CN111052622A - 使用确定的压缩矩阵来形成复合波束的集合的方法和装置 - Google Patents

使用确定的压缩矩阵来形成复合波束的集合的方法和装置 Download PDF

Info

Publication number
CN111052622A
CN111052622A CN201880057288.2A CN201880057288A CN111052622A CN 111052622 A CN111052622 A CN 111052622A CN 201880057288 A CN201880057288 A CN 201880057288A CN 111052622 A CN111052622 A CN 111052622A
Authority
CN
China
Prior art keywords
matrix
compression
beams
indication
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880057288.2A
Other languages
English (en)
Other versions
CN111052622B (zh
Inventor
宋支湖
泰勒·布朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Singapore Pte Ltd
Original Assignee
Lenovo Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo Singapore Pte Ltd filed Critical Lenovo Singapore Pte Ltd
Publication of CN111052622A publication Critical patent/CN111052622A/zh
Application granted granted Critical
Publication of CN111052622B publication Critical patent/CN111052622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Abstract

提供了一种无线通信设备中的方法和装置。从网络实体接收(1502)参考信号,并且定义(1504)单个波束的默认集合,波束中的每个具有相关联的方向。确定(1506)压缩矩阵,并且将所确定的压缩矩阵的指示发送(1508)到网络实体。将压缩矩阵应用(1510)于单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包括来自默认集合的多个单个波束的组合,并且其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。确定(1512)波束加权值的集合,并将所确定的波束加权值的集合发送(1514)到网络实体。

Description

使用确定的压缩矩阵来形成复合波束的集合的方法和装置
技术领域
本公开涉及一种用于制定压缩矩阵的方法和装置,并且更具体地涉及使用压缩矩阵用于形成支持无线通信的复合波束的集合。
背景技术
当前,诸如无线通信设备的用户设备使用无线信号与其他通信设备进行通信,诸如在可以包括一个或多个小区的网络环境中,在其中可以支持与网络以及在网络内运行的其他设备的各种通信连接。网络环境通常涉及一组或多组标准,每组标准都定义了当在网络环境中使用相应标准时进行的任何通信连接的各个方面。开发中的和/或现有的标准的示例包括新无线电接入技术(NR)、长期演进(LTE)、通用移动电信服务(UMTS)、全球移动通信系统(GSM)和/或增强数据GSM环境(EDGE)。
为了增强系统性能,最近的标准已经研究了不同形式的空间分集,包括不同形式的多输入多输出(MIMO)系统,这涉及在无线通信的每个源和目的地使用多个天线用于通过使用多径传播来增加无线电链路的容量。此类系统使得使用相同的无线电信道同时发送和接收多于一个的数据信号变得越来越可能。
作为支持MIMO通信的一部分,用户设备可以使用信道状态信息码本,其有助于定义所采用的用于支持特定的数据连接的波束的性质。较高秩的码本有时可用于增强系统性能,但通常以增加反馈开销为代价。
本发明人已经认识到,通过结合使用压缩矩阵连同较高秩的信道状态信息码本,能够限制和/或避免相关反馈开销量的任何显著增加,同时仍然具有与使用较高秩的信道状态信息码本相对应的至少一些益处。
发明内容
目前,诸如无线通信设备的用户设备使用无线信号与其他通信设备通信。根据可能的实施例,提供了无线通信设备中的方法。该方法包括从网络实体接收参考信号,并且定义单个波束的默认集合,波束中的每个具有相关联的方向。该方法进一步包括确定压缩矩阵,并且将所确定的压缩矩阵的指示发送到网络实体。将压缩矩阵应用于单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包含来自默认集合的多个单个波束的组合,以及其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。确定波束加权值的集合,并将所确定的波束加权值的集合发送到网络实体。
根据可能的实施例,提供了一种无线通信设备。无线通信设备包括收发器,该收发器从网络实体接收参考信号,并且使用所产生的复合波束的新集合来与网络实体无线地通信。无线通信设备进一步包括控制器,该控制器定义单个波束的默认集合,波束中的每个具有相关联的延伸方向。控制器进一步确定压缩矩阵,并且将压缩矩阵应用于单个波束的默认集合,产生复合波束的新集合,以及将所确定的压缩矩阵的指示发送到网络实体。复合波束中的至少一个包括来自默认集合的多个单个波束的组合,并且复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。波束加权值的集合被确定并且被发送到网络实体。
根据可能的实施例,提供了一种网络实体中的方法。该方法包括:发送参考信号,并且从无线通信设备接收所确定的压缩矩阵的指示以被应用于所定义的单个波束的默认集合,波束中的每个具有相关联的方向。将压缩矩阵应用于单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包括来自默认集合的多个单个波束的组合,以及其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。从无线通信设备接收所确定的波束加权值的集合。所确定的波束加权值的集合被应用于所产生的复合波束的新集合,以支持网络实体和无线通信设备之间的无线通信。
根据可能的实施例,提供了一种网络实体。该网络实体包括收发器,该收发器发送参考信号,并且从无线通信设备接收所确定的压缩矩阵的指示以被应用于所定义的单个波束的默认集合,波束中的每个具有相关联的方向。网络实体进一步包括控制器,该控制器将压缩矩阵应用于单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包括来自默认集合的多个单个波束的组合,并且其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。在经由收发器从无线通信设备接收到所确定的波束加权值的集合之后,控制器进一步将所确定的波束加权值的集合应用于所产生的复合波束的新集合,以支持网络实体与无线通信设备之间的无线通信。
参考附图,根据以下对一个或多个优选实施例的描述,本申请的这些和其他目的、特征和优点是显而易见的。
附图说明
图1是本发明适于在其中操作的示例性网络环境的框图;
图2A和2B是示出针对一个或多个主波束的、在宽带(WB)中选择的离散傅立叶变换(DFT)波束的波束方向中的归一化信道增益或功率的示例性累积分布函数(cdf)的图;
图3是(7)中用于矩阵设计I-alt 0的示例性2比特压缩图样码本;
图4是(8)中用于矩阵设计I-alt 0的示例性3比特压缩图样码本;
图5是(11)中用于矩阵设计I-alt 1的示例性2比特压缩图样码本;
图6是(12)中用于矩阵设计I-alt 1的示例性3比特压缩图样码本;
图7是(13)中用于矩阵设计II-alt 0的示例性2比特压缩图样码本;
图8是(14)中用于矩阵设计II-alt 0的示例性3比特压缩图样码本;
图9是(15)中用于矩阵设计II-alt 1的示例性2比特压缩图样码本;
图10是(16)中用于矩阵设计II-alt 1的示例性3比特压缩图样码本;
图11是示出对于λtraffic=3.5的信道状态信息(CSI)码本(CB)的示例性平均吞吐量性能图;
图12是示出对于λtraffic=3.5的信道状态信息(CSI)码本(CB)的示例性小区边缘吞吐量性能图;
图13是示出对于λtraffic=2的信道状态信息(CSI)码本(CB)的示例性平均吞吐量性能图;
图14是示出对于λtraffic=2的信道状态信息(CSI)码本(CB)的示例性小区边缘吞吐量性能图;
图15是用于使用所确定的压缩矩阵从支持与网络实体进行通信的单个波束的默认集合形成复合波束的集合的无线通信设备中的方法的流程图;
图16是用于支持从压缩矩阵确定的复合波束的集合的使用的网络实体中的方法的流程图,该压缩矩阵是从无线通信设备接收的并且被应用于用于与无线通信设备通信的单个波束的默认集合;以及
图17是根据可能的实施例的装置的示例框图。
具体实施方式
尽管本公开易于以各种形式实施,但是在附图中示出并且在下文中将描述当前优选的实施方式,应理解本公开被认为是本发明的示例,而不旨在将本发明限制在图示的具体实施例中。
实施例提供了适于使用所确定的压缩矩阵来形成复合波束的集合的方法和装置。在某些情况下,这可以允许使用较高秩的信道状态信息码本来执行高分辨率波束成形。
图1是根据可能的实施例的系统100的示例框图。系统100可以包括诸如用户设备(UE)的无线通信设备110、诸如增强型节点B(eNB)或下一代节点B(gNB)的基站120以及网络130。无线通信设备110可以是无线终端、便携式无线通信设备、智能手机、蜂窝电话、翻盖电话、个人数字助理、个人计算机、选择性呼叫接收器、平板计算机、膝上型计算机或任何其他能够在无线网络上发送和接收通信信号的设备。
网络130可以包括能够发送和接收无线通信信号的任何类型的网络。例如,网络130可以包括无线通信网络、蜂窝电话网络、基于时分多址(TDMA)的网络、基于码分多址(CDMA)的网络、基于正交频分多址(OFDMA)的网络、长期演进(LTE)网络、第五代(5G)网络、基于第三代合作伙伴计划(3GPP)的网络、卫星通信网络、高空平台网络、互联网和/或其他通信网络。
在第89届RAN1会议上,在Rl-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”;以及3GPP,RAN1#89,主席的注释(Chairman’s Notes)中同意了II型信道状态信息(CSI)码本(CB)用于支持全维度(FD)多输入多输出(MIMO)。经验证,秩1-2的II型CSI码本比先前版本14CSI码本给出更好的数据速率性能。尽管低秩II型码本提高系统性能,但是开发可能更好地利用FD-MIMO系统的优势的高分辨率CSI码本是有利的。一种直接的解决方案是基于在Rl-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)中所商定的码本设计原则来扩展II型码本。
预期秩>2的II型码本将增加系统性能增益,因为当UE使用4个接收天线时,可以通过由改进的空间分集和阵列增益提供的上述复用来获得性能增益,请参见Rl-1710674,“Onhigher rank(rank 3and 4)Type II CSI(在较高秩(秩3和4)上的II型CSI)”;Rl-1710454,“The remaining issues for Type II codebook(II型码本的剩余问题)”;和Rl-1714217,“Discussion on higher rank Type II codebook and feedback overhead reduction(对较高秩II型码本和反馈开销减少的讨论)”。然而,因为反馈开销将与多个最大传输秩成比例地增加,所以当前II型码本的简单扩展会给反馈链路造成负担。因此,在本公开中,我们提出了信道压缩算法,以与秩>2的II型码本相比,以较少的反馈开销来改善系统性能。
本公开被组织如下。在至少一部分中,我们回顾II型CSI码本。在进一步的部分中,提出了信道压缩算法和压缩矩阵设计算法。在更进一步的部分中,基于所提出的信道压缩算法,开发了宽带(WB)和子带(SB)量化器。在更进一步的部分中,提出数值仿真,并且最后一部分详细说明我们的结论。
在整个本公开中,
Figure BDA0002399477950000061
表示复数域,
Figure BDA0002399477950000062
表示实数域,||·||p是p-范数,||·||F是弗罗宾尼斯范数,⊙是阿达玛(Hadamard)积,
Figure BDA0002399477950000063
是克罗内克(Kronecker)积,aH是列向量a的共轭转置,0a×b是a×b的所有零矩阵,IN是N×N单位矩阵,nmax{A},λmax{A},和emax{A}表示矩阵A的主右奇异向量、主奇异值和主特征向量。
II型码本-回顾
在Rl-1709232,“WF on Type I and II CSI codebooks(在I型和II型CSI码本上的WF)”;和3GPP,RAN1#89,主席的注释中的II型CSI协议中,包含对于w个总的子载波的MIMO信道矩阵
Figure BDA0002399477950000064
的信道矩阵
Figure BDA0002399477950000065
在WB中被压缩,通过利用L个所选择的离散傅立叶变换(DFT)波束的集合,即
Figure BDA0002399477950000071
使得
Figure BDA0002399477950000072
在Rl-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”;以及3GPP,RAN1#89,主席的注释中解释了波束选择技术。注意,Ntx是每个极化的发射天线端口的数目,并且Nrx是每个极化的接收天线端口的数目。实际的MIMO信道是空间相关的,并且信道矩阵仅由有限数目的优势(有意义的)传播路径组成。由于选择的DFT波束的集合捕获了MIMO信道的特征,因此基于B的信道压缩过程对于量化高分辨率CSI是有效的。对于本公开的其余部分,我们将经压缩的信道矩阵称为波束空间信道矩阵。
在WB中构造波束空间信道矩阵后,波束空间信道矩阵的2L维右主奇异向量
Figure BDA0002399477950000073
在每个SB,s∈{1,…,S}中被量化,以为每个传输层生成预编码向量。注意,S表示SB的数目。量化2L维向量是层和SB特定的过程,使得SB CSI报告的总反馈开销将与最大传输层的数目和SB的数目成比例地增加。
信道矩阵压缩算法
支持基于高分辨率CSI的秩>2的多用户(MU)传输,以更好地利用具有多个RX UE的系统的优势是有益的。一个简单的解决方案是将II型码本扩展到秩1-4。为了计算秩3-4预编码向量,我们可以使用与II型码本中秩1-2的预编码向量相同的量化方法。更具体地,应该在每个SB中对2L维基组合向量进行量化,以用于计算秩3-4预编码向量。然而,如果我们简单地扩展II型码本,则较高秩的II型(秩1-4)SB CSI报告的总反馈开销将是II型(秩1-4)SB CSI报告的总反馈开销的两倍。因此,应该通过考虑有限的反馈资源来精心设计高秩码本。
我们开发了一种与II型CSI码本相比可以支持以更少的反馈开销的较高秩的传输的高分辨率CSI码本。为了减少基向量的数目,波束空间矩阵HBS被额外压缩,诸如
Figure BDA0002399477950000081
其中,
Figure BDA0002399477950000082
表示信道压缩矩阵,并且
Figure BDA0002399477950000083
表示信道压缩水平。
为了有效地压缩波束空间矩阵,(3)中的信道压缩矩阵应满足以下矩阵设计标准。经压缩的信道矩阵被设计成
i.具有正交压缩向量,并且
ii.包含更多信道增益。
A.压缩矩阵选择
在提出压缩矩阵设计算法之前,我们停顿来制定最优化问题,以在第r个传输层中计算更优化的压缩矩阵Gr。基于压缩向量是正交的假设,将最优化问题推导为
Figure BDA0002399477950000084
其中,
Figure BDA0002399477950000085
是将在每个SB中计算的L维(单位范数)基组合向量,并且
Figure BDA0002399477950000086
是在第r个传输层中要考虑的波束空间矩阵。注意,导出(a),因为(4)中的似然函数的支配因子(dominator)被重写为:
Figure BDA0002399477950000087
并且对于给定的压缩矩阵
Figure BDA0002399477950000088
通过定义
Figure BDA0002399477950000089
导出(b),并且导出(c),因为最优基组合向量被计算为:
Figure BDA00023994779500000810
基于(5)中的公式,我们提出选择更好地最大化经压缩的信道矩阵的主奇异值的信道压缩矩阵。对于给定的信道压缩矩阵Gr,用于量化WB预编码矩阵指示符(PMI)的经压缩的信道矩阵,在WB中,被定义为
Figure BDA0002399477950000091
并且用于量化SB PMI的每个SB中的经压缩的信道矩阵被定义为
Figure BDA0002399477950000092
B.实证研究-包含在所选择的DFT波束中的信道增益
我们接下来讨论包含在(1)中所选择的DFT波束B中的信道增益的分布。为了验证信道增益分布,我们计算包含在每个DFT波束中的归一化信道增益,使得
Figure BDA0002399477950000093
Figure BDA0002399477950000094
归一化的信道增益的示例性累积分布函数(cdf)200和202在图2A和2B中示出,其示出了在WB中在所选择的DFZT波束的波束方向中的归一化功率的经验cdf。图2A中示出,在第一和第二主DFT波束的波束方向中包含大于83%的信道增益(概率为0.7),并且在图2B中示出,在第一主DFT波束的波束方向中包含大于58%的信道增益(概率为0.7)。大部分信道增益被包含在第一和第二主波束中,并且仅少量的信道增益被包含在第三和第四主波束中。因此,我们提出通过考虑信道增益分布来开发压缩矩阵设计算法。
C.压缩矩阵设计算法
我们现在开发压缩矩阵设计算法。在所提出的算法中,压缩矩阵是层特定的,使得矩阵是在每层中独立计算的。在本公开中,我们预定义满足第一矩阵设计标准(即,信道压缩矩阵中的压缩向量是正交的)的波束组合图样。我们提出定义(3)中的信道压缩矩阵,使得
Figure BDA0002399477950000101
Figure BDA0002399477950000102
其中,
Figure BDA0002399477950000103
表示每个极化a∈{h,v}的子矩阵并且
Figure BDA0002399477950000104
是(单位范数)压缩向量。
C-1矩阵设计I
在矩阵设计I中,我们假设水平和垂直极化两者共享同一压缩子矩阵
Figure BDA0002399477950000105
(6)中的压缩矩阵然后被重写为
Figure BDA0002399477950000106
Figure BDA0002399477950000107
C-1-1.矩阵设计I-Alt 0:无功率控制的相位对准
基于信道矩阵压缩算法部分的B部分中的实证研究,我们提出在B中选择第一主波束或选择并组合第一和第二主波束。组合剩余波束以生成第二压缩向量a2。从压缩图样码本中选择压缩向量,其中在所示的特定示例中,信道压缩水平被设置成
Figure BDA0002399477950000108
并且
Figure BDA0002399477950000109
Figure BDA00023994779500001010
包括4或7个预定义的压缩图样。对于给定的组合相位的集合{θ,φ},2比特图样码本
Figure BDA0002399477950000111
被设计成选择B中的单一主波束并组合剩余波束。除了
Figure BDA0002399477950000112
之外,3比特图样码本
Figure BDA0002399477950000113
被设计成组合第一和第二主波束并且组合第三和第四主波束。在压缩图样中,每列表示预定义的单位范数信道压缩向量。每个列向量中的系数的振幅应归一化成具有单位范数增益。
图3和图4中分别描绘了(7)中的2比特压缩图样码本300和(8)中的3位比特压缩图样码本400。在图中,第一图样的集合中的每个图样表示振幅水平,并且第二图样的集合中的每个图样表示相位。如图3和图4所示,每列中的振幅相同,而每列的相位不同。
使用压缩图样码本选择压缩矩阵:
Figure BDA0002399477950000114
Figure BDA0002399477950000115
其中
Figure BDA0002399477950000116
并且包括2B个相位条目的相位码本被定义为
Figure BDA0002399477950000117
(5)中所提出的性能度量,即经压缩的波束空间矩阵的主奇异值,用于评估给定组合相位的集合的预定义压缩图样。
C-1-2.矩阵设计I-Alt 1:具有功率控制的相位对准
在前面的小节中,我们没有考虑压缩向量中振幅系数之间的功率控制。因此,每个列向量中的组合系数的振幅被设置成具有相同的振幅。为了提高系统性能,我们将基于振幅码本来分配包括2B个振幅条目的不同的振幅缩放比例因子
Figure BDA0002399477950000118
(7)和(8)中的压缩图样码本然后被重写为:
Figure BDA0002399477950000121
设计I-Alt 1
其中,组合系数在振幅码本
Figure BDA0002399477950000122
中。在压缩图样中,每列表示预定义的单位范数信道压缩向量。每个列向量中的系数的振幅应归一化为具有单位范数增益。
图5和图6分别描绘了(11)中的2比特压缩图样码本500和(12)中的3比特压缩图样码本600。在图中,第一图样的集合中的每个图样表示振幅水平,并且第二图样的集合中的每个图样表示相位。如图所示,每列中的振幅和相位是不同的。
使用压缩图样码本来选择压缩矩阵:
Figure BDA0002399477950000123
Figure BDA0002399477950000124
其中,
Figure BDA0002399477950000125
并且
Figure BDA0002399477950000126
注意相位码本和振幅码本分别在(9)和(10)中定义。
C-2.矩阵设计II
在矩阵设计II中,我们假设组合相位是极化特定的,而压缩图样是极化公共的。
C-2-1.矩阵设计II-Alt 0:无功率控制的相位对准
两个极化共享同一压缩图样,使得每个极化的子矩阵被选择为:
Figure BDA0002399477950000131
Figure BDA0002399477950000132
其中,
Figure BDA0002399477950000133
并且其中信道压缩水平被设置成
Figure BDA0002399477950000134
的压缩图样码本被定义为:
Figure BDA0002399477950000135
在(5)中所提出的性能度量,即经压缩的波束空间矩阵的主奇异值,用于评估给定的组合相位的集合的预定义压缩图样。在压缩图样中,每列表示预定义的单位范数信道压缩向量。每个列向量中的系数的振幅应归一化以具有单位范数增益。
图7和图8中分别描绘了(13)中的2比特压缩图样码本700和(14)中的3比特压缩图样码本800。在图中,第一图样的集合中的每个图样表示振幅水平,且第二图样的集合中的每个图样表示相位。如图所示,每列中的振幅是相同的,而每列中的相位是不同的。
C-2-2.矩阵设计II-Alt 1:具有功率控制的相位对准
在前面的小节中,我们没有考虑压缩向量中的振幅系数之间的功率控制。因此,组合系数的振幅被设置成具有相同的振幅,即(13)中的
Figure BDA0002399477950000141
和(14)中的
Figure BDA0002399477950000142
为了提高系统性能,我们将基于(10)中的振幅码本来考虑不同的振幅缩放比例因子。(13)和(14)中的压缩图样码本然后被重写为:
Figure BDA0002399477950000143
Figure BDA0002399477950000151
其中,
Figure BDA0002399477950000152
图9和图10中分别描绘了(15)中的2比特压缩图样码本900和(16)中的3比特压缩图样码本1000。在图中,第一图样的集合中的每个图样表示条目的振幅,并且第二图样的集合中的每个图样表示相位信息。如下附图所示,每列中的振幅和相位是不同的。在压缩图样中,每列代表预定义的单位范数信道压缩向量。每个列向量中的系数的振幅应归一化以具有单位范数增益。
每个极化的压缩子矩阵然后被选择为
Figure BDA0002399477950000161
其中
Figure BDA0002399477950000162
Figure BDA0002399477950000163
C-3.矩阵设计III
在矩阵设计III中,我们假设压缩子矩阵是极化特定的(即,组合相位的集合和组合图样两者都是极化特定的)。
C-3-1.矩阵设计III-Alt 0:无功率控制的相位对准
在这种情况下,压缩子矩阵被选择为
Figure BDA0002399477950000164
Figure BDA0002399477950000165
其中,
Figure BDA0002399477950000166
注意,在(7)和(8)中定义了压缩图样码本并且在(9)中定义了相位码本。
C-3-2.矩阵设计III-Alt 1:具有功率控制的相位对准
在这种情况下,压缩子矩阵被选择为
Figure BDA0002399477950000167
Figure BDA0002399477950000168
其中,
Figure BDA0002399477950000169
并且
Figure BDA00023994779500001610
在(11)和(12)中定义了压缩图样码本,并且在(9)中定义了相位码本。
Figure BDA0002399477950000171
宽带和子带量化器
在这部分中,我们基于所提出的信道压缩算法来开发WB和SB量化器。WB和SB量化器两者都被设计成结合或不结合RI-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”中商定的II型CSI码本进行工作。在双码本架构中,WB PMI和SBPMI是按顺序计算的,因此我们在各自小节中介绍WB和SB量化器。
A.所提出的WB量化器
在这部分中,我们基于所提出的具有量化过程的在算法1中概述的信道压缩算法来计算WB PMI。在利用所选择的压缩矩阵Gr来压缩波束空间矩阵之后,WB量化器计算
Figure BDA0002399477950000188
维基组合向量,而II型码本计算2L维基组合向量。
基于RI-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”中的向量量化技术对
Figure BDA0002399477950000181
主目标组合向量进行量化。注意,详细信息如下。为了量化目标组合向量的振幅,我们首先在wr,opt中的
Figure BDA0002399477950000182
个条目中选择最强振幅。所选择的振幅将作为振幅参考,其中在对经量化的振幅进行归一化之前,假定参考振幅为1。然后通过使用(10)中的3比特振幅码本
Figure BDA0002399477950000183
来量化其余的
Figure BDA0002399477950000184
个振幅。在算法1的第4行中,经量化的振幅缩放比例因子pr被归一化成具有单位范数增益。
为了更新波束空间矩阵以用于以下量化回合(round),如算法1的第5行和第6行所述,对基组合向量进行了量化和扩展。在算法1的第6行中,从第r个波束空间矩阵
Figure BDA0002399477950000185
中投射出经扩展的第r个组合向量
Figure BDA0002399477950000186
以更新波束空间矩阵
Figure BDA0002399477950000187
更新后的波束空间矩阵然后被用于计算第(r+1)个组合向量。如下所示的算法2的第11行中所示,以迭代方式,我们构造了经量化的振幅的集合。
Figure BDA0002399477950000191
B.提出的SB量化器
我们接下来基于所提出的其中在算法2中概述了量化过程的信道压缩算法来计算SB PMI。基于Rl-1709232,“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”中的向量量化技术,选择的最强振幅将是相位参考,其中假定参考相位为零,并且使用(9)中的3比特相位码本
Figure BDA0002399477950000192
来对其余的
Figure BDA0002399477950000193
个相位进行量化。在算法2第5行中,我们接下来计算SB振幅缩放比例向量,以提高经量化的振幅pr的分辨率。使用(10)中的1比特振幅码本
Figure BDA0002399477950000194
和WB PMI中的经预量化的振幅向量pr来量化每个SB中目标组合向量的振幅。
为了更新波束空间矩阵以用于以下的回合,如算法2的第6行和第7行所示,对组合向量进行了量化和扩展。在算法2的第7行中,从第r个波束空间矩阵
Figure BDA0002399477950000201
投射出经扩展的第r个组合向量vr[s]∈C2L。更新后的波束空间矩阵
Figure BDA0002399477950000202
然后被用于计算第(r+1)个基组合向量。如算法2的第10和11行所示,以迭代的方式,我们构造了经量化的相位的集合和经量化的振幅的集合。
在算法2的第12行中,基于WB和SB PMI,发射器为每个传输层计算波束成形向量。注意,所提出的WB和SB量化器将结合或不结合RI-1709232,“WF on Type I and II CSIcodebooks(I型和II型CSI码本上的WF)”中的II型CSI码本进行操作。例如,如果基于II型码本来计算秩1-2波束成形器,并基于所提出的量化器来计算秩3-4波束成形器,则算法1和2的第2行中的迭代更新应被重写为3≤r≤R。
[表1]系统级仿真的CSI码本
Figure BDA0002399477950000203
数值仿真
我们评估所提出的量化器的数据速率性能(比特/秒/赫兹/用户)。我们对表1中概述的CSI码本进行评估。CSI码本1是基于Rl-1709232“WF on Type I and II CSIcodebooks(I型和II型CSI码本上的WF)”中的II型码本设计的,并且CSI码本2是基于Rl-1710674,“On higher rank(rank 3and 4)Type II CSI(在较高秩(秩3和秩4)II型CSI上)”中的码本开发的。CSI码本I和II分别是基于矩阵设计I和II开发的。在量化方案a中,基于Rl-1709232“WF on Type I and II CSI codebooks(I型和II型CSI码本上的WF)”中的II型码本来计算秩1-2波束成形器,并且基于信道矩阵压缩算法部分中的信道压缩算法和宽带和子带量化器部分中提出的量化器来计算秩3-4波束成形器。在量化方案b中,基于所提出的算法来计算所有秩1-4波束成形器,以减少更多的反馈开销,其中以下概述了每个码本所需的总反馈开销。通过使用10,000个TTI和40个丢弃(drop)的系统级仿真来获得仿真结果。对于系统级仿真,其中以下概述了其余的仿真参数,我们考虑3D UMi环境,32端口(4、4、2)天线配置以及利用参数λtraffic=2和λtraffic=3.5的非完全缓冲器业务环境。
码本的5%小区边缘和平均吞吐量在以下表2中呈现,参数λtraffic=3.5。图11和图12中也描绘了结果,其分别示出了对于(λtraffic=3.5)的CSI码本的平均吞吐量性能1100和CSI码本的小区边缘吞吐量性能1200。注意,以总反馈开销的升序在x轴中组织码本。码本1给出增强的数据速率性能,而这种方法涉及大量的总反馈开销。在所提出的码本I和II中,在每个SB中对减小的
Figure BDA0002399477950000211
维列向量进行量化。相反,在码本1中需要对2L维列向量进行量化。由于这些原因,在与所提出的码本I和II相比时,码本1具有较大反馈开销的支出。图13和图14中描绘了对于λtraffic=2.0的相应结果。
如表2所示,与码本1相比,所提出的码本减少了总的反馈开销,并且还保持了数据速率性能。码本I-a和II-a获得了22.969~23.716%的反馈开销降低,具有0.627-1.538%的平均吞吐量下降以及0.546-0.789%的小区边缘吞吐量下降。另外,码本I-b和II-b获得34.74-36.228%的反馈开销降低,具有2.855-4.934%的平均吞吐量下降以及1.964-3.649%的小区边缘吞吐量降低。与Rl-1710674,“On higher rank(rank 3and 4)Type IICSI(在较高秩(秩3和4)上的II型CSI)”中的码本2相比,所提出的码本I给出更好的数据速率性能,而反馈开销略有增加。
[表2]CSI码本(λtraffic=3.5)数据速率性能
Figure BDA0002399477950000221
[表3]CSI码本(λtraffic=2)数据速率性能
Figure BDA0002399477950000222
Figure BDA0002399477950000231
结论
在本公开中,我们开发了适用于较高秩传输的较高分辨率的CSI码本。首先,提出了一种信道压缩算法以减少反馈开销。基于实证研究,提出了压缩矩阵设计算法以支持信道压缩算法。其次,我们开发了适用于所提出的信道压缩算法的WB和SB量化器。开发了量化器以结合或不结合商定的II型CSI码本进行使用。系统级仿真证明,所提出的信道压缩算法比以前的CSI码本提供更高的数据速率。所提出的CSI码本保持数据速率性能,而与秩1-4II型CSI码本相比,所提出的码本利用更少的反馈开销。
反馈开销计算
在本节中,计算了表1中CSI码本的反馈开销。我们假设L=4波束选择,R=4最大层传输,并且S=10个SB。
A-1.码本1
我们首先讨论码本1的反馈开销。表4中概述了反馈开销。
[表4]码本1的反馈开销对比
Figure BDA0002399477950000241
秩1-4传输所需的总反馈开销被计算为
Figure BDA0002399477950000242
(比特)。
A-2.码本2
我们接下来讨论码本2的反馈开销。表5中概述了反馈开销。
[表5]码本2的反馈开销对比
Figure BDA0002399477950000243
秩1-4传输所需的总馈开销被计算为
Figure BDA0002399477950000244
(比特)。
A-3.码本I
我们现在讨论我们所提出的CSI码本的反馈开销。表6和表7中概述码本I(基于矩阵设计I所设计)的反馈开销。
[表6]码本I-a的反馈开销对比
Figure BDA0002399477950000251
[表7]码本I-b的反馈开销对比
Figure BDA0002399477950000252
在两种相位码本方案中(即WB中的2比特/3比特相位码本),秩1-4传输所需的总反馈开销被计算为
Figure BDA0002399477950000253
(比特),
Figure BDA0002399477950000254
(比特)。
A-4.码本II
表8和表9中概述码本I(基于矩阵设计II所设计)的反馈开销。
[表8]码本II-a的反馈开销对比
Figure BDA0002399477950000261
[表9]码本II-b的反馈开销对比
Figure BDA0002399477950000262
在两种相位码本方案中(即WB中的2比特/3比特相位码本),秩1-4传输所需的总反馈开销被计算为
Figure BDA0002399477950000263
(比特),
Figure BDA0002399477950000264
(比特)。
仿真假设
[表12]仿真参数
Figure BDA0002399477950000265
Figure BDA0002399477950000271
图15示出了无线通信设备中的方法的流程图1500,该方法用于使用所确定的压缩矩阵从单个波束的默认集合形成支持与网络实体进行通信的复合波束的集合。更具体地,提供了无线通信设备中的方法。该方法包括从网络实体接收1502参考信号,并定义1504单个波束的默认集合,波束中的每个具有相关联的方向。该方法进一步包括确定1506压缩矩阵,并且向网络实体发送1508所确定的压缩矩阵的指示。压缩矩阵1510被应用于单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包括来自默认集合的多个单个波束的组合,以及其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。确定1512波束加权值的集合,并且将所确定的波束加权值的集合发送1514到网络实体。
此外,该方法能够包括:能够产生复合波束的新集合的确定要应用于单个波束的默认集合的压缩矩阵能够包括选择表示第一层的两个压缩子矩阵,其中第一压缩子矩阵和第二压缩子矩阵的每一行可以具有由幅度和相位组成的单个非零条目,并且其中每个非零条目的幅度可以是幅度的集合的成员,并且每个非零条目的相位可以是相位的集合的成员。根据用于为第一层选择两个压缩子矩阵所给出的相同步骤,可以为层的集合的每个附加层选择第一压缩子矩阵和第二压缩子矩阵。针对每一层,可以形成由左上矩阵和右下矩阵组成的块对角压缩矩阵,其中左上矩阵可以是第一压缩子矩阵,并且右下矩阵可以是第二压缩子矩阵。信道状态信息被发送到基站,其中信道状态信息可以包括对应于至少一个层的块对角压缩矩阵的指示。
在某些情况下,压缩子矩阵的列内的条目的幅度可以相同。在这些情况的一些中,第一压缩子矩阵的每列的平方幅度可以等于第二子矩阵中的相应列的幅度。
在某些情况下,第一压缩子矩阵的非零条目的索引的集合可以等于第二压缩子矩阵的非零条目的索引的集合。在这些情况的一些中,压缩子矩阵的列内的非零条目的幅度可以相同。附加地或可替选地,第一压缩子矩阵中的非零条目的幅度和相位可以等于第二压缩子矩阵中的相应非零条目的幅度和相位。在这些情况的一些中,压缩子矩阵的列内的非零条目的幅度和相位可以相同。此外,块对角压缩矩阵的指示可以包括第一压缩子矩阵和第二压缩子矩阵的非零条目的集合的指示。
在某些情况下,两个压缩子矩阵可以仅具有仅包含一个非零条目的一个列。
在某些情况下,两个压缩子矩阵的列的非零条目的幅度的平方和可以等于1。
在某些情况下,压缩子矩阵的每列可以具有带有零相位的至少一个非零条目。
在一些情况下,块对角压缩矩阵的指示可以包括第一压缩子矩阵和第二压缩子矩阵中的非零条目的集合的指示。
在一些情况下,块对角压缩矩阵的指示可以包括第一压缩子矩阵中的非零条目的集合的第一指示和第二压缩子矩阵中的非零条目的集合的第二指示。
在某些情况下,块对角压缩矩阵的指示可以包括压缩子矩阵中的非零条目的幅度的指示。
在某些情况下,块对角压缩矩阵的指示可以包括压缩子矩阵中的非零条目的幅度的指示。
在某些情况下,信道状态信息可以包括一个或多个波束方向的指示。在这些情况中的一些中,可以包括最强波束的方向的指示
在某些情况下,信道状态信息可以包括层的集合中的层的数目的指示。
图16示出用于支持从压缩矩阵确定的复合波束的集合的使用的网络实体中的方法的流程图1600,该压缩矩阵是从无线通信设备接收的并且被应用于单个波束的默认集合以与无线通信设备进行通信。更具体地,提供了一种网络实体中的方法。该方法包括:发送1602参考信号,以及从无线通信设备接收1604所确定的压缩矩阵的指示以被应用于所定义的单个波束的默认集合,波束中的每个具有相关联的方向。将压缩矩阵应用于1606单个波束的默认集合,产生复合波束的新集合,其中复合波束中的至少一个包括来自默认集合的多个单个波束的组合,并且其中复合波束中的至少一个中包括的多个单个波束各自沿不同方向延伸。从无线通信设备接收1608所确定的波束加权值的集合。将所确定的波束加权值的集合应用于1610所产生的复合波束的新集合,以支持网络实体与无线通信设备之间的无线通信。
应当理解,尽管附图中示出特定的步骤,但是基于实施例,可以执行各种附加或不同的步骤,并且基于实施例可以重新布置、重复或完全消除一个或多个特定的步骤。同样,可以在执行其他步骤的同时,持续地或连续地重复执行某些步骤。此外,可以由公开的实施例的不同元件或在单个元件中执行不同的步骤。
图17是根据可能的实施例的诸如无线通信设备110的装置1700的示例框图。装置1700可包括壳体1710、壳体1710内的控制器1720、耦合到控制器1720的音频输入和输出电路1730、耦合到控制器1720的显示器1740、耦合到控制器1720的收发器1750、耦合到收发器1750的天线1755、耦合到控制器1720的用户接口1760、耦合到控制器1720的存储器1770以及耦合到控制器1720的网络接口1780。装置1700可以执行所有实施例中描述的方法。
显示器1740可以是取景器、液晶显示器(LCD)、发光二极管(LED)显示器、等离子显示器、投影显示器、触摸屏或任何其他显示信息的设备。收发器1750可以包括发射器和/或接收器。音频输入和输出电路1730可以包括麦克风、扬声器、换能器或任何其他音频输入和输出电路。用户接口1760可以包括键区、键盘、按钮、触摸板、操纵杆、触摸屏显示器、另一附加显示器或用于在用户和电子设备之间提供接口的任何其他设备。网络接口1780可以是通用串行总线(USB)端口、以太网端口、红外发射器/接收器、IEEE 1394端口、WLAN收发器或者可以将装置连接到网络、设备或计算机和能够发送和接收数据通信信号的其他任何接口。存储器1770可以包括随机存取存储器、只读存储器、光学存储器、固态存储器、闪存、可移动存储器、硬盘驱动器、高速缓存或可以耦合至装置的任何其他存储器。
装置1700或控制器1720可以实现任何操作系统,诸如Microsoft
Figure BDA0002399477950000301
Figure BDA0002399477950000302
Android TM或任何其他操作系统。装置操作软件可以用诸如例如C、C++、Java或Visual Basic的任何编程语言编写。装置软件也可以在诸如,例如
Figure BDA0002399477950000303
框架、.NET框架或任何其他应用框架的应用框架上运行。软件和/或操作系统可以存储在存储器1770中或装置1700上的其他地方。装置1700或控制器1720还可以使用硬件来实现所公开的操作。例如,控制器1720可以是任何可编程处理器。所公开的实施例还可以在通用或专用计算机、编程的微处理器或微处理器、外围集成电路元件、专用集成电路或其他集成电路、诸如分立元件电路的硬件/电子逻辑电路、诸如可编程逻辑阵列、现场可编程门阵列等的可编程逻辑器件上实现。通常,控制器1720可以是能够操作装置并实现所公开的实施例的任何控制器或处理器设备或多个处理器设备。装置1700的一些或全部附加元件也可以执行所公开的实施例的一些或全部操作。
本公开的方法可以在编程的处理器上实现。然而,控制器、流程图和模块也可以在通用或专用计算机、编程的微处理器或微控制器以及外围集成电路元件、集成电路、诸如分立元件电路的硬件电子或逻辑电路、可编程逻辑器件等上实现。通常,存在能够实现图中所示的流程图的有限状态机的任何设备都可以用于实现本公开的处理器功能。
尽管已经用本公开的具体实施例描述了本公开,但是很明显,对于本领域技术人员来说许多替代、修改和变化将是显而易见的。例如,在其他实施例中,实施例的各种组件在其他实施例中可以互换、添加或替换。而且,每个附图的所有要素对于所公开的实施例的操作不是必需的。例如,所公开的实施例的本领域的普通技术人员将能够通过简单地采用独立权利要求的要素来进行和使用本公开的教导。因此,本文中阐述的本公开的实施例旨在是说明性的,而不是限制性的。在不脱离本公开的精神和范围的情况下,可以进行各种改变。
在本文献中,诸如“第一”、“第二”等的相关术语仅可用于区分一个实体或动作与另一实体或动作,而不必要求或暗示此类实体或动作之间的任何实际的这种关系或次序。由列表紧随其后的短语“…中的至少一个”,“选自…的组中的至少一个”或“选自…中的至少一个”被定义为意指一个、一些或全部,但不一定是列表中元素的全部。术语“包含(comprises)”,“包含(comprising)”,“包括(including)”或其任何其他变体旨在覆盖非排他性包含,使得包括一系列元素的过程、方法、物品或设备不仅仅包括那些元素,而是可以包括未明确列出或此类过程、方法、物品或设备所固有的其他元素。在没有更多限制的情况下,以“一”,“一个”等开头的元素并不排除在包括该元素的过程、方法、物品或设备中存在其他相同元素。此外,术语“另一个”的被定义为至少第二或更多。如本文中所使用的,术语“包括”、“具有”等被定义为“包括”。此外,背景部分被写为发明人在提交时对一些实施例的上下文的理解,并且包括发明人对现有技术的任何问题和/或发明人自己的工作中遇到的问题的认识。

Claims (20)

1.一种无线通信设备中的方法,包括:
从网络实体接收参考信号;
定义单个波束的默认集合,所述波束中的每个具有相关联的方向;
确定压缩矩阵;
向所述网络实体发送所述确定的压缩矩阵的指示;
将所述压缩矩阵应用于单个波束的默认集合,产生复合波束的新集合,其中所述复合波束中的至少一个包括来自所述默认集合的多个单个波束的组合,以及其中所述复合波束中的至少一个中包括的所述多个单个波束各自沿不同方向延伸;
确定波束加权值的集合;以及
将所述确定的波束加权值的集合发送到所述网络实体。
2.根据权利要求1所述的方法,其中,产生所述复合波束的新集合的确定要被应用于所述单个波束的默认集合的所述压缩矩阵包括:
选择表示第一层的两个压缩子矩阵,
其中,第一压缩子矩阵和第二压缩子矩阵的每行具有由幅度和相位组成的单个非零条目;以及
其中,每个非零条目的幅度是幅度的集合的成员,并且每个非零条目的相位是相位的集合的成员;
根据用于为所述第一层选择所述两个压缩子矩阵而给出的相同步骤,为层的集合的每个附加层选择第一压缩子矩阵和第二压缩子矩阵;
针对每个层,形成由左上矩阵和右下矩阵组成的块对角压缩矩阵;
其中,所述左上矩阵是所述第一压缩子矩阵,以及
其中,所述右下矩阵是所述第二压缩子矩阵;以及
向基站发送信道状态信息;
其中,所述信道状态信息包括与至少一个层相对应的所述块对角压缩矩阵的指示。
3.根据权利要求2所述的方法,其中,所述压缩子矩阵的列内的条目的幅度是相同的。
4.根据权利要求3所述的方法,其中,所述第一压缩子矩阵的每列的平方幅度等于所述第二压缩子矩阵中的相应列的幅度。
5.根据权利要求2所述的方法,其中,所述第一压缩子矩阵的所述非零条目的索引的集合等于所述第二压缩子矩阵的非零条目的索引的集合。
6.根据权利要求5所述的方法,其中,所述压缩子矩阵的列内的非零条目的幅度是相同的。
7.根据权利要求5所述的方法,其中,所述第一压缩子矩阵中的非零条目的幅度和相位等于所述第二压缩子矩阵中的相应非零条目的幅度和相位。
8.根据权利要求7所述的方法,其中,所述压缩子矩阵的列内的非零条目的幅度和相位是相同的。
9.根据权利要求5所述的方法,其中,所述块对角压缩矩阵的指示包括所述第一压缩子矩阵和所述第二压缩子矩阵的非零条目的集合的指示。
10.根据权利要求2所述的方法,其中,两个压缩子矩阵仅具有仅包含一个非零条目的一个列。
11.根据权利要求2所述的方法,其中,两个压缩子矩阵的所述列的非零条目的幅度的平方和等于1。
12.根据权利要求2所述的方法,其中,压缩子矩阵的每列具有带有零相位的至少一个非零条目。
13.根据权利要求2所述的方法,其中,所述块对角压缩矩阵的指示包括所述第一压缩子矩阵和所述第二压缩子矩阵中的非零条目的集合的指示。
14.根据权利要求2所述的方法,其中,所述块对角压缩矩阵的指示包括所述第一压缩子矩阵中的非零条目的集合的第一指示和所述第二压缩子矩阵中的非零条目的集合的第二指示。
15.根据权利要求2所述的方法,其中,所述块对角压缩矩阵的指示包括压缩子矩阵中的非零条目的幅度的指示。
16.根据权利要求2所述的方法,其中,所述块对角压缩矩阵的指示包括压缩子矩阵中的非零条目的幅度的指示。
17.根据权利要求2所述的方法,其中,信道状态信息包括一个或多个波束方向的指示。
18.根据权利要求17所述的方法,其中,信道状态信息包括最强波束方向的指示。
19.根据权利要求2所述的方法,其中,信道状态信息包括所述层的集合中的层的数目的指示。
20.一种无线通信设备,包括:
收发器,所述收发器从网络实体接收参考信号,并且使用所产生的复合波束的新集合与所述网络实体进行无线通信;
控制器,所述控制器定义单个波束的默认集合,所述波束中的每个具有相关联的延伸方向;
其中,所述控制器进一步确定压缩矩阵,并且将所述压缩矩阵应用于所述单个波束的默认集合,产生复合波束的新集合,以及将所述确定的压缩矩阵的指示发送到所述网络实体,其中所述复合波束中的至少一个包括来自所述默认集合的多个单个波束的组合,以及其中所述复合波束中的至少一个中包括的所述多个单个波束各自沿不同方向延伸;以及
其中,波束加权值的集合被确定并且被发送到所述网络实体。
CN201880057288.2A 2017-10-02 2018-10-02 使用确定的压缩矩阵来形成复合波束的集合的方法和装置 Active CN111052622B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762567169P 2017-10-02 2017-10-02
US62/567,169 2017-10-02
PCT/IB2018/001209 WO2019069128A1 (en) 2017-10-02 2018-10-02 METHOD AND APPARATUS FOR USING A DETERMINED COMPRESSION MATRIX TO FORM A SET OF COMPOSITE BEAMS

Publications (2)

Publication Number Publication Date
CN111052622A true CN111052622A (zh) 2020-04-21
CN111052622B CN111052622B (zh) 2022-06-17

Family

ID=64556945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880057288.2A Active CN111052622B (zh) 2017-10-02 2018-10-02 使用确定的压缩矩阵来形成复合波束的集合的方法和装置

Country Status (3)

Country Link
US (1) US10879973B2 (zh)
CN (1) CN111052622B (zh)
WO (1) WO2019069128A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052622B (zh) * 2017-10-02 2022-06-17 联想(新加坡)私人有限公司 使用确定的压缩矩阵来形成复合波束的集合的方法和装置
JP2020504512A (ja) * 2017-11-27 2020-02-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてcsi報告を行うための方法及びそのための装置
WO2019144377A1 (en) * 2018-01-26 2019-08-01 Qualcomm Incorporated Techniques and apparatuses for precoding configuration
US11283508B2 (en) * 2018-06-29 2022-03-22 Intel Corporation Millimeter wave beam tracking and beam sweeping
US10707931B2 (en) * 2018-11-02 2020-07-07 At&T Intellectual Property I, L.P. Linear combination codebook based per layer power allocation feedback for 5G or other next generation network
WO2020108777A1 (en) 2018-11-30 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Approaches for beam selection
WO2020118501A1 (en) * 2018-12-11 2020-06-18 Qualcomm Incorporated Basis report for compressed csi feedback with non-contiguous subband configuration
US20220321176A1 (en) * 2019-08-20 2022-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Approaches for beam measurements
WO2021155514A1 (en) * 2020-02-05 2021-08-12 Nokia Shanghai Bell Co., Ltd. Channel state information (csi) feedback enhancement depicting per-path angle and delay information

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227495A1 (en) * 2007-03-16 2008-09-18 Kotecha Jayesh H Reference signaling scheme using compressed feedforward codebooks for MU-MIMO systems
CN102122983A (zh) * 2011-04-18 2011-07-13 电信科学技术研究院 一种码本的生成、信息的发送、反馈方法及设备
US20140192918A1 (en) * 2013-01-09 2014-07-10 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
WO2016003235A1 (ko) * 2014-07-04 2016-01-07 엘지전자 주식회사 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
US20160050006A1 (en) * 2013-04-16 2016-02-18 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN106452536A (zh) * 2015-08-07 2017-02-22 上海贝尔股份有限公司 用于多输入多输出通信的长期反馈的方法和装置
CN106487435A (zh) * 2015-08-24 2017-03-08 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置
US9647736B1 (en) * 2015-03-05 2017-05-09 Quantenna Communications, Inc. Compressed training for massive MU-MIMO in a wireless local area network
US20170257230A1 (en) * 2014-11-28 2017-09-07 Samsung Electronics Co., Ltd. Channel estimation method and apparatus in wireless communication system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949179B2 (en) * 1994-08-25 2005-09-27 University Of Iowa Research Foundation Methods for forming magnetically modified electrodes and articles produced thereby
EP1746732A4 (en) * 2004-04-28 2008-02-27 Mitsubishi Electric Corp RETRANSMISSION CONTROL METHOD AND COMMUNICATION DEVICE
US8619976B2 (en) * 2007-12-13 2013-12-31 Nec Corporation Encryption method, decryption method, device, and program
US20130201895A1 (en) * 2010-01-26 2013-08-08 Joseph Smallcomb Method for Automatic Reconfiguration in a Hierarchical Modulation System
US20130084570A1 (en) * 2010-04-14 2013-04-04 The Board Of Regents Of The University Of Texas Sy Methods of evaluating response to cancer therapy
CN102217240B (zh) * 2011-05-18 2014-02-19 华为技术有限公司 矢量dsl的方法、系统及一种单板和dslam设备
WO2014101055A1 (zh) * 2012-12-27 2014-07-03 华为技术有限公司 信道状态信息反馈的方法以及一种用户设备和基站
US9231674B1 (en) * 2015-02-19 2016-01-05 Winbond Electronics Corp. Method and system for constrained power allocation in the multi-input multi-output systems
JP2016163078A (ja) * 2015-02-26 2016-09-05 富士通株式会社 復調装置および復調方法
US9692450B2 (en) * 2015-05-11 2017-06-27 Maxio Technology (Hangzhou) Ltd. Systems and methods for early exit of layered LDPC decoder
KR102150316B1 (ko) * 2016-04-01 2020-09-01 후아웨이 테크놀러지 컴퍼니 리미티드 프리코딩 행렬 표시를 위한 피드백 방법 및 장치
US10455636B2 (en) * 2016-09-16 2019-10-22 Nec Corporation Link packing in mmWave networks
US10200103B2 (en) * 2016-11-23 2019-02-05 Samsung Electronics Co., Ltd. Method and apparatus to enable multi-resolution CSI reporting in advanced wireless communication systems
WO2018141090A1 (en) * 2017-02-04 2018-08-09 Qualcomm Incorporated Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
US10250313B2 (en) * 2017-03-09 2019-04-02 Samsung Electronics Co., Ltd. Method and apparatus for covariance matrix feedback in advanced wireless communication systems
US10945214B2 (en) * 2017-08-18 2021-03-09 Qualcomm Incorporated Uplink power control
KR102131428B1 (ko) * 2017-09-29 2020-07-08 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN111052622B (zh) * 2017-10-02 2022-06-17 联想(新加坡)私人有限公司 使用确定的压缩矩阵来形成复合波束的集合的方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227495A1 (en) * 2007-03-16 2008-09-18 Kotecha Jayesh H Reference signaling scheme using compressed feedforward codebooks for MU-MIMO systems
CN102122983A (zh) * 2011-04-18 2011-07-13 电信科学技术研究院 一种码本的生成、信息的发送、反馈方法及设备
US20140192918A1 (en) * 2013-01-09 2014-07-10 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
US20160050006A1 (en) * 2013-04-16 2016-02-18 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
WO2016003235A1 (ko) * 2014-07-04 2016-01-07 엘지전자 주식회사 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
US20170257230A1 (en) * 2014-11-28 2017-09-07 Samsung Electronics Co., Ltd. Channel estimation method and apparatus in wireless communication system
US9647736B1 (en) * 2015-03-05 2017-05-09 Quantenna Communications, Inc. Compressed training for massive MU-MIMO in a wireless local area network
CN106452536A (zh) * 2015-08-07 2017-02-22 上海贝尔股份有限公司 用于多输入多输出通信的长期反馈的方法和装置
CN106487435A (zh) * 2015-08-24 2017-03-08 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置

Also Published As

Publication number Publication date
WO2019069128A1 (en) 2019-04-11
CN111052622B (zh) 2022-06-17
US20190103904A1 (en) 2019-04-04
US10879973B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
CN111052622B (zh) 使用确定的压缩矩阵来形成复合波束的集合的方法和装置
CN107733493B (zh) 用于确定预编码矩阵的方法和装置
CN107872261B (zh) 一种报告信道状态信息的方法、用户设备和基站
US8976884B2 (en) Method and apparatus for antenna array channel feedback
US8594161B2 (en) Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook
CN111314034B (zh) 用于csi报告和使用的增强频率压缩的方法和装置
EP2936703A1 (en) Method and apparatus for antenna array channel feedback
WO2014099343A1 (en) Method and apparatus for antenna array channel feedback
JP5112497B2 (ja) 無線通信装置と方法
US11387887B2 (en) Method and apparatus for generating a channel state information report
US20220255606A1 (en) Transform Domain Channel State Information Feedback
CN109560847B (zh) 信道状态信息反馈和接收方法、发送端设备和接收端设备
KR20220097401A (ko) 계수들을 포함하는 csi 보고를 전송하기 위한 방법 및 장치
CN111106857A (zh) 指示和确定预编码向量的方法以及通信装置
CN107707285A (zh) 信道状态信息的发送方法、接收方法、装置和系统
CN112751598A (zh) 一种预编码矩阵的处理方法和通信装置
US11159346B2 (en) Co-polarized feedback for frequency domain compression
CN108667490B (zh) 一种信道状态信息反馈方法及装置
CN103973410B (zh) 信道信息反馈方法及装置、数据传输方法及装置
US11115846B2 (en) Method and apparatus for generating a channel state information report using an oversampling factor for a subset of the set of beams
WO2017028641A1 (zh) 信息反馈方法、信息反馈装置及终端
GB2495168A (en) Rank considerations when determining a joint precoding matrix for use in a distributed antenna MIMO system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant