CN111072933A - 一种双层放射状聚己内酯的制备 - Google Patents

一种双层放射状聚己内酯的制备 Download PDF

Info

Publication number
CN111072933A
CN111072933A CN201811218823.6A CN201811218823A CN111072933A CN 111072933 A CN111072933 A CN 111072933A CN 201811218823 A CN201811218823 A CN 201811218823A CN 111072933 A CN111072933 A CN 111072933A
Authority
CN
China
Prior art keywords
polycaprolactone
radial
polyol
layer
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811218823.6A
Other languages
English (en)
Inventor
张宝昌
刘焕朝
宋晓峰
胡洪涛
夏文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201811218823.6A priority Critical patent/CN111072933A/zh
Publication of CN111072933A publication Critical patent/CN111072933A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Abstract

本发明制备了一种双层放射状聚己内酯。本文利用化学方法合成了单层放射状聚己内酯,通过对端基进行羧化反应、酯化反应和开环聚合反应,合成了双层放射状聚己内酯。之后通过1H‑NMR表征了每一步反应得到的产物,并证明了最终产品的合成。

Description

一种双层放射状聚己内酯的制备
技术领域
本发明涉及利用化学方法将生物可降解聚己内酯端基修饰,实现层次分明的放射状聚己内酯产品的合成,属于高分子合成和生物可降解材料应用技术领域。
背景技术
随着环境问题的加剧,越来越多的人研究可替代传统石油基塑料的可降解高分子材料。聚己内酯由于其优异的性能成为了多种现有生物基塑料增韧剂的首选。传统增韧即使用简单的线性聚己内酯进行物理共混,这种增韧方法一般是不可控的。因此放射状聚己内酯成为了增韧多种材料的首选。本文采用化学方法,在特定条件下,通过四步反应合成了层次分明的放射状聚己内酯。因此本发明是一种双层放射状聚己内酯的制备方法。
发明内容
本发制备出了一种制备双层放射状聚己内酯,该方法制备的聚己内酯可以作为多种生物基塑料的增韧剂。
制备双层放射状聚酯的方法,包括以下步骤:
A)将季戊四醇和ε-己内酯在第一催化剂作用下,于溶剂甲苯中进行反应,制得第一层放射状聚己内酯,所述催化剂为辛酸亚锡或无水氯化亚锡;
B)将上述所制得的聚己内酯和丁二酸酐在第二催化剂作用下,于溶剂中进行反应,制得端基为羧基的放射状聚己内酯,所述催化剂为三乙胺或三亚乙基二胺,所述溶剂为二氯甲烷、三氯甲烷或甲苯中的一种;
C)将上述所制得的端基为羧基的放射状聚己内酯和季戊四醇在第三催化剂和羰基活化试剂作用下,于溶剂N,N-二甲基甲酰胺中进行酯化反应,制得端基为多个羟基的放射状聚己内酯,所述催化剂为4-二甲氨基吡啶(DMAP),所述羰基活化试剂为1-乙基-(3-二甲基氨基丙基) 碳酰二亚胺盐酸盐(EDCI);
D)将上述所制得的端基为多羟基的聚己内酯和ε-己内酯在第一催化剂作用下,于溶剂甲苯中进行反应得到双层放射状聚己内酯。
本发明的优势在于合成产物的层次分明,通过改变反应物的比例可以很好的控制每层的聚己内酯的聚合度。所得产物分子量分布均匀。
附图说明:
图1双层放射状聚己内酯合成反应示意图;
图2单层放射状聚己内酯的核磁共振氢谱(1H-NMR)解析;
图3端基羧化聚己内酯的1H-NMR谱图解析;
图4多羟基封端聚己内酯的1H-NMR谱图解析;
图5双层放射状聚己内酯的1H-NMR谱图解析;
具体实施方式
具体实验案例步骤如下:
(1)单层放射状聚己内酯制备。将0.085g季戊四醇和0.025g辛酸亚锡加入干燥的安瓿瓶中,氮气保护下,将5gε-己内酯和20ml甲苯使用注射器由支管注入,120℃下反应24小时,降温至30℃,使用大量石油醚沉降得到白色固体,使用甲苯/石油醚进行多次溶解-沉降处理,产率大于95%。
(2)羧基封端聚己内酯的制备。将上步制备的放射状聚己内酯2.0g溶于20ml的二氯甲烷,依次加入0.11g丁二酸酐,0.10g三乙胺,于30℃下反应48小时,结束后使用旋转蒸发仪蒸出二氯甲烷,将固体使用甲苯/石油醚进行多次溶解-沉降处理,最终产率大于80%。
(3)多羟基封端聚己内酯的制备。将季戊四醇0.68g研为细粉,溶解于20ml的N,N二甲基甲酰胺,加入上步反应产物1.0g,然后依次加入DMAP 0.061g和EDCI 0.096g,于室温下反应48小时,使用透析袋在去离子水中透析2小时出现白色固体,12小时后打开透析袋过滤,固体在真空烘箱内干燥24小时,最终产率大于60%。
(4)双层放射状聚己内酯制备。将上步所制备的产物0.64g和辛酸亚锡0.01g加入安瓿瓶,氮气保护,由支管口依次加入ε-己内酯2g,甲苯15ml,120℃反应24小时,倒入大量石油醚沉降得白色固体,使用甲苯/石油醚进行多次溶解-沉降处理,产率大于95%。
产物表征
单层放射状聚己内酯表征:如说明书附图2所示,4.05ppm(a)处的三重峰是PCL链结中与氧原子相连的亚甲基的峰;2.30ppm(b)处的三重峰是与羰基相连的亚甲基的峰;1.64ppm(c)处的多重峰是与(a)和(b)临位的亚甲基共同耦合的特征峰;1.37ppm处的五重峰是PCL链节中间位置的亚甲基的特征峰;由于受到端羟基的影响,与之相连的亚甲基的特征峰出现在 3.65ppm(e);季戊四醇中的亚甲基的特征峰出现在了4.10ppm处。
端基羧化的聚己内酯的表征:如说明书附图3所示,与附图2相比,3.65ppm处的峰消失,证明端羟基发生了反应。而新出现的两个峰2.35ppm(g)和2.63ppm(e)是端羟基与丁二酸酐反应后的特征峰。
多羟基封端聚己内酯的表征:如说明书附图4所示,与附图3相比,在3.65ppm(h)和4.26ppm(i)出现的两个较小的峰归属于与端羧基发生反应的季戊四醇。
双层放射状聚己内酯表征:如说明书附图5所示,峰(h)和(i)消失,证明了端羟基引发了开环聚合反应;而峰(g)的相对积分面积变小,可以证明了产物的分子量变得更大了;这些都证明目标产物的合成。

Claims (4)

1.本发明是制备一种放射状聚己内酯,其特征在于:以多元醇为核心制备了第一层具有多条聚己内酯分子链放射状结构,通过对放射状聚己内酯端基羧化、与多元醇酯化、开环聚合制备了第二层有更多条聚己内酯分子链的放射状结构;第一层与第二层之间有明确的节点结构,即与端羧基发生酯化的多元醇。
2.如权利要求1所述,可以采用类似的方法制备多余2层的放射状聚己内酯。
3.如权利要求1所述,核心多元醇可以是乙二醇、丙三醇、季戊四醇、木糖醇、双季戊四醇、肌醇等的任意一种。
4.如权利要求1所述,与端羧基发生酯化的多元醇,可以是乙二醇、丙三醇、季戊四醇、木糖醇、双季戊四醇、肌醇中的任意一种。
CN201811218823.6A 2018-10-19 2018-10-19 一种双层放射状聚己内酯的制备 Pending CN111072933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811218823.6A CN111072933A (zh) 2018-10-19 2018-10-19 一种双层放射状聚己内酯的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811218823.6A CN111072933A (zh) 2018-10-19 2018-10-19 一种双层放射状聚己内酯的制备

Publications (1)

Publication Number Publication Date
CN111072933A true CN111072933A (zh) 2020-04-28

Family

ID=70308872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811218823.6A Pending CN111072933A (zh) 2018-10-19 2018-10-19 一种双层放射状聚己内酯的制备

Country Status (1)

Country Link
CN (1) CN111072933A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946772A (zh) * 2004-04-20 2007-04-11 德瑞迪克纳米科技公司 具有增强的扩增性和内部官能度的树枝状聚合物
CN102942664A (zh) * 2012-11-28 2013-02-27 安徽大学 一种端羟基超支化聚氨酯的制备方法
CN104231235A (zh) * 2014-09-28 2014-12-24 江门市恒光新材料有限公司 含柔性长链的超支化聚酯的制备方法
CN105331078A (zh) * 2015-12-02 2016-02-17 威海晨源分子新材料有限公司 一种超支化聚酯在塑料加工中的应用
CN108359088A (zh) * 2018-04-10 2018-08-03 长春工业大学 一种星型聚己内酯-白藜芦醇聚合物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946772A (zh) * 2004-04-20 2007-04-11 德瑞迪克纳米科技公司 具有增强的扩增性和内部官能度的树枝状聚合物
CN102942664A (zh) * 2012-11-28 2013-02-27 安徽大学 一种端羟基超支化聚氨酯的制备方法
CN104231235A (zh) * 2014-09-28 2014-12-24 江门市恒光新材料有限公司 含柔性长链的超支化聚酯的制备方法
CN105331078A (zh) * 2015-12-02 2016-02-17 威海晨源分子新材料有限公司 一种超支化聚酯在塑料加工中的应用
CN108359088A (zh) * 2018-04-10 2018-08-03 长春工业大学 一种星型聚己内酯-白藜芦醇聚合物的制备方法

Similar Documents

Publication Publication Date Title
Jiang et al. Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources
Zeng et al. Bio-based blends of starch and poly (butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption
Gurunathan et al. High performance polyurethane dispersion synthesized from plant oil renewable resources: a challenge in the green materials
Hsieh et al. Synthesis of bio-based polyurethane foam modified with rosin using an environmentally-friendly process
CN102516517A (zh) 一种制备聚酯-聚酯嵌段共聚酯的方法
CN102942664A (zh) 一种端羟基超支化聚氨酯的制备方法
CN103709691A (zh) 生物可降解的交联型聚合物及其制备方法
Acik Preparation of antimicrobial and biodegradable hybrid soybean oil and poly (ʟ-lactide) based polymer with quaternized ammonium salt
Mhiri et al. Thermally reversible and biodegradable polyglycolic-acid-based networks
Teng et al. Synthesis and degradability of a star-shaped polylactide based on l-lactide and xylitol
Basko et al. Biodegradable polymer networks via triazolinedione-crosslinking of oleyl-functionalized poly (ε-caprolactone)
Gnanasekar et al. Sustainable Shape‐Memory Polyurethane from Abietic Acid: Superior Mechanical Properties and Shape Recovery with Tunable Transition Temperatures
US9346922B2 (en) Flame retardant block copolymers from renewable feeds
Konwar et al. A comparative study of poly (l‐lactide)‐block‐poly (ϵ‐caprolactone) six‐armed star diblock copolymers and polylactide/poly (ϵ‐caprolactone) blends
Lee et al. Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly (butylene succinate)(PBS): An efficient route to high-molecular-weight PBS and block copolymers of PBS
Kasmi et al. Synthesis and characterization of fully biobased polyesters with tunable branched architectures
CN111072933A (zh) 一种双层放射状聚己内酯的制备
Mhiri et al. Green synthesis of covalent hybrid hydrogels containing PEG/PLA-based thermoreversible networks
Shan et al. Facile and solvent-free synthesis of a novel bio-based hyperbranched polyester with excellent low-temperature flexibility and thermal stability
Fu et al. Heat driven self-healing isocyanate-based crosslinked three-arm Star-shaped polyglycolide based on dynamic transesterification
Zhao et al. Synthesis and characterization of novel biodegradable tetra-amino-terminated PLGA telechelic copolymer
JP5990179B2 (ja) スターポリマーの製造方法
El Mahdi et al. Catalyst‐Free Ring Opening Synthesis of Biodegradable Poly (ester‐urethane) s Using Isosorbide Bio‐Based Initiator
Lagunas et al. New epoxy thermosets modified with amphiphilic multiarm star polymers as toughness enhancer
Shaik et al. Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200428

RJ01 Rejection of invention patent application after publication