaffari et al. A differential 4-path highly linear widely tunable on-chip band-pass filter
Minaei et al. A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter
JP2015080258A (ja) 受信器、受信信号を操作するための方法、およびワイヤレス機器
Leuzzi et al. Single transistor high linearity and wide dynamic range active inductor
EP2937996A2 (en) Low pass filter with common-mode noise reduction
Mohammadpour et al. An N-path enhanced-Q tunable filter with reduced harmonic fold back effects
JP2006211021A (ja) フィルタ回路
CN109075747A (zh) 放大器
KR101732785B1 (ko) 믹서에 대한 시스템과 방법
Maheshwari Some analog filters of reduced complexity with shelving and multifunctional characteristics
CN111082755B (zh) 低噪声放大器
US11290076B2 (en) Amplifier circuit, front-end circuit, and receiver circuit
CN110875741B (zh) 处理rf信号的方法和rf接收器
Lee Versatile universal current-mode and transresistance-mode biquadratic filter using two MOCCIIs and grounded passive components
JP2000261250A (ja) 周波数変換回路
US11722160B2 (en) Radio frequency receiver for carrier aggregation
US20210367575A1 (en) Filter circuit and electronic equipment
US7623001B2 (en) Electromagnetic interference eliminating apparatus
Kaçar et al. New realization of FDNR and sixth order band pass filter application
CN116418310B (zh) 一种高频输入缓冲器及集成电路
JP3283191B2 (ja) 電子回路、これを用いたフィルタ装置及び無線装置
US11799437B2 (en) Radio frequency device and multi-band matching circuit
JP4761851B2 (ja) 帰還形信号処理回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TG01 Patent term adjustment
TG01 Patent term adjustment