CN111051806A - 冷却水监测和控制系统 - Google Patents

冷却水监测和控制系统 Download PDF

Info

Publication number
CN111051806A
CN111051806A CN201880058889.5A CN201880058889A CN111051806A CN 111051806 A CN111051806 A CN 111051806A CN 201880058889 A CN201880058889 A CN 201880058889A CN 111051806 A CN111051806 A CN 111051806A
Authority
CN
China
Prior art keywords
cooling water
heat exchanger
fouling
transfer efficiency
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880058889.5A
Other languages
English (en)
Other versions
CN111051806B (zh
Inventor
C·迈尔斯
A·普拉卡什
R·拉加瓦普迪
S·克拉马尔沙克
S·J·辛特龙
D·迈耶
J·瓦特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab USA Inc
Original Assignee
Ecolab USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolab USA Inc filed Critical Ecolab USA Inc
Publication of CN111051806A publication Critical patent/CN111051806A/zh
Application granted granted Critical
Publication of CN111051806B publication Critical patent/CN111051806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/10Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/008Monitoring fouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • C02F2209/105Particle number, particle size or particle characterisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Pathology (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feedback Control In General (AREA)

Abstract

一种控制冷却水处理的方法可以包括测量接收来自冷却塔的冷却水的一个或多个下游换热器的运行数据。例如,可以测量下游换热器的热流和冷流的入口和出口温度。来自穿过所述换热器的所述流的数据可以用于测定所述换热器的传热效率。所述传热效率可以在一段时间内保持趋势,并且可以检测所述趋势的变化以鉴定冷却水结垢问题。可以评估所察觉到的污垢问题的多种潜在原因,以确定预测原因。可以基于所述结垢的预测原因来控制选择用于减少、消除或以其他方式控制所述冷却水结垢的化学添加剂。

Description

冷却水监测和控制系统
交叉引用
本申请要求2017年11月10日提交的美国临时专利申请第62/584,671号和2018年8月21日提交的美国临时专利申请第62/720,605号的优先权,每个临时专利申请的全部内容通过引用并入本文。
技术领域
本公开涉及冷却水系统,并且更具体地涉及冷却水控制系统。
背景技术
水冷却塔用于大容量换热系统,例如在炼油厂和化工厂中使用的那些系统。冷却塔用于通过蒸发冷却塔中的一部分冷却剂来从循环水冷却剂中去除吸收的热量。剩余的冷却剂可通过泵从塔底的储罐或贮槽中抽出,并通过热负荷连续提供。由于在此类系统中会蒸发大量的水,因此随着时间的推移,水垢、淤泥或其他水污染物可能会在循环水中积聚。
为了帮助防止与循环冷却水接触的表面上结垢或限制结垢程度,可以在冷却水中添加各种化学药品。在典型的运行环境中,技术人员可以从冷却水系统中获取冷却水样品,并对样品进行化学分析。技术人员可以基于分析调整添加到冷却水中的化学药品的类型。通常,技术人员只能在设备现场进行有限的冷却水分析,例如每周一次或每月一次。结果,直到工艺条件改变后的一段时间,才可能检测到设备工艺条件的变化。而且,即使改变了冷却水的化学成分以说明变化的工艺条件,这种电荷通常也是反作用的而不是预测性的变化,以防止不良的冷却水条件。
发明内容
一般而言,本公开涉及用于监测和控制冷却水的技术和系统。在一些实例中,通过评估通过其输送冷却水的一个或多个下游传热单元的热性能来监测和/或控制冷却水回路中的冷却水条件。例如,换热网络可包括一个或多个冷却塔,这些冷却塔流体地连接至多个换热并向多个换热供给冷却水。冷却水可以通过每个换热器的一侧,而待冷却的工艺流体通过换热器的另一侧,流体被固体金属壁隔开。跨换热器的换热可以沿顺流(平行)或逆流(相反)方向进行。
为了部署冷却水控制系统,可以对冷却水回路中的多个换热器进行调查,以鉴定一个或多个对换热器所处设备的运行性能至关重要的换热器。例如,可以对换热器进行评估以确定其结垢史,回路内的旁路换热器的可用性(如果结垢条件变得重要),对水侧结垢的敏感性,或者指示一个或多个特定换热器的传热效率对于用户的工艺完整性至关重要的其他条件。在鉴定为临界的换热器尚未仪表化用于监测的意义上来说,可以增加各种监测设备来监测换热器的性能。例如,可以增加测量进入和离开换热器的冷却水流的温度以及进入和离开换热器的工艺流的温度的温度传感器。再如,可以增加测量通过交换器的冷却水的流量的传感器和/或测量跨交换器的压降的压差传感器。
与对临界换热器监测的参数类型无关,可以至少部分基于温度数据来确定与换热器的传热效率相对应的参数。例如,可以确立换热器的传热效率趋势以提供参考,可以从该参考确定未来与该趋势的偏差。换可以随后监测热器的传热效率并检测传热效率的变化。传热效率趋势的变化可指示结垢的开始或加速,这可以为采取干预性冷却水控制措施制止或减轻此类结垢的影响提供可检测的证据。
实际上,传热效率趋势的变化可具有许多不同的冷却水相关的根本原因。减少所检测到的传热效率趋势的负偏差的适当冷却水控制措施可因基础的根本原因而有所不同。在根据本公开的一些实例中,冷却水控制技术涉及获得指示多种不同类型的潜在根本原因的数据,这些潜在根本原因可引起结垢,从而导致传热效率条件恶化。例如,可以提供传感器阵列以测量通过正在监测其热效率特征的换热器的冷却水的不同特征和参数。传感器可以提供指示不同类型的结垢机制的数据,例如水垢结垢、腐蚀结垢和生物结垢。单个传感器测量值或参数可以与特定结垢机制相关联。可替代地,可以测量冷却水的多个不同参数以提供指示特定结垢机制的数据。
在任一种情况下,都可以基于与不同类型结垢机制相关联的数据来确定导致传热效率趋势发生变化的结垢的预测根本原因。例如,可以对与每种特定类型的结垢机制相关联的数据进行缩放和/或加权,以鉴定比评估为会引起结构的其他原因或机制更有可能的特定原因或机制。然后可以采取冷却水控制措施来抵抗预测结垢原因。例如,可以将选择用于抵抗预测结垢原因的一种或多种化学添加剂引入冷却水中和/或可以调节此类化学添加剂的比率。另外或可替代地,可以放空冷却水塔,用新鲜的补给水代替一部分循环的冷却水。
在一些应用中,监测临界换热器的传热效率以评估响应于预测结垢原因而采取的纠正措施的功效。例如,可以监测临界换热器的传热效率以检测传热效率趋势的第二变化,例如,表明传热效率以比采取纠正措施之前更慢的速率恶化。如果未检测到响应于纠正措施的传热效率趋势变化和/或传热效率趋势甚至比采取此类纠正措施之前进一步恶化,则可以确定预测的根本原因不是结垢问题的真正根本原因。因此,可以鉴定出替代的预测根本原因,并采取一种或多种替代的冷却水控制措施。例如,可以控制选择用于抵抗替代的预测结垢原因的一种或多种化学添加剂,而不是控制抵抗原始的预测结垢原因的添加剂。
通过准确而迅速地检测换热器的冷却水侧的初始结垢状况并做出反应,可以避免更严重的结垢。在某些应用中,提供了实时监测和控制以促进对意外恶化的换热器热效率条件的快速响应。这种快速干预可以延长换热器的使用寿命,直到下一次物理清洗为止,这中方式是如果换热器在检测到结垢状况之前就已完全结垢所无法实现的。
在一个实例中,描述了一种方法,其包括监测至少一个换热器的传热效率,并确立该换热器的传热效率趋势。换热器具有工艺流侧和冷却水流侧。该方法包括检测传热效率趋势的变化。该方法还涉及接收指示冷却水流侧的水垢结垢的数据,指示冷却水流侧的腐蚀结垢的数据,以及指示冷却水流侧上的生物结垢的数据。该方法包括确定检测到的传热效率趋势变化的预测原因,并基于预测原因,控制向与所述至少一个换热器的冷却水流侧流体连通的冷却水中添加化学添加剂。
在另一个实例中,描述了一种控制冷却水系统的方法。该方法涉及调查换热器网络内的多个换热器,以鉴定至少一个临界换热器。该方法包括监测临界换热器的传热效率,确立临界换热器的传热效率趋势,并检测传热效率趋势的变化。另外,该方法涉及接收指示冷却水流侧水垢结垢的数据,接收指示冷却水流侧腐蚀结垢的数据,接收指示冷却水流侧生物结垢的数据。该方法还涉及确定检测到的传热效率趋势变化的预测原因,其中该预测原因包括选自水垢结垢、腐蚀结垢和生物结垢的原因。该方法还涉及基于预测原因来控制向与所述至少一个临界换热器的冷却水流侧流体连通的冷却水中添加化学添加剂,以及响应于向冷却水中受控添加化学添加剂而检测传热效率趋势的变化。
在另一实例中,描述了一种控制冷却水处理的方法。该方法包括从多个传感器接收至少指示进入换热器的冷却水流的温度,离开该换热器的冷却水流的温度,进入该换热器的工艺流的温度,以及离开该换热器的工艺流的温度的数据。该方法还涉及基于从所述多个传感器接收到的数据确定换热器的传热效率,并确立该换热器在一段时间内的传热效率趋势。该方法还涉及检测传热效率趋势的变化并响应于所检测到的换热器的传热效率趋势的变化来控制向冷却水流中添加化学添加剂。
在另一个实例中,描述了一种系统,其包括冷却塔、换热器、多个传感器、泵和控制器。冷却塔通过蒸发冷却来降低冷却水流的温度。换热器具有冷却水入口、冷却水出口、工艺流入口和工艺流出口。所述多个传感器定位成测量通过冷却水入口进入换热器的冷却水流的温度,通过冷却水出口离开换热器的冷却水流的温度,通过工艺流入口进入换热器的工艺流的温度,以及通过工艺流出口离开换热器的工艺流的温度。泵位于换热器的上游,并且配置为将化学添加剂注入冷却水流中。所述控制器与所述多个传感器和所述泵通信耦合,并且配置为:从所述多个传感器接收数据,基于从所述多个传感器接收到的数据来确定所述换热器的传热效率,确立所述换热器在一段时间内的传热效率趋势,检测传热效率趋势的变化,并响应于所检测到的所述换热器的传热效率趋势的变化来控制所述泵。
附图和以下描述中阐述了一个或多个实例的细节。其它特征、目标和优势将从描述和附图以及权利要求书中显而易见。
附图说明
图1是示出了含有多个换热器的示例性换热器网络的流程图,其中可以实现根据图2的冷却水监测和控制系统。
图2是示例性冷却水监测和控制系统的概念图。
图3是示出示例性氨生产工艺的流程图,其中可以实现根据图2的冷却水监测和控制系统。
图4-7显示了换热器上的流动流的示例性原始温度数据和平滑温度数据。
图8显示了换热器的示例性冷却水流量数据,提供了图4–7中所示的温度数据。
图9是显示使用来自图4-8的平滑温度数据和流量数据计算的示例性传热系数的图表。
图10是显示使用来自图4-8的平滑温度数据和流量数据计算的,覆盖有周期性标记的示例性传热系数的图表。
图11显示了与图8中的流量数据相对应的冷却水流的示例性氧化还原电位(ORP)值。
图12-15显示了另一示例性换热器上的流动流的示例性原始温度数据和平滑温度数据。
图16显示了换热器的示例性冷却水流量数据,提供了图12-15中所示的温度数据。
图17是显示使用来自图12-16的平滑温度数据和流量数据计算的示例性传热系数的图表。
图18是显示使用一段时间内的平滑温度数据计算的实验传热系数的图表。
图19是显示与图18中的数据相关联的不同潜在结垢机制的累积结垢评分的条形图。
图20是显示使用一段时间内的平滑温度数据计算的实验传热系数的图表。
图21是显示与图20中的数据相关联的不同潜在结垢机制的累积结垢评分的条形图。
具体实施方式
本公开总体上涉及冷却水监测和控制系统,包括用于控制向用于与一种或多种比较热的液流进行换热的冷却水源中添加一种或多种化学试剂的系统和技术。添加到冷却水中的所述一种或多种化学试剂可以防止或最小化与冷却水流体接触的换热表面上结垢沉积的程度。这可以提高其中实现控制冷却水化学药品添加的换热网络的设备的效率。
虽然可以针对任何期望的冷却水系统和任何换热器应用实现根据本公开的系统和技术,但是在一些实例中,所述技术在联网换热器系统中实现。联网换热器的冷却水侧可以彼此流体耦合,使得冷却水再循环通过网络并通过网络内的多个换热器(例如串联和/或并联)。在多个换热器共用循环冷却水的应用中,可以对换热器进行调查,以鉴定网络内可以进行进一步监测以控制冷却水系统的一个或多个临界换热器。可以对换热器进行评估,以鉴定网络中的一个或多个特定换热器,所述特定换热器基于它们的结垢可能性,相对于总体设计的当前性能,对水侧结垢的敏感性和/或它们对整个过程的临界性,应该比网络中的其他换热器更密切地受到监测。可以将此类换热器指定为临界换热器,并且可以对该换热器进行热效率监测,以控制供给临界换热器以及网络内的其他换热器的冷却水系统。
图1是示出了含有多个换热器的示例性换热器网络100的流程图,其中可以实现根据本公开的冷却水监测和控制系统。如该实例所示,多个换热器104A-104E与冷却塔102供给的冷却水流流体连接。冷却水并联流过换热器104A和104B,然后串联流过换热器104C-104E,然后返回冷却塔。每个换热器104都具有彼此分开的工艺流侧和冷却水流侧,并允许热能从通过工艺流侧的工艺流传递到通过冷却水流侧的冷却水流。虽然图1中的换热器网络100示为具有五个换热器,但是应当理解,换热器网络可以具有更少的换热器(例如,两个、三个、四个)或更多的换热器(例如,六个、七个或更多个),并且本公开在这方面不受限制。
在网络中存在多个换热器的应用中,一个或多个换热器(以及任选地,所有换热器)可包括如连同图2中的换热器104一起描述的传感器。管理冷却水系统的控制器可以从传感器接收数据。这些数据可以提供关于在换热器网络100内监测的另外一个换热器的传热效率和/或流过所述系统的冷却水的特征的信息。控制器接收的流过所述系统的冷却水的特征可以指示在换热器网络内发生的潜在结垢原因,这也将在下面更详细地描述。因此,可以采取冷却水控制措施以尝试减轻换热器网络100内检测到的结垢。
虽然可以收集与换热器网络100内所有换热器的传热效率有关的数据,但实际上,需要监测的换热器的数量以及每个换热器中不同的结垢情况可能使这种扩大性监测不切实际。因此,在这些应用中,可以对网络内的多个换热器(任选地,网络内的所有换热器)进行初始调查,以鉴定一个或多个适于进一步监测的特定换热器。该调查可涉及获得所调查的换热器的历史操作、历史设计和/或当前性能数据,以指定一个或多个换热器比网络中要监测的其他换热器更为临界(例如,仅一个换热器、两个换热器或更多个换热器是临界的)。
换热器网络100内可以使其成为进一步监测的临界换热器的换热器特定属性可以根据特定应用而变化。一般而言,该调查可以设法鉴定换热器网络100内的哪个换热器或哪些换热器在结垢时对整合该换热器网络的整个工艺的效率和可操作性具有更大的影响。例如,如果换热器网络100中的特定换热器具有在冷却水侧结垢的速度比网络内的其他换热器快的历史(例如,可能指示整个换热器网络的清洁周期),则可以将此类交换器指定为临界换热器。再如,如果换热器网络100中的特定换热器的运行性能比网络内的其他换热器更多地偏离其设计运行性能,则可以将此类换热器指定为临界换热器。虽然针对临界性的性能特征可能有所不同,例如,取决于换热器的设计配置和目标运行特征,但是诸如通过换热器的冷却水速度小于1英尺/秒和/或冷却水流出口温度超过140华氏度的参数可以表明有更高的结垢可能性,从而确保将换热器指定为临界换热器。
在评估是否应将换热器网络100中的特定换热器指定为临界换热器以进一步监测时,可以考虑旁路换热器的可用性。旁路换热器可以是换热器网络100内的另一个换热器,例如,与评估其临界性的换热器并联。旁路换热器可以是离线的,或者可以具有附加吞吐量。在主换热器结垢的情况下,可以使旁路换热器在线和/或将附加流量从主换热器引导至旁路换热器。相应地,虽然要评估其临界性的主交换器中的结垢可能是有影响的,但旁路交换器在不关闭整个换热器网络和/或工艺的情况下重定向流量的可用性可能导致将主交换器指定为临界交换器。
与冷却水控制系统相关联的控制器可以接收与换热器网络100内的多个换热器的临界性相关联的数据,并且鉴定网络内应当在对其进行进一步监测的一个或多个临界换热器。例如,与调查的换热器的历史操作、历史设计和/或当前性能数据相关联的数据可以存储在与控制器相关联的存储器中。然后,在控制器上执行的软件可以分析所存储的数据,以将换热器网络100内的一个或多个换热器鉴定为临界换热器。可替代地,实现冷却水控制方法的用户可以基于场域特定的因素将一个或多个特定换热器指定为是临界的。
与用于将特定换热器指定为临界的特性和工艺无关,可以监测这样指定的换热器以获得信息和对流过换热器的冷却水状态的了解。例如,可以增加传感器以监测流过临界换热器的液流,以提供与用于控制冷却水系统的换热器的热效率有关的数据。
图2是示例性冷却水监测和控制系统10的概念图,其可以针对根据对换热器网络进行的调查而指定为临界换热器的换热器104实现。在所示实例中,系统10包括冷却塔102、一个或多个换热器104和泵106,泵106可以将一种或多种化学试剂引入到通过换热网络再循环的冷却水流中。控制器136管理系统10的整体运行。在运行中,比较热的工艺流可以通过换热器104的工艺流侧,而比较冷的冷却水流可以通过换热器的冷却水流侧。流体可以被换热器内的固体壁表面隔开,以防止流体混合。热能可以从比较热的工艺流转移到比较冷的冷却水流,从而导致工艺流的温度降低而冷却水流的温度升高。虽然为了说明的目的,图2的示例性系统仅包括单个换热器104,但是利用本公开的概念的换热网络可以包括多个换热器(例如,描述了与换热器104一样配置的换热器),如上面关于图1所讨论的。
在图2的实例中,换热器104包括冷却水入口108和冷却水出口110。换热器还包括工艺流入口112和工艺流出口114。冷却水流116可以通过冷却水入口108进入换热器104,流过换热器内部一条或多条分开的通路,并通过冷却水出口110离开换热器。同样,工艺流118可以通过工艺流入口112进入换热器104,流过换热器内部与冷却水流隔开的一条或多条分开的通路,并通过工艺流出口114离开换热器。在一些配置中,冷却水流和工艺流沿顺流方向流过换热器。在其他配置中,工艺流中的冷却水流沿逆流方向流过换热器。一般而言,换热器104可以使用任何期望类型的换热器设计来实现,例如管壳式换热器、板式换热器或其他类型的热传递装置。
在示出的配置中,冷却水流116从上游冷却塔102输送到换热器104,并且在通过换热器之后循环回到冷却塔。如上所述,冷却水流116可在进入换热器104之前通过一个或多个换热器,和/或可在返回冷却塔102之前通过换热器104之后通过一个或多个换热器。在冷却塔102处,传递到流过传热回路的冷却水流的热能可以被去除并排放到大气中。例如,冷却塔102可以使冷却水流与空气直接接触,从而导致冷却水流的温度通过蒸发冷却而降低。冷却水可以在被抽出并通过换热网络之前输送到贮槽或储罐。
除了通过蒸发失水以外,还可以定期地从换热系统中去除冷却水。排放管线120可用于在系统运行时排出(或“放空”)贮槽或储罐的一部分水。在任何情况下,“补给”水管线122均可向冷却系统供给新鲜水,以补充通过蒸发或故意倾倒而失去的水分。
实际上,各种各样的问题都可以从换热器的冷却水侧影响换热器104的热性能。例如,如果冷却水含有高水平的固体(例如,淤泥、碎屑),则这些固体可以部分或完全堵塞通过换热器104的冷却水流体通路。例如,冷却水可导致在与冷却水接触的换热器104的内表面上形成沉积物。
例如,冷却水的蒸发可导致循环通过系统的冷却水流中的盐(例如钙、钠、镁)浓缩。这些盐可以在与冷却水接触的换热器104的表面上形成水垢沉积物。再如,如果冷却水包含有机材料和微生物,则生物膜可沉积在与冷却水接触的换热器104的表面上。再如,例如由于金属部(例如铁、铝和/或锌)的氧化,可在冷却水流中产生腐蚀产物。这些腐蚀产物也可沉积在与冷却水接触的换热器104的表面上。与结垢的机制或原因无关,阻挡层在与冷却水接触的换热器104的表面上的积聚可降低通过换热器的传热效率。
为了帮助减少或消除通过传热网络的冷却水流中的潜在结垢情况,可以将一种或多种化学药品添加到冷却水中以抑制污垢的形成和/或沉积。在图2的配置中,系统10包括一个或多个泵106A-106Z(统称为“泵106”),其流体连接至一个或多个相应的化学添加剂储罐124A-124Z(统称为“化学药品储罐124”)。泵106可以运行以将一种或多种化学药品添加到冷却水中,所述化学药品是选择用于抑制污垢在与冷却水接触的表面上形成和/或沉积的。可以注入冷却水中的示例性化学添加剂包括但不限于聚合物(分散剂和阻垢剂)、有机磷化合物如膦基琥珀酸低聚物(PSO、阻垢剂和阻蚀剂)、锌(阻蚀剂)、正磷酸盐(阻蚀剂)、聚磷酸盐(阻垢剂和阻蚀剂)、杀生物剂及其组合。另外或可替代地,可以将一种或多种化学添加剂注入冷却水中以调节冷却水的pH。pH调节控制剂的实例包括无机酸、有机酸和无机碱。
在图2的所示配置中,将泵106示出为向冷却塔102和换热器104之间的冷却水中添加化学添加剂。实际中,化学添加剂可以在任何合适的位置(例如与冷却塔相关联的贮槽)处引入冷却水流中。而且,虽然图2中的系统10示出了与单个化学添加剂储罐124流体耦合的单个泵106,但是泵106可以与含有不同化学药品的多个储罐选择性地流体连通,和/或系统10可以包括多个泵,每个泵都配置成将不同化学药品引入冷却水中。通过提供多种不同的化学添加剂,包括以上讨论的那些中的一些或全部,可以基于冷却水变化的条件而改变引入冷却水中的化学药品的类型。
为了控制向系统10中的冷却水中添加化学添加剂,可以监测换热器104的热性能。可以监测换热器104的热性能,以评估热能从比较热的工艺流转移至比较冷的冷却水流的效率。当换热器是新的或已进行清洁时,换热器104的传热效率可能最大。例如,可以定期使用化学和/或机械清洁工具清洁换热器104,以去除交换器的工艺侧和/或冷却侧上的结垢,只要换热器的换热表面是清洁的并且基本上或完全不结垢即可。随着使用时间的推移,结垢沉积物可积聚在换热器传热表面的工艺流侧和/或冷却水流侧。因此,在从一次清洁到下一次清洁的使用过程中,换热器104的传热效率可恶化。
为了帮助监测换热器104的传热效率,可以部署多个传感器以监测换热器的不同运行方面。在图2的实例中,系统10包括测量进入换热器104的冷却水流116的温度的温度传感器126和测量离开换热器的冷却水流的温度的温度传感器128。该系统还包括测量进入换热器104的工艺流118的温度的温度传感器130和测量离开换热器的工艺流的温度的温度传感器132。虽然将温度传感器示意性地示出为靠近换热器104定位,但是温度传感器可以定位在换热器的上游或下游位置,只要温度传感器提供进入或离开换热器的相应液流的温度的适当准确的测量值即可。
系统10可以包括附加的和/或不同的传感器以测量换热器104的不同运行参数。例如,该系统可以包括一个或多个流量传感器,以测量冷却水流116和/或工艺流118的流量。在所示实例中,系统10显示了流量传感器134,该流量传感器134定位成测量离开换热器104的冷却水流的流量。在其他实例中,冷却水流116和/或工艺流118的流量可以基于泵速或运行环境内指示通过换热器输送的大量流体的其他信息来确定。可以在系统10中有用地使用的其他传感器包括压力传感器(例如,以测量穿过换热器的冷却水流和/或工艺流的压差)。
除了监测换热器104的特征外,系统10可以在线监测和/或从离线分析源接收有关流过系统(包括换热器104)的冷却水的特征的数据。该数据可以提供指示换热器104的冷却水侧的潜在结垢特征和相应结垢原因的信息。这可以与来自换热器104的传热效率信息结合使用,以控制系统10中的冷却水。
实际上可以观察到的典型结垢原因包括水垢引起的结垢,腐蚀引起的结垢和/或生物源引起的结垢(所谓的生物结垢)。
如本文所用,术语“水垢结垢”是指来自于冷却水或在冷却水中形成的颗粒物质对换热表面的结垢,所述颗粒物质包括但不限于诸如碳酸钙、磷酸钙、硅酸镁、二氧化硅、氧化锰、磷酸铝、淤泥和沙子等成分。
术语“腐蚀结垢”是指腐蚀形成的沉积物(例如主要是金属氧化物)对换热表面的结垢,这些沉积物可以是就地形成的,也可以是通过破裂和从系统其他位置重新沉积而形成的。
术语“生物污染”是指生物有机体、其细胞外分子或代谢副产物对换热表面的结垢。
为了获得指示换热器104的冷却水侧的一种或多种潜在结垢原因的信息,系统10可以生成和/或控制器136可以接收与不同的潜在结垢机制相关联的信息。每个潜在结垢机制可以与正在测量的单个参数相关联,或者可以与正在测量的多个参数相关联,这些参数共同提供有关潜在结垢机制是实际的基础结垢机制的可能性的信息。例如,可以测量与系统10中正在评估的每个潜在结垢机制相关联的多个不同参数,并在确定潜在相关结垢机制是否可能是实际的基础线结垢机制时综合考虑。
为了获得指示在流过换热器104的冷却水内的机制中的不同结垢状况的数据,系统10可以包括多个不同的传感器135A-135Z(统称为“传感器135”),其提供关于在换热器104的冷却水侧的结垢状况的信息。例如,在图2中,将系统10示为具有至少一个传感器135A、至少一个传感器135B和至少一个传感器135C,传感器135A提供指示在换热器104的冷却水侧的水垢结垢的信息,传感器135B提供指示换热器的冷却水侧的腐蚀结垢的信息,传感器135C提供指示换热器的冷却水侧的生物结垢的信息。
此类传感器可以以多种不同的方式在系统10中实现。例如,一个或多个传感器可以定位成与直接地或经由从主冷却水流拉出的滑流流过换热器104的冷却水(例如,在交换器的上游或下游)成一直线。可替代地,一个或多个传感器可以实现为离线监测工具,不与流过换热器104的冷却水直接流体连通。在这些应用中,流过换热器104的冷却水可以从系统中提取出来并输送到离线分析系统中。此类离线分析可涉及例如使用一个或多个传感器直接评估样品,或者可涉及对样品的进一步处理,例如对样品进行湿化学处理以产生与样品相关联的数据。在任一种情况下,控制器136都可以接收由传感器135生成的数据和/或与评估中的冷却水相关联的数据,例如,以存储在存储器中和/或进行进一步处理。
例如,下表示出了可以使用在线和/或离线监测技术获得的示例性冷却水数据以及数据的示例性捕获频率:
Figure BDA0002407209570000111
Figure BDA0002407209570000121
诸如前述表中所例示的分析数据可以输入和/或存储在控制器136可访问的计算机可读介质中,以进行本文所述的分析和控制技术。应当理解,归因于系统100中的控制器136的计算功能可以在与系统相关联的任何一个或多个控制器上进行,无论是物理上在现场的还是远程定位,并且本文所述的功能不限于在任何特定的硬件设备或硬件设备的组合上进行。因此,对于在控制器136上进行的某些计算功能的描述是出于讨论的目的,并且本公开在这方面不受限制。
为了评估系统10中的结垢状况是由水垢引起的可能性,控制器136可以接收与水垢结垢机制相关联的数据。系统10中的传感器135可以生成并且控制器136可以接收关于冷却水中的磷酸盐浓度,冷却水中的钙浓度,冷却水中的锰浓度,冷却水中的铝浓度,冷却水中的铁浓度,冷却水中的磷酸盐浓度,冷却水中的碱度浓度和/或冷却水中的二氧化硅浓度的数据。这些组分中的一种或多种的浓度增加可能与水垢结垢的风险增加相关。
再如,传感器135可以使用光学传感器来实现,以提供指示冷却水中颗粒的浓度和/或大小的测量值。例如,光学传感器可以用于测量冷却水的浊度和/或光散射特征。冷却水中微粒浓度的增加可能与水垢结垢成分相关,这暗示了水垢结垢机制。另外或可替代地,可以使用光学传感器来测量在换热器104的冷却水流侧或其类似物,例如暴露于和换热器所暴露的相同冷却水条件的金属试样或测试条的表面的结垢形成。光学传感器可以在光学上评估在监测的表面上形成的污垢,以确定污垢的特征,并相应地确定该污垢是否与水垢结垢机制(或腐蚀或生物结垢)相关。
控制器136可以接收指示潜在水垢结垢机制的附加或不同数据,并使用该信息来控制冷却水系统。例如,控制器136可以接收与跨换热器104冷却水侧的压降相对应的数据,并且基于该压降来计算C因子(导热系数)。C因子随时间的降低可包括水垢结垢的形成。
为了评估系统10中的结垢状况是由腐蚀引起的可能性,控制器136可以接收与腐蚀结垢机制相关联的数据。系统10中的传感器135可以生成并且控制器136可以接收关于冷却水中的铁浓度和/或冷却水中的铜浓度的数据。这些组分中的一种或多种的浓度增加可能与腐蚀结垢成分相关。再如,可以使用线性极化探头来进行指示冷却水中的腐蚀状况的电阻测量。
再如,可以使用光学传感器来测量在换热器104的冷却水流侧或其类似物,例如暴露于和换热器所暴露的相同冷却水条件的金属试样或测试条的表面的结垢形成。光学传感器可以在光学上评估在监测的表面上形成的污垢,以确定污垢的特征,并相应地确定该污垢是否与腐蚀结垢机制相关。当使用类似物测量系统10内的结垢状况而不是在换热器104的冷却水侧的表面上进行直接测量时,该类似物可以或可以不是由与限定换热器的冷却水流侧的金属相同的冶金形成的。
在系统10的一个示例性配置中,模型或测试换热器可以连同换热器104一起使用,以提供对在换热器104中发生的腐蚀行为的了解。模型换热器可以是与主换热器104不同的换热器,并且可以具有较小的容量。可以将类似于换热器104的冷却水侧的金属功能的管或试样放置在壳体内。模型换热器可以例如通过采用滑流而流体连接至通过换热104的冷却水和/或工艺流。
为了评估系统10中的结垢状况是由生物结垢引起的可能性,控制器136可以接收与生物结垢机制相关联的数据。系统10中的传感器135可以生成并且控制器136可以接收关于冷却水中的三磷酸腺苷的浓度,冷却水中的总有机碳的量和/或冷却水的氧化还原电位的数据。这些成分可能与冷却水中可引起生物结垢的生物活性相关。
另外或可替代地,可以使用光学传感器来测量在换热器104的冷却水流侧或其类似物,例如暴露于和换热器所暴露的相同冷却水条件的金属试样或测试条的表面的结垢形成。光学传感器可以在光学上评估在监测的表面上形成的污垢,以确定污垢的特征,并相应地确定该污垢是否与生物结垢机制相关。再如,可以使用荧光计测量由冷却水中的生物分子的激发产生的荧光,从而提供冷却水中的生物活性的指示。
控制器136可以接收指示潜在水垢结垢机制的附加或不同数据,并使用该信息来控制冷却水系统。例如,控制器136可以接收与对冷却水进行的生物学测定,例如浮游和/或固着活性的测定相对应的数据。测定的结果可以提供冷却水中生物有机体水平的测量,并相应地提供生物结垢机制的可能性。
系统10可以包括其他传感器135,其提供关于系统中的冷却水的状态以及在换热器的冷却水侧发生的潜在结垢机制的信息。例如,除了监测流过换热器104的冷却水的温度之外,pH传感器还可以监测冷却水的pH。再如,在将化学添加剂引入冷却水流中以抵抗潜在结垢原因的情况下,该添加剂可以包括荧光标记的聚合物或惰性荧光示踪剂,可以对其进行荧光分析以测定冷却水中的化学药品浓度。控制器136可以基于荧光反应来评估化学添加剂的消耗速率,以帮助确定检测到的冷却水结垢是与处理的结垢机制相关联还是潜在地与不同的结垢机制相关联。
图2的实例中的系统10还包括控制器136。控制器136可以与系统10的传感器组件和可控组件通信连接,以管理系统的整体运行。例如,控制器136可以与泵106、冷却水入口温度传感器126、冷却水出口温度传感器128、工艺流入口温度传感器130、工艺流出口温度传感器132、流量传感器134和传感器135通信连接。
控制器136包括处理器138和存储器140。控制器136通过有线或无线连接与通信连接的组件通信,在图2的实例中,示为有线连接。从控制器136发送并由控制器接收的控制信号可以经连接传播。存储器140存储用于运行控制器136的软件,并且还可以存储由处理器138生成或接收的,例如从温度传感器126、128、130、132和流量传感器134接收的数据。处理器138运行存储在存储器140中的软件以管理系统10的操作。
控制器136可以使用一个或多个控制器来实现,所述控制器可以位于包含换热器104的设备现场。控制器136可以经由网络144与一个或多个远程计算设备142通信。例如,控制器136可以与地理分布的云计算网络通信,云计算网络可以进行本公开中归因于控制器136的任何或所有功能。
网络144可以配置成将一个计算设备耦合至另一计算设备,以使所述装置能够一起通信。可以使网络144能够采用任何形式的计算机可读介质将信息从一个电子装备与另一电子设备通信。此外,网络144除了局域网(LAN)、广域网(WAN)、直接连接(例如通过通用串行总线(USB)端口)、其他形式的计算机可读介质或其任意组合之外,还可以包括无线接口和/或有线接口(例如Internet)。在一组互连的LAN(包括基于不同体系结构和协议的LAN)上,路由器可以充当LAN之间的链路,使消息能够彼此发送。LAN内的通信链路可以包括绞合线对或同轴电缆,而网络之间的通信链路可以利用模拟电话线、全或部分专用数字线、综合业务数字网(ISDN)、数字用户线(DSL),无线链路(包括蜂窝的和卫星链接)或其他通信链路。此外,远程计算机和其他相关电子设备可以经由调制解调器和临时电话链路远程连接到LAN或WAN。
在操作中,温度传感器126、128、130和132可以生成指示进入或离开换热器104的相应流体流的温度的数据。同样,流量传感器134可以生成指示离开换热器104的冷却水流量的数据。控制器136可以从整个系统10中部署的传感器接收数据,并使用由传感器生成的数据来确定换热器104的传热效率。参考存储器中存储的,将接收到的温度信息和/或流量信息与传热效率值联系起来的信息,控制器136可以确定换热器的传热效率值。
在一些实例中,控制器136可以使用以下方程式(1)来确定换热器104的传热效率:
方程式1:
Figure BDA0002407209570000161
在上面的方程式(1)中,U值是传热效率,
Figure BDA0002407209570000164
是冷却水流的质量流量,Cp是冷却水流的比热,ΔT是离开所述换热器的冷却水流的温度与进入换热器的冷却水流的温度之差,传热面积是工艺流与冷却水流之间传输热能的换热器的表面积的量,Ft是与换热的几何形状相对应的校正因子并且ΔTLMTD是对数平均温差。诸如冷却水流的比热、换热器104的传热面积和校正因子之类的参数可以存储在存储器中和/或可基于存储器中存储的计算信息来计算。例如,用户可以使用用户输入设备将与冷却水流的比热(例如,水的比热)以及对应于换热器104的几何形状的特征相对应的信息存储在控制器136的存储器140中。
可以使用下面的方程式(2)或(3)来计算以上方程式(1)中的对数平均温差。
方程式2:
Figure BDA0002407209570000162
方程式3:
Figure BDA0002407209570000163
方程式(2)可用于冷却水流和工艺流沿逆流方向流动的情况。方程式(3)可用于冷却水流和工艺流沿顺流方向流动的情况。在方程式(2)和(3)中,T进入的工艺流是由温度传感器130测量的进入所述换热器的工艺水流的温度,T离开的工艺流是由温度传感器132测量的离开所述换热器的工艺流的温度,t进入的水流是由温度传感器126测量的进入所述换热器的冷却水流的温度,并且t离开的水流是由温度传感器128测量的离开所述换热器的冷却水流的温度。
控制器136可以从系统10中的传感器接收数据,并连续地或定期地确定换热器104的传热效率。例如,控制器136可以确定换热器104的传热效率每天至少一次,例如每小时至少一次,每分钟至少一次或每秒至少一次。控制器136计算换热器104的传热效率的频率可以根据系统10中传感器的采样率,控制器136的处理能力和/或来选择应计算传热效率的频率的操作人员输入而变化。
实际上,理想的是,换热器104表现出在换热器的服务间隔期间仍然较高(例如,基本恒定)的高传热效率。然而,实际上,换热器104的传热效率可能随时间而降低,因为在换热器的工艺流侧和/或在换热器的冷却水侧污垢积聚。通过监测换热器上污垢积聚的速率和换热器的热效率变化的相应速率,可以通过控制泵106采取干预措施以控制响应于检测到热效率的变化而向冷却水流中添加一种或多种化学添加剂。
在一些实例中,控制器136确立换热器104在一段时间内的传热效率趋势。确立传热效率趋势的时间段可以始于换热器首次投入使用(例如,是新的或在清洁之后)时。这是在换热器104最不可能结垢的时候。可替代地,确立传热效率趋势的时间段可以始于换热器投入使用一段时间之后。例如,传热效率趋势可以始于冷却水流发生变化(例如,放空之后)和/或流过换热器104的工艺流发生变化(例如温度、压力、组成变化)时。
与用于测量换热器104的传热效率趋势的时间段何时开始无关,控制器136可以在有效地提供传热效率行为的统计上合理的趋势的时间段内测量传热效率。例如,控制器136可以测量换热器104的传热效率至少1天,例如至少5天、至少10天、至少20天或至少30天。在一些实例中,控制器136在范围从1天至120天的时间段内,例如从5天至100天,从10天至45天,或从5天至30天的时间段内,测量换热器104的传热效率。在一些实例中,控制器136将传热效率测量为在先前一定天数内,例如5天至50天的持续期内的滚动平均值。
控制器136可以基于在测量期内接收到的传感器信息来生成传热效率值。控制器136还可以对在测量期内确定的传热效率值进行统计趋势分析,以鉴定换热器104的传热效率的趋势。
在一些实例中,控制器136可将曲线与在图的y轴上绘制的传热效率值拟合,而在图的x轴上绘制相应的测量时间。在一个实例中,曲线具有形式y=m*x+b的一阶方程,其中y是传热效率,x是时间,m是曲线的斜率,b是曲线的截距。曲线的斜率“m”可以作为与换热器104的传热效率相对应的趋势存储在与控制器136相关联的存储器中。在其他实例中,高阶多项式曲线可以与数据拟合。
在一些实例中,在计算传热效率之前,控制器136处理从传感器126、128、130和132接收的温度数据和/或从传感器134接收的流量数据。例如,控制器136可以使用统计平滑算法使数据平滑以从数据中去除噪声和离群值。然后控制器136可以使用平滑温度值来确定传热效率。可替代地,控制器136可以计算原始数据的传热效率值,并对计算出的传热效率值应用平滑算法。可以使用平滑数据进行后续趋势分析和变化检测。
在确立传热效率趋势之后,控制器136可以继续从系统10中的传感器接收测量值并基于所接收的传感器数据生成传热效率值。控制器136可以将换热器104的传热效率信息与为换热器确定的传热效率趋势进行比较,并检测传热效率趋势是否存在变化。例如,控制器136可以确定测量期的传热效率趋势,并将该趋势与早期确立的趋势进行比较。测量期可以比较短(例如,一天或更少)或更长(例如,一天或更多,例如一周或更多)。在控制器136将一阶方程式与基于从换热器104接收的数据计算的传热效率数据拟合的应用中,控制器可以确定在测量期内的传热效率的斜率。控制器136可以将换热器104在测量期(比较期)内的传热效率趋势的斜率与早期确立的传热效率趋势(基线期)的斜率进行比较。
为了对趋势变化进行相对比较和量化,可以使用各种不同的指标将传热效率数据的数据集划分为基线期和比较期。在一些实例中,基于影响系统10的操作的事件将传热效率数据划分为事件之前的基线期和事件之后的比较期。示例性事件包括:工厂关闭和启动(例如,检修),更换冷却水接触的一件设备(例如,泵、换热器),冷却塔水和/或相关化学原料中的水化学药品扰动(例如,水中化学物质的浓度变化大于10%,例如大于20%,大于50%或大于100%),运行温度变化,工艺流组成或条件变化及其组合。事件之前的传热效率趋势数据可以形成基线期,而事件之后的传热效率趋势数据可以形成比较期。可经由用户界面通过用户输入或控制器接收的指示事件发生的其他监测数据将事件通知给控制器136。
再如,控制器136可以确立传热效率趋势数据的移动平均值(例如,具有介于10天至3个月之间的周期)作为基线,并且将稍后的传热效率趋势数据与移动平均值进行比较以提供比较。再如,控制器136可基于持续时间将监测到的传热效率数据划分为两个周期(例如,基线期和比较期),并将这两个周期彼此进行比较。例如,控制器136可以将监测到的传热效率数据划分为在基线持续时间内产生的基线期和在比较持续时间内产生的比较期。基线持续时间和比较持续时间可以彼此相同或不同。在一些实例中,基线持续时间和比较持续时间各自的长度范围从监测传热效率趋势数据的一周到监测传热效率趋势数据的6个月,例如从监测传热效率趋势数据的2周到监测传热效率趋势数据的4个月,或者从监测传热效率趋势数据的1个月到监测传热效率趋势数据的3个月。
在某些应用中,和控制器136用于将与传热效率相对应的数据划分为基线期和比较期的技术无关,控制器136将两个周期内传热效率的变化相互进行比较。例如,控制器136可以通过比较每个周期的拟合趋势线的斜率来确定基线期和比较期的传热效率的百分比变化。
由于基线期的持续时间或长度可以与比较期不同,因此控制器136可以将每个周期计算出的传热效率变化针对标准化持续时间进行归一化。例如,控制器136可以针对年化(12个月)周期或其他持续时间的周期来调整(例如,线性外推)所计算的变化。通过说明的方式,在基线期的持续时间为3个月的情况下,控制器136可以将基线期计算出的传热效率变化乘以4,以将该变化年化为12个月。
控制器136可以将基线期的传热效率趋势与比较期的传热效率趋势进行比较。控制器136可以通过比较经时间调整的(例如,年化的)基线期内的传热效率变化与经时间调整的比较周内的传热效率变化来进行比较。在不同的实例中,控制器136可以计算两个值之差(例如,通过将经时间调整的基线期内的传热效率变化减去经时间调整的比较期内的传热效率变化),两个值之比,或表示两个值之间的比较的其他参数。
控制器136可以确定在测量期的传热效率趋势是否与早期确立的传热效率趋势相差超过阈值量。阈值量可以大于或等于早期确立的传热效率值(例如,斜率)的1%,例如大于或等于早期确立的传热效率值的5%,大于或等于早期确立的传热效率值的10%,大于或等于早期确立的传热效率值的25%,或大于或等于早期确立的传热效率值的50%。例如,阈值量的范围可以是早期确立的传热效率值的1%至50%,例如2%至25%,或5%至20%。
在控制器36确定表示两个周期内传热效率的比较的参数的情况下—例如,经时间调整的基线期内的传热效率变化与经时间调整的比较周期内的传热效率变化之差—阈值可以是一个或多个离散值,而不是百分比。当参数是年化U值差(例如,比较期内的年化U值变化减去基线期内的年化U值变化)时,阈值可以为每年零或更小BTU/hr/ft2/degF,例如为每年-10或更小BTU/hr/ft2/degF、每年-25或更小BTU/hr/ft2/degF。
如果传热效率趋势反向偏离早期确立的传热效率趋势,则可能表明换热器在测量期结垢的速度比在早期运行期间更快。如果不进行处理,较快的结垢可能会降低换热器104的运行效率,潜在地需要在下一次计划清洁之前进行昂贵且计划外的关闭以清洁换热器。例如,当确定与两个监测的时间周期之间的比较相对应的参数等于或低于阈值时,控制器136可以确定可能发生有问题的冷却水结垢。相反,如果确定参数高于阈值,则控制器136可以确定可能不会发生有问题的冷却水结垢。
为了帮助响应于检测到的传热效率趋势变化,控制器136可以确定传热效率趋势变化的预测原因,并基于该预测原因来控制冷却水系统。控制器136可以基于接收到的与换热器140的冷却水侧的不同潜在结垢原因相对应的数据来确定传热效率趋势变化的预测原因。例如,控制器136可以接收与潜在的水垢结垢根本原因,潜在的腐蚀结垢根本原因相对应的数据以及与生物结垢根本原因相对应的数据。根据接收到的不同数据,控制器136可以从正在基于接收到的数据进行评估的不同原因中确定预测的或最可能的结垢原因。然后控制器136可以基于预测的结垢原因来控制冷却水系统10。
在一些实例中,控制器136向接收到的每个数据参数应用加权因子,所述数据参数对应于正在评估以确定领先或预测的结垢原因的不同类型的污染机制。每个加权因子可以对应于特定数据参数在确定冷却水侧结垢问题的基础根本原因时具有的预测强度和证据力。可以基于将特定参数与特定结垢机制联系起来的经验数据因果分析来确定特定加权因子。可以基于与监测和控制的特定冷却水过程有关的应用特定的因子进一步上调或下调加权因子。控制器136可以确定要用于每个特定数据参数的加权因子,或者可以将加权因子编程到与控制器136相关联的存储器中,并由控制器用于确定与检测到的传热效率趋势变化相关的结垢的预测原因。
尽管由控制器136应用的特定加权因子可以基于该应用而变化,但是表1、2和3提供了可以应用于可以与不同类型的结垢机制相关联的不同参数的示例性加权因子的范围。在表中,基线百分比是指与在低结垢率(例如基线)运行条件下测得的参数相比,检测到传热效率变化(例如结垢率增加)后测得的参数。同样,KPI(关键绩效指标)的百分比是指与目标系统参数(例如,基线)运行条件下测得的目标值相比,检测到传热效率变化(例如,呈结垢状态)后测得的参数的值。此外,应当理解,在前述表格中列出的结垢参数为实例,并且本公开在这个方面不受限制。
表1:与水垢结垢相对应的示例性参数和相关的示例性加权因子。
水垢结垢参数 数值 权重
表面的光学结垢测量 %>基线 0.5至4
浊度 %>基线 0.25至1
光散射 %>基线 0.25至1
温度 %>基线 0.5至4
pH %>基线 0.5至4
PO4浓度 %>基线 0.5至2
Ca浓度 %>基线 0.25至1
Mg浓度 %>基线 0.25至1
Al浓度 %>KPI 0.5至2
Mn浓度 %>KPI 0.5至2
Fe浓度 %>KPI 0.5至2
二氧化硅浓度 %>基线 0.5至2
碱度浓度 %>基线 0.25至4
水处理化学药品浓度 %<基线 0.5至2
水侧C因子 %>基线 0.5至2
分散聚合物消耗量 %>基线 0.5至2
冷却水处理进料速率 %>基线 0.5至4
表2:与腐蚀结垢相对应的示例性参数和相关的示例性加权因子。
腐蚀结垢参数 数值 权重
线性极化测量 %>KPI 0.5至2
点蚀指数 %>KPI 0.5至2
光学腐蚀测量 %>基线 0.25至1
试样腐蚀率 %>KPI 0.5至2
局部试样渗透 %>KPI 0.5至2
温度 %>基线 0.25至1
pH %<基线 0.5至4
铁浓度 %>KPI 0.5至4
铜浓度 %>KPI 0.5至2
水处理化学药品浓度 %<KPI 0.5至2
表3:与生物结垢相对应的示例性参数和相关的示例性加权因子。
微生物控制指标的状态 数值 权重
测试表面(微生物传感器)的结垢 %>基线 0.5至4
浊度 %>基线 0.25至1
光散射 %>基线 0.25至1
荧光法观察到的微生物活性 %>基线 0.5至4
ATP感测 %>基线 0.5至2
浮游测定方法 %>KPI 0.5至4
固着测定方法 %>KPI 0.5至4
环境温度 %>基线 0.25至1
TOC浓度 %>KPI 0.5至2
氧化剂残留水平 %<KPI 0.5至4
氧残留水平 %<KPI 0.25至1
氧化还原电位 %<基线 0.5至4
电流测量 %<基线 0.5至4
氧化剂残留物的衰减时间 %>基线 0.5至2
氧化剂消耗量 %>基线 0.5至4
荧光生物活性探头的浓度比 %>基线 0.5至2
冷却水处理进料速率 %<基线 0.5至4
控制器136可以通过将相应的数据参数乘以其相应的加权因子来应用加权因子。根据可用于特定参数的数据点的数量,控制器136可对参数的多个测量值求平均,并将加权因子应用于参数的平均值。例如,控制器136可以确定多个数据点的平均值、中位数或众数以提供参数的平均值,然后将加权因子应用于平均后的参数。获得求平均的测量参数的周期可以始于检测到换热器104的传热效率趋势变化时。传热效率趋势的变化可以预示与结垢状况变化相对应的冷却水条件变化。因此,在数据不能反映冷却水条件变化的一些情况下,可以省略在检测传热效率趋势变化之前进行的测量。
为了鉴定可能引起检测到的传热效率趋势变化的潜在结垢的预测原因,控制器136可以确定被评估为潜在根本原因的每个结垢机制的总结垢评分。控制器136可以通过对与参数结垢机制相关联的加权参数求和来确定累积结垢评分。例如,控制器136可以通过对指示水垢结垢的每个加权数据参数求和来确定累积水垢结垢评分。控制器136可以通过对指示腐蚀结垢的每个加权数据参数求和来确定累积腐蚀结垢评分。此外,控制器136可以通过对指示生物结垢的每个加权数据参数求和来确定累积生物结垢评分。
实际上,与被评估为检测到的传热效率变化的根本原因的每种结垢类型相关的数据参数的数量可能会有所不同。例如,测量的与潜在水垢结垢原因相对应的参数的数量可以与测量的与潜在腐蚀结垢原因相对应的参数的数量不同,每个参数可以与测量的与潜在生物结垢原因相对应的参数的数量相同或不同。在存在这种差异的情形下,可以基于参数的数量来归一化与每种类型的结垢机制相对应的加权参数的总和。例如,控制器136可以将与每种类型的结垢机制相对应的加权参数的总和除以参数的数量。这样可以为正在评估的每种类型的潜在结垢机制提供累积结垢评分,将累积结垢评分归一化以允许不同结垢评分之间进行交叉比较。
控制器136可以通过将每种类型的潜在结垢机制的累积结垢评分彼此进行比较来确定可归因于检测到的传热效率趋势变化的结垢预测原因。例如,根据加权因子缩放的程度,控制器136可以鉴定累积结垢评分中最小(最小值)或最大(最大值)评分。然后控制器136可以将与所鉴定的累积结垢评分相关联的结垢原因确立为检测到的传热效率变化的预测原因。然后控制器136可以基于预测原因控制引入冷却水系统中的另一种化学添加剂。
在一些实例中,控制器136将与不同潜在结垢机制相对应的每个累积结垢评分与一个或多个阈值进行比较。控制器136可以基于该比较来确定结垢的预测原因,或者确定不太可能发生结垢。控制器136将每个累积结垢评分与之进行比较的特定阈值可以例如基于所应用的加权因子的大小而变化。然而,在一些应用中,控制器136将每个累积结垢评分与第一阈值(例如为0.25的第一阈值)进行比较。该阈值可以根据所用加权因子的大小和实现该系统的用户的结垢容差而变化。与所用的特定值无关,如果累积结垢评分低于第一阈值,则控制器136可以指示与结垢评分相关联的结垢机制不太可能会引起结垢,并且不需要采取措施。例如,如果换热器被冷却水中与结垢无关的松散碎屑堵塞,则将累积结垢评分与阈值进行比较可能会揭示,传热效率趋势的相应变化不是由水垢、腐蚀或微生物结垢引起的。
另外或可替代地,控制器136可以将每个累积结垢评分与第二阈值进行比较。第二阈值可以与第一阈值相差至少2倍。在一些实例中,第二阈值大于第一阈值。例如,在第一阈值为0.25的实例中,第二阈值可为0.5。同样,根据应用于数据的特定加权因子,可以使用不同的阈值。如果累积结垢评分高于第二阈值,则控制器136可以指示与结垢评分相关联的结垢机制可能引起结垢,并且需要采取补救措施。如果累积结垢评分介于两个阈值之间,则控制器可以向用户界面发出警告(例如,采取或不采取措施),指示需要密切监测潜在的结垢。
控制器136可以基于预测结垢原因,通过采取措施抵抗预测结垢原因来控制系统10。例如,控制器136可以控制系统10放空冷却塔102。再如,控制器136可以通过控制选择用于抵抗预测结垢原因的化学添加剂的添加来控制系统10。例如,在预测原因是水垢结垢的情况下,控制器136可以控制阻垢剂和/或pH控制剂的添加以抑制系统中水垢结垢的格式化。再如,在预测原因是腐蚀结垢的情况下,控制器136可以控制阻蚀剂和/或pH控制剂的添加以抑制系统中的腐蚀结垢。再如,在预测原因是生物结垢的情况下,控制器136可以控制杀生物剂和/或pH控制剂的添加以抑制系统中的生物结垢。
虽然将前述补救措施描述为由控制器136进行,但是应当理解,进行某些或全部措施可能需要或可能不需要操作人员干预。例如,实际上,控制器136可以在计算机用户界面上发出用户警报(例如,可视文本和/或图形),该警报提供控制指令和/或推荐的用于解决预测结垢原因的措施方案。操作人员可以手动或通过控制工厂设备的控制器界面(例如,计算机)与该工厂设备进行交互,以执行抵抗预测结垢原因的所需措施。
在存在多种可用于引入冷却水中的不同化学添加剂的应用中,控制器136可通过控制将所述一种或多种不同的化学添加剂流体耦合至冷却水流的阀和/或泵来选择不同化学添加剂中的一种或多种引入到冷却水中。例如,控制器136可以基于检测到的传热效率趋势的变化和预测的结垢原因来改变引入冷却水中的化学添加剂的类型和/或将化学添加剂引入冷却水中的速率。
在一些实例中,控制器136响应于检测到指示换热器104的传热效率趋势与早期确立的传热效率趋势相比已经减少超过阈值量的变化并基于预测的结垢原因而启动泵106或增加泵106的运行速率。另外或可替代地,控制器136可响应于检测到变化并基于预测的结垢原因(例如,引入系统的化学药品可能增加至预测结垢原因)而关闭泵106或降低泵106的运行速率。
控制器136可基于预测的结垢原因在控制系统(例如,调整引入冷却水中的化学添加剂)之后继续从系统10中的传感器接收数据并计算换热器104的传热效率。控制器136可以在对化学添加剂(例如,类型和/或速率)进行改变之后,监测换热器104的传热效率趋势。控制器136可以确定传热效率是稳定(例如,保持基本恒定),恢复到早期确立的趋势,还是进一步偏离早期确立的趋势。在采取抵抗措施之后传热效率趋势保持恒定(这可以对应于最初检测到的负偏差),或者该趋势进一步降低的应用中,控制器136可以确定预测的结垢原因不太可能是实际原因。例如,控制器136可以在采取抵抗措施以解决预测结垢原因之后监测传热效率趋势,并确定该趋势的变化是否大于阈值量(例如,大于+或-5%,例如大于+或-10%)。在工艺中继续存在结垢的情况下,该趋势可能保持负向,但与采取干预措施之前相比,斜率不同(更浅或更低)。
在此类应用中,控制器136可以确定检测到的传热效率趋势变化的替代预测原因。控制器136可以通过比较与其余潜在结垢机制相关联的累积结垢评分(例如,排除已经鉴定为预测结垢原因的结垢机制的累积结垢评分)来确定结垢的替代预测原因。根据加权因子缩放的程度,控制器136可以鉴定其余累积结垢评分中最小(最小值)或最大(最大值)评分,并且将与所鉴定的累积结垢评分相关联的结垢原因确立为检测到的传热效率变化的替代预测原因。然后控制器136可以基于替代的预测结垢原因控制引入冷却水系统中的另一种化学添加剂。
控制器136可以响应于为抵抗替代的预测结垢原因而采取的措施来监测传热效率趋势。控制器136可以重复该过程,直到鉴定出预测结垢原因,该预测结垢原因似乎是最初检测到的传热效率趋势变化的根本原因。另外或可替代地,控制器136可以发出输出(例如,用户警报),指示所检测到的传热效率趋势变化可能与冷却水侧结垢(例如,由水垢结垢、腐蚀结垢或生物结垢引起的)不相关。例如,传热效率趋势的变化可能是由进入换热器104并堵塞该换热器的大块碎屑引起的。作为另一替代,检测到的传热效率趋势的变化可能是由换热器104上的工艺侧结垢而不是冷却水侧结垢引起的。
除了控制泵106之外或代替控制泵106,控制器136可在系统10内采取多种不同的控制措施以改变冷却水中化学添加剂的类型或浓度。例如,控制器136可以响应于检测到换热器的传热效率趋势的变化而增加冷却水流过换热器104的速率。例如,如果控制器136检测到换热器104的传热效率的绝对量突然变化和/或传热效率趋势显著降低(例如,指示快速结垢),则这可能指示换热器由于淤泥、碎屑或其他原因而堵塞。因此,增加冷却水通过交换器的流量可以帮助冲洗留在换热器内的微粒物。控制器136可以控制将冷却水从与冷却塔102相关联的贮槽供至换热器104的泵(未示出),以控制向换热器供给的冷却水的流量。
根据本公开的冷却水监测和控制系统可以在使用换热流体通过换热器与一种或多种工艺流传递热能的任何工艺中实现。可以流过换热器104的热侧的示例性工艺流包括但不限于基于有机物的化学药品、原油、原油衍生物(例如,精制或部分精制的原油产物)以及氨生产工艺中的中间或最终产物。例如,换热器可以整合在通过换热器的聚合物生产工厂有机单体、低聚物和/或聚合物流中。再如,换热器可以整合到由可再生或不可再生源发电的发电厂中。流过换热器104的热侧的工艺流通常可以是液相,但是也可以是气相,和/或液-气多相流。例如,换热器104可以整合到空气分离设备中,使得所述换热器的工艺流侧的工艺流为气体。
虽然图2示出了如上关于图1所讨论的含有单个换热器的示例性监测和控制系统,但是示例性应用可以包括串联和/或并联的多个换热器。控制器136可以从传感器接收数据,并确定每个连接的换热器的传热效率。控制器136可以检测至少一个以及任选多个正在监测的换热器的传热效率趋势的变化,并且基于检测到的趋势来控制向冷却水流中添加化学添加剂。在一些此类实例中,控制器136可以在检测到多个换热器的传热效率趋势变化(例如,超过阈值量)时,确定预测结垢原因并基于预测结垢原因来控制冷却水系统10。在这种情况下,与从一个特定换热器接收错误的传感器数据相反,检测到多个换热器变化的传热效率趋势可能指示实际上正在发生变化的结垢状况。
图3是示出示例性氨生产工艺的流程图。如所示的实例中,该示例性工艺包括多个冷却换热器,冷却水可通过这些换热器进行输送。可以使用本文所述的技术和系统来监测这些示例性换热器中的一个或多个(例如,全部),并基于换热器效率趋势来控制加入冷却水流中的化学添加剂。
本公开中描述的技术可以至少部分地在硬件、软件、固件或其任何组合中实现。例如,所述技术的各个方面可以在一个或多个处理器内实现,包括一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或任何其他等效的集成或离散逻辑电路,以及此类组件的任何组合。术语“处理器”通常可以指单独的或与其他逻辑电路或任何其他等效电路组合的任何前述逻辑电路。包括硬件的控制单元也可以进行本公开的一种或多种技术。
此类硬件、软件和固件可以在同一装置内或在单独的装置内实现,以支持本公开中描述的各种操作和功能。另外,所述单元、模块或组件中的任一种都可以一起实现或单独作为离散但可互操作的逻辑装置实现。将不同特征描绘为模块或单元旨在突出不同的功能方面,不一定暗示必须通过单独的硬件或软件组件来实现此类模块或单元。相反,可以通过单独的硬件或软件组件来进行与一个或多个模块或单元相关联的功能,或者可以将其整合在共同或单独的硬件或软件组件内。
本公开中所描述的技术还可在计算机可读介质中实施或编码,例如含有指令的非暂时性计算机可读存储介质。嵌入或编码在计算机可读存储介质中的指令可以使可编程处理器或其它处理器进行所述方法,例如,当执行指令时。非易失性计算机可读存储介质可以包括易失性和/或非易失性存储器形式,包括例如随机存取存储器(RAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦可编程只读存储器(EPROM)、电子可擦可编程只读存储器(EEPROM)、闪存、硬盘、CD-ROM、软盘、盒带、磁性介质、光学介质或其他计算机可读介质。
以下实例可以提供关于根据本公开的冷却水监测系统和技术的其他细节。
实例
实例1–氨设备
温度传感器安装在氨设备的换热器上,以测量流向换热器的流动流的入口和出口温度以及通过换热器入口的冷却水的流量。换热器是合成气冷却器,使合成气通过换热器的热侧或工艺侧,而冷却水流过换热器的冷侧。换热器是逆流壳管式换热器。合成气以大约99,000lb/小时的目标流量供至换热器的壳侧,而冷却水以大约1,000,000lb/小时的目标流量供给。
冷却水从冷却塔供给,该冷却塔的再循环速率为大约80,000加仑/分钟。冷却塔的容量为大约500,000加仑并且显示出的温差为12华氏度。冷却水显示出0.5ppm为Cl2的FRC。首先用三种化学添加剂的组合控制冷却水:以35ppm的浓度提供的阻蚀剂(
Figure BDA0002407209570000291
3DT129),以75ppm的浓度提供的阻垢剂(
Figure BDA0002407209570000293
3DT191)和以10ppm的浓度提供的黄色金属抑制剂(
Figure BDA0002407209570000292
3DT199)。
来自四个温度传感器和一个超声流量传感器的数据通过有线连接与第三方数据记录器通信。数据记录器将该原始数据无线传输到云服务器。从云服务器,访问数据并且在个人计算机上使用电子表格软件分析数据。
使用范围为0.1的局部回归对来自换热器的温度数据进行平滑处理。图4是冷却水入口温度(华氏度)相对于时间的图表,显示了原始测量数据200以及覆盖的平滑数据202。图5是冷却水出口温度(华氏度)相对于时间的图表,显示了原始测量数据204以及覆盖的平滑数据206。图6是工艺流入口温度(华氏度)相对于时间的图表,显示了原始测量数据208以及覆盖的平滑数据210。图7是工艺流出口温度(华氏度)相对于时间的图表,显示了原始测量数据212以及覆盖的平滑数据214。图8是显示示例性时间段内的冷却水流量(加仑/分钟)的图表。
使用安装在换热器上的温度传感器产生的平滑温度数据计算出传热效率值和趋势。传热效率趋势用于控制冷却水系统,包括引入冷却水中的化学添加剂。图9是显示使用示例性时间段内的平滑温度数据计算的传热系数的图表。这些数据中的尖峰谷对应于水流量降低时。
图10显示了基于示例日期范围内接收到的温度和流量数据为换热器计算的传热系数。图11显示了在相同的示例日期范围内冷却水流的氧化还原电位(ORP),其指示冷却水中的杀生物化学添加剂的浓度。图10和11中的数据分为五个周期的实验分析。在第一周期,确立了确立传热效率趋势的数据。数据显示了传热效率的下降趋势。在第二周期中,冷却水流量增加,导致换热器的传热系数与流量变化成比例地增加。在第三周期,监测传热效率的趋势并观察到降低。
传热系数的变化趋势,尤其是在第三周期结束时,表明结垢状况正在加速。因此,开始采取干预措施。对冷却水进行评估,并提出微生物生物污垢是结垢的原因。在阶段4中,冷却水中杀生物剂的剂量增加,导致传热系数增加。为了了解这种传热改善是否响应于在检测到传热系数或其他一些因素的变化趋势后开始的杀生物剂剂量增加,在阶段5中降低了杀生物剂的剂量。数据表明,传热系数再次降低。
实例2–乙烯设备
温度传感器安装在乙烯设备的换热器上,以测量流向换热器的流动流的入口和出口温度以及通过换热器入口的冷却水的流量。换热器使丙烯流通过换热器的热侧或工艺侧,而冷却水则流过换热器的冷侧。换热器是逆流壳管式换热器。丙烯以大约270,000lb/小时的目标流量供至换热器的壳侧,而冷却水最初以大约4,600,000lb/小时的目标流量供给。
冷却水从冷却塔供给,该冷却塔的再循环速率为大约85,000加仑/分钟。冷却塔的容量为大约1,000,000加仑并且显示出的温差为10华氏度。冷却水显示出0.5ppm为Cl2的FRC。首先用三种化学添加剂的组合控制冷却水:以37ppm的浓度提供的阻蚀剂(
Figure BDA0002407209570000301
3DT177),以28ppm的浓度提供的阻垢剂(
Figure BDA0002407209570000303
3DT390)和以10ppm的浓度提供的黄色金属抑制剂(
Figure BDA0002407209570000302
3DT197)。
来自四个温度传感器和一个超声流量传感器的数据通过有线连接与第三方数据记录器通信。数据记录器将该原始数据无线传输到云服务器。从云服务器,访问数据并且在个人计算机上使用电子表格软件分析数据。
使用范围为0.05的局部回归对来自换热器的温度数据进行平滑处理。图12是冷却水入口温度(华氏度)相对于时间的图表,显示了原始测量数据220以及覆盖的平滑数据222。图13是冷却水出口温度(华氏度)相对于时间的图表,显示了原始测量数据224以及覆盖的平滑数据226。图14是工艺流入口温度(华氏度)相对于时间的图表,显示了原始测量数据228以及覆盖的平滑数据230。图15是工艺流出口温度(华氏度)相对于时间的图表,显示了原始测量数据232以及覆盖的平滑数据234。图16是显示示例性时间段内的冷却水流量(加仑/分钟)的图表。水流量的阶跃变化是由于有意降低水流量引起的。
使用安装在换热器上的温度传感器产生的平滑温度数据计算出传热效率值和趋势。传热效率趋势用于控制冷却水系统,包括引入冷却水中的化学添加剂。图17是显示使用示例性时间段内的平滑温度数据计算的传热系数的图表。
在这个实例中,测量周期的传热系数趋势是基本上平坦的,尽管进行了运行变化以减少监测周期冷却水流量恢复到其原始设计值。在该实例中,分析中使用的基线期定义为水流量的运行变化之前的周期;分析中使用的比较期定义为运行变化之后的周期。该实例中的传热趋势数据在基线期与比较期之间未显示出显著变化。这表明操作人员为进行运行变化而产生的额外水费和相关电泵成本很可能不合理,操作人员可恢复到基准运行条件。
实例3–氨设备运行的扩大监测
在五个月的实验期内,在实施例1中所述的氨设备上进行遵循本公开原理的扩大监测和实验测试。使用局部回归对来自换热器的温度数据进行平滑处理。使用安装在换热器上的温度传感器产生的平滑温度数据计算出传热效率值和趋势。图18是显示使用示例性时间段内的平滑温度数据计算的传热系数的图表。
使用Excel分析图18所示监测到的传热趋势数据,以检测等于或大于阈值的传热效率趋势变化,这可能指示结垢问题。传热系数数据分为两个周期,以相对于彼此进行比较分析,使得能够检测到这种变化。在该实例中第一周期的范围从2月1日到4月15日,而在该实例中第二周期的范围从4月16日到6月30日。第一周期的数据在图18上用三角形符号表示,而第二周期的数据用正方形符号表示。出于工作实例的目的,基于对数据的目视检查来确定两个周期之间的划分时间。在其他应用中,可以基于外部事件的发生,新数据与移动平均值的比较,或与本文所述原理一致的其他比较技术来划分监测数据。
在本实例中,通过将具有斜率和截距的一阶曲线与每个传热系数趋势拟合来表征两个时间周期的传热系数趋势。还通过比较每个周期的年化传热系数趋势线的斜率,计算出监测周期内传热系数斜率的年化百分比变化。然后,通过从年化比较期(第二周期)中减去年化基准期(第一周期),计算出年化传热系数趋势的百分比变化。下表提供了该实例的数据:
Figure BDA0002407209570000321
年化基准期(第一周期)和年化比较期(第二周期)之间的比较为负,指示换热的传热效率不断恶化,例如,这可能指示积垢。在这个特定的工作实例中,年化差异为-73%,这指示鉴于预期运行条件,传热效率显著恶化。可以为特定应用确立不同的阈值,可以将这些阈值与监测到的传热效率的百分比变化进行比较,以决定是否需要进一步分析结垢原因。
为了鉴于传热趋势变化的大小而确定换热器的预测结垢机制,获得并分析指示该目标时间周期内冷却水垢结垢、腐蚀结垢和生物结垢的数据。这些数据是使用在线传感器、离线传感器和湿化学测试的组合获得的,结果存储在进行预测结垢分析的计算程序可访问的计算机可读介质中。监测参数的各个读数在基准周期(第一周期)内取平均值,并在比较周期(第二周期)内分别取平均值,并确定比较期与基准期之间的百分比变化。对于该特定工作实例,在目标时间周期内监测了下表中的示例性参数:
Figure BDA0002407209570000331
从上面复制的示例性数据中,使用指示水垢结垢的参数计算累积结垢评分,使用指示腐蚀结垢的参数计算累积腐蚀结垢评分,并且使用指示生物结垢的参数计算累积生物结垢评分。通过将加权因子应用于根据上表针对比较期和基准期之间的每个目标参数确定的每个百分比变化来计算评分。然后,通过对指定为与该潜在结垢机制相关联的所有加权参数求平均值,计算每个潜在结垢机制的累积评分。下表提供了分析结果:
生物结垢指标 权重 值(变化%x权重)
ORP -4.00 0.25
浊度 0.25 -0.07
好氧细菌 4.00 0.41
厌氧细菌 4.00 3.49
亚硝酸盐 2.50 0.10
柠檬酸盐 2.50 0.43
评分 0.77
水垢结垢指标
浊度 1.00 -0.27
温度 2.50 0.25
pH 4.00 -0.05
PO4 2.00 -0.01
Ca 1.00 0.10
Mg 1.00 0.19
评分 0.04
腐蚀结垢指标 权重
温度 1 0.10
pH -4 0.05
钢腐蚀率 4 -0.64
铜腐蚀率 4 0.90
-2.5 0.78
PO4 -2.5 0.01
-2.5 0.21
评分 0.20
如上所示,确定的累积生物结垢评分为0.77,这明显大于分别为0.04和0.20的水垢结垢评分和腐蚀结垢评分。图19是显示不同潜在结垢机制的累积结垢评分的条形图。数据表明,与检测到的换热器的传热趋势变化相关联的预测结垢机制是生物结垢。因此,可以采取减轻生物结垢的纠正措施,包括控制向冷却水中添加一种或多种化学药品以减少或消除初期生物结垢。
基于我们对氨设备的专业知识以及已知的有关氨泄漏到冷却塔中的挑战,上面针对该实例概述的预测原因和处理分析的结果与我们的假设相符。这种氨源为生物膜和微生物系统在水中生长提供了氮源。基线情况的ORP值较高,为~424mV(在U值呈上升趋势的周期内),而比较情况的ORP值较低,为~397mV。数据表明,大于或等于0.5的累积生物结垢评分可能是对于一些运行情况而言,用于确定生物结垢存在问题并采取相应补救措施的适当阈值。
实验实例还可用于量化真实系统中的ORP设定值,这通常是一个试错过程。通过目前的传热系数分析,我们能够证明425mV左右的ORP是抑制微生物生长的更佳设定值(对于特定实验系统而言)。同时,我们并未在基线情况和比较情况之间见到腐蚀评分的太大差异,从而证实了我们的假设,即425mV的ORP设定值不会引起腐蚀应力。然而,非常值得注意的是,当基线和比较情况之间ORP从424mV降至397mV时,腐蚀应力似乎会增加。这可能表明微生物引起腐蚀。这是反直觉的,因为较低的ORP通常意味着较低的腐蚀速率,而MIC不是影响因素。
实例4–乙烯设备运行的扩大监测
在五个月的实验期内,还在实施例2中所述的乙烯设备上进行了遵循本公开原理的扩大监测和实验测试。使用局部回归对来自换热器的温度数据进行平滑处理。使用安装在换热器上的温度传感器产生的平滑温度数据计算出传热效率值和趋势。图20是显示使用示例性时间段内的平滑温度数据计算的传热系数的图表。
使用Excel分析图20所示监测到的传热趋势数据,以检测等于或大于阈值的传热效率趋势变化,这可能指示结垢问题。传热系数数据分为两个周期,以相对于彼此进行比较分析,以便检测这种变化。在该实例中,第一周期的范围从11月16日到1月16日,而第二周期的范围从1月17日到3月16日。第一周期的数据在图20上用三角形符号表示,而第二周期的数据用正方形符号表示。
通过将具有斜率和截距的一阶曲线与每个传热系数趋势拟合来表征两个时间周期的传热系数趋势。还可以通过将每个周期的监测趋势开始时的传热系数与监测趋势结束时的传热系数进行比较,计算出监测期内传热系数的百分比变化。随后,将每个周期的百分比变化从监测的时间周期扩展到年化(12个月),例如,即使实际周期的持续时间不同,也可以在标准化的基础上将两个周期进行相互比较。然后,通过从比较期(第二周期)中减去年化基准期(第一周期),计算出传热系数趋势的百分比变化。下表提供了该实例的数据:
Figure BDA0002407209570000361
年化基线期(第一周期)与年化比较期(第二周期)之间的比较为正,这表明换热的传热效率呈上升趋势(朝理想方向)。在这种情况下,基线期和比较期被发现碎屑结垢的交换器维护事件(例如,交换器清洁)隔开。因此,本文所述的技术用于确定是否可以将碎屑结垢与其他类型的结垢,特别是水垢结垢、腐蚀结垢和微生物结垢区分开。
为了基于趋势日期探索该假设,获得并分析指示该目标时间周期内冷却水垢结垢、腐蚀结垢和生物结垢的数据。这些数据是使用在线传感器、离线传感器和湿化学测试的组合获得的,结果存储在进行预测结垢分析的计算程序可访问的计算机可读介质中。监测参数的各个读数在基准周期(第一周期)内取平均值,并在比较周期(第二周期)内分别取平均值,并确定比较期与基准期之间的百分比变化。对于该特定工作实例,在目标时间周期内监测了下表中的示例性参数:
Figure BDA0002407209570000362
Figure BDA0002407209570000371
从上面复制的示例性数据中,使用指示水垢结垢的参数计算累积结垢评分,使用指示腐蚀结垢的参数计算累积腐蚀结垢评分,并且使用指示生物结垢的参数计算累积生物结垢评分。通过将加权因子应用于根据上表针对比较期和基准期之间的每个目标参数确定的每个百分比变化来计算评分。然后,通过对指定为与该潜在结垢机制相关联的所有加权参数求平均值,计算每个潜在结垢机制的累积评分。下表提供了分析结果:
生物结垢指标 权重
ORP -4.00 0.37
浊度 0.25 0.46
好氧细菌 4.00 0.00
厌氧细菌 4.00 0.00
亚硝酸盐 2.50 0.00
柠檬酸盐 2.50 0.00
评分 0.14
水垢结垢指标 权重
浊度 1.00 -0.65
温度 2.50 -0.03
pH 4.00 0.11
PO4 2.00 -0.13
Ca 1.00 -0.03
Mg 1.00 0.00
评分 -0.12
腐蚀结垢指标 权重
温度 1 -0.013
pH -4 -0.112
钢腐蚀率 4 -1.38
铜腐蚀率 4 1.96
-2.5 -1.5
PO4 -2.5 0.17
Cu 4 1.96
Fe 4 -1.78
评分 -0.09
如上所述,确定的累积生物结垢、水垢结垢和腐蚀结垢评分分别为0.14、-0.12和-0.09。图21是显示不同潜在结垢机制的累积结垢评分的条形图。一般而言,对于该实例而言,特定的累积结垢评分的值(包括负值)越低,则相应的结垢机制在评估的系统中引起结垢的可能性就越小。由于在该特定实例中结垢评分全部小于0.25,因此数据证实了以下假设:在该换热器中,水垢结垢、腐蚀结垢或微生物结垢都不是起作用的结垢机制。

Claims (51)

1.一种方法,其包括:
由一个或多个处理器监测至少一个换热器的传热效率,并确立所述换热器的传热效率趋势,所述换热器具有工艺流侧和冷却水流侧;
由所述一个或多个处理器检测所述传热效率趋势的变化;
由所述一个或多个处理器接收指示所述冷却水流侧水垢结垢的数据;
由所述一个或多个处理器接收指示所述冷却水流侧腐蚀结垢的数据;
由所述一个或多个处理器接收指示所述冷却水流侧生物结垢的数据;
由所述一个或多个处理器至少基于所接收的指示水垢结垢、腐蚀结垢和生物结垢的数据,确定检测到的传热效率趋势变化的预测原因;并且
基于所述预测原因,控制向与所述至少一个换热器的所述冷却水流侧流体连通的冷却水中添加化学添加剂。
2.根据权利要求1所述的方法,其中监测所述传热效率包括从多个传感器接收至少指示进入所述换热器的冷却水流的温度、离开所述换热器的冷却水流的温度、进入所述换热器的工艺流的温度、离开所述换热器的工艺流的温度以及所述冷却水的流量的数据。
3.根据权利要求2所述的方法,其中监测所述换热器的传热效率包括根据方程式确定所述传热效率:
U值:
Figure FDA0002407209560000011
其中U值是传热效率,
Figure FDA0002407209560000012
是冷却水流的质量流量,Cp是冷却水流的比热,ΔT是离开所述换热器的冷却水流的温度与进入换热器的冷却水流的温度之差,传热面积是工艺流与冷却水流之间传输热能的换热器的表面积的量,Ft是与换热的几何形状相对应的校正因子,ΔTLMTD是在所述冷却水流和所述工艺流沿逆流方向流动时,使用以下方程式计算的对数平均温差:
Figure FDA0002407209560000013
或在冷却水流和工艺流沿顺流方向流动时使用以下方程式计算的对数平均温差:
Figure FDA0002407209560000021
其中T进入的工艺流是进入所述换热器的工艺水流的温度,T离开的工艺流是离开所述换热器的工艺流的温度,t进入的水流是进入所述换热器的冷却水流的温度,t离开的水流是离开所述换热器的冷却水流的温度。
4.根据前述权利要求中任一项所述的方法,其还包括使对应于进入所述换热器的冷却水流的温度、离开所述换热器的冷却水流的温度、进入所述换热器的工艺流的温度以及离开所述换热器的工艺流的温度的数据平滑,
其中确定所述传热效率包括使用平滑温度值来确定所述传热效率。
5.根据前述权利要求中任一项所述的方法,其中:
确立所述传热效率趋势包括将一阶曲线与在一段时间内监测到的所述换热器的传热效率拟合,所述一阶曲线具有斜率,并且
检测所述传热效率趋势的变化包括确定所述斜率的变化等于或大于阈值量。
6.根据权利要求5所述的方法,其中所述阈值量的范围从1%到50%。
7.根据权利要求5所述的方法,其中所述阈值量的范围从5%到20%。
8.根据前述权利要求中任一项所述的方法,其中确立所述传热效率趋势包括在一时间段内至少每天一次测定所述换热器的传热效率。
9.根据权利要求8所述的方法,其中所述时间段的范围为1天至100天。
10.根据权利要求8所述的方法,其中所述时间段的范围为5天至30天。
11.根据权利要求8所述的方法,其中所述时间段开始于所述换热器在清洁后投入使用时。
12.根据前述权利要求中任一项所述的方法,其中接收指示水垢结垢的数据包括接收选自下组的数据:所述冷却水中的磷酸盐浓度,所述冷却水中的钙浓度,所述冷却水中的锰浓度,所述冷却水中的铝浓度,所述冷却水中的铁浓度,所述冷却水中的二氧化硅浓度,指示所述冷却水中的颗粒的光学测量值,指示所述换热器的所述冷却水流侧或其类似物的表面上结垢的光学测量值及其组合。
13.根据前述权利要求中任一项所述的方法,其中接收指示水垢结垢的数据包括从一个或多个与所述换热器的冷却水流侧成一直线的传感器接收数据。
14.根据前述权利要求中任一项所述的方法,其中接收指示腐蚀结垢的数据包括接收选自下组的数据:所述冷却水中的铁浓度,所述冷却水中的铜浓度,指示所述换热器的所述冷却水流侧或其类似物的表面上腐蚀的光学测量值,指示所述换热器的所述冷却水流侧中探头表面的腐蚀率的线性极化电阻测量值及其组合。
15.根据权利要求14所述的方法,其中所述类似物是由与限定所述换热器的所述冷却水流侧的金属相同的冶金形成的金属试样。
16.根据前述权利要求中任一项所述的方法,其中接收指示腐蚀结垢的数据包括从一个或多个与所述换热器的冷却水流侧成一直线的传感器接收数据。
17.根据前述权利要求中任一项所述的方法,其中接收指示腐蚀结垢的数据包括从一个或多个与不同于监测其传热效率的所述换热器的模型换热器相关联的传感器接收数据。
18.根据权利要求17所述的方法,其中所述模型换热器接收并穿过冷却水,所述冷却水也穿过监测其传热效率的所述换热器。
19.根据前述权利要求中任一项所述的方法,其中接收指示生物结垢的数据包括接收选自下组的数据:所述冷却水中的三磷酸腺苷浓度,所述冷却水中总有机碳的量,所述冷却水中氧化剂的残留浓度,所述冷却水的氧化还原电位,指示所述冷却水中的颗粒的光学测量值,指示所述换热器的所述冷却水流侧或其类似物的表面上结垢的光学测量值,指示微生物活性的荧光测量值及其组合。
20.根据前述权利要求中任一项所述的方法,其中接收指示生物结垢的数据包括从一个或多个与所述换热器的冷却水流侧成一直线的传感器接收数据。
21.根据前述权利要求中任一项所述的方法,其还包括由所述一个或多个处理器接收指示所述冷却水的温度和所述冷却水的pH中的至少一项的数据。
22.根据前述权利要求中任一项所述的方法,其中确定所述检测到的传热效率趋势变化的预测原因还包括由所述一个或多个处理器基于所接收到的指示水垢结垢的数据确定累积水垢结垢评分,基于所接收到的指示腐蚀结垢的数据确定累积腐蚀结垢评分,并基于所接收到的指示生物结垢的数据确定累积生物结垢评分。
23.根据权利要求22所述的方法,其中
确定所述累积水垢结垢评分包括对指示水垢结垢的每个加权数据参数求和并确定其平均值;
确定所述累积腐蚀结垢评分包括对指示腐蚀结垢的每个加权数据参数求和并确定其平均值;
确定所述累积生物结垢评分包括对指示生物结垢的每个加权数据参数求和并确定其平均值;
确定检测到的所述传热效率趋势变化的预测原因包括鉴定所述累积水垢结垢评分、累积腐蚀结垢评分和累积生物结垢评分中的最大值。
24.根据前述权利要求中任一项所述的方法,其中确定所述检测到的传热效率趋势变化的预测原因包括向接收到的指示水垢结垢、腐蚀结垢和生物结垢的每个数据参数应用加权因子。
25.根据前述权利要求中任一项所述的方法,其中控制所述化学添加剂的添加包括控制选择用于抵抗预测原因的化学添加剂,其中所述预测原因选自水垢结垢、腐蚀结垢和生物结垢。
26.根据前述权利要求中任一项所述的方法,其中控制所述化学添加剂的添加包括以下的至少一项:
增加将选择用于抵抗所述预测原因的化学添加剂引入所述冷却水流中的流量,并且
启动选择用于抵抗所述预测原因的化学添加剂流。
27.根据前述权利要求中任一项所述的方法,其还包括:
如果所述传热效率趋势未响应于受控添加选择用于抵抗所述预测原因的化学添加剂而变化超过阈值量,则确定所述检测到的传热效率趋势变化的替代预测原因;并且
控制向与所述换热器的所述冷却水流侧流体连通的冷却水中添加替代化学添加剂,所述替代化学添加剂是选择用于抵抗所述替代预测原因的。
28.根据前述权利要求中任一项所述的方法,其还包括在监测所述换热器的传热效率之前,勘测换热器网络内的多个换热器,以鉴定至少一个临界换热器,
其中监测所述换热器的传热效率和确立所述传热效率趋势包括监测所述临界换热器的传热效率和确定所述临界换热器的传热效率趋势。
29.根据前述权利要求中任一项所述的方法,其中所述临界换热器是基于以下的至少一项选择的:所述多个换热器中的每一个的维护史、所述多个换热器中的每一个的运行性能、所述多个换热器中的每一个的替代旁路及其组合。
30.根据前述权利要求中任一项所述的方法,其还包括由所述一个或多个处理器检测所述传热效率趋势响应于所述化学添加剂向所述冷却水中的受控添加的变化。
31.根据权利要求30所述的方法,其中所述传热效率趋势表现出的斜率比所述化学添加剂向所述冷却水中受控添加之前的传热效率趋势的斜率小。
32.根据前述权利要求中任一项所述的方法,其中在接收进入所述换热器的冷却水流的换热器入口上游的冷却塔处注入所述化学添加剂。
33.根据前述权利要求中任一项所述的方法,其还包括响应于检测到所述传热效率趋势的变化而增加所述冷却水的流量。
34.根据前述权利要求中任一项所述的方法,其中所述化学添加剂选自水垢抑制剂、腐蚀抑制剂、杀生物剂、pH控制剂及其组合。
35.根据前述权利要求中任一项所述的方法,其中所述换热器的工艺流侧的工艺流包含基于有机物的化学药品。
36.根据前述权利要求中任一项所述的方法,其中所述换热器整合到空气分离设备中并且所述换热器的工艺流侧的工艺流为气体。
37.根据前述权利要求中任一项所述的方法,其中所述换热器整合到氨生产工艺中。
38.根据前述权利要求中任一项所述的方法,其中所述换热器整合到发电厂中。
39.根据前述权利要求中任一项所述的方法,其中所述换热器选自壳管式换热器和板式换热器。
40.一种方法,其包括:
评估冷却水回路内的多次换热,并鉴定所述多个换热器中是临界换热器的至少一个;
监测所述临界换热器的传热效率,并确定指示结垢的传热效率变化;
接收指示在所述临界换热器中发生的多种不同潜在结垢机制的数据,所述结垢机制包括水垢结垢、生物结垢和腐蚀结垢;
基于所接收的指示所述多种不同潜在结垢机制的数据,确定所述传热效率趋势变化的预测原因;并且
基于所述预测原因,控制向与临界换热器流体连通的冷却水中添加化学添加剂。
41.根据权利要求40所述的方法,其中监测所述传热效率包括从多个传感器接收至少指示进入所述临界换热器的冷却水流的温度、离开所述临界换热器的冷却水流的温度、进入所述临界换热器的工艺流的温度、离开所述临界换热器的工艺流的温度以及所述冷却水的流量的数据。
42.根据权利要求40或41中任一项所述的方法,其中确定指示结垢的所述传热效率的变化包括进行测量周期传热效率趋势与早期确立的传热效率趋势之间的比较。
43.根据权利要求42所述的方法,其中所述比较是所述测量周期传热效率趋势与所述早期确立的传热效率趋势之间的差异和比率的一种。
44.根据权利要求42和43中任一项所述的方法,其还包括:对所述测量周期传热效率趋势和所述早期确立的传热效率趋势进行时间归一化,并且对时间归一化的趋势进行比较。
45.根据权利要求40-44中任一项所述的方法,其中确定所述检测到的传热效率趋势变化的预测原因包括向接收到的指示所述多种不同的结垢机制的每个数据参数应用加权因子。
46.据权利要求45所述的方法,其中向接收到的每个数据参数应用所述加权因子包括对于所述接收到的一些数据参数,确定所述接收到的在确定所述传热效率变化之后测量的数据参数与所述接收到的在所述传热效率变化之前测量的数据参数相比,所述接收到的数据参数的变化量,并向所述变化量应用所述加权参数。
47.根据权利要求40-46中任一项所述的方法,其中确定所述检测到的传热效率趋势变化的预测原因还包括基于所接收到的指示水垢结垢的数据确定累积水垢结垢评分,基于所接收到的指示腐蚀结垢的数据确定累积腐蚀结垢评分,并基于所接收到的指示生物结垢的数据确定累积生物结垢评分。
48.根据权利要求47所述的方法,其中
确定所述累积水垢结垢评分包括对指示水垢结垢的每个加权数据参数求和并确定其平均值;
确定所述累积腐蚀结垢评分包括对指示腐蚀结垢的每个加权数据参数求和并确定其平均值;
确定所述累积生物结垢评分包括对指示生物结垢的每个加权数据参数求和并确定其平均值;
确定检测到的所述传热效率趋势变化的预测原因包括鉴定所述累积水垢结垢评分、累积腐蚀结垢评分和累积生物结垢评分中的最大值。
49.根据权利要求40-48中任一项所述的方法,其中控制所述化学添加剂的添加包括以下的至少一项:
增加将选择用于抵抗所述预测原因的化学添加剂引入所述冷却水流中的流量,并且
启动选择用于抵抗所述预测原因的化学添加剂流。
50.根据权利要求40-49中任一项所述的方法,其中鉴定所述临界换热器包括基于以下的至少一项鉴定所述临界换热器:所述多个换热器中的每一个的维护史、所述多个换热器中的每一个的运行性能、所述多个换热器中的每一个的替代旁路及其组合。
51.一种系统,其包括:
冷却塔,其通过蒸发冷却降低冷却水流温度;
换热器,其具有冷却水入口、冷却水出口、工艺流入口和工艺流出口;
第一多个传感器,其定位成测量通过所述冷却水入口进入所述换热器的冷却水流的温度,通过所述冷却水出口离开所述换热器的冷却水流的温度,通过所述工艺流入口进入所述换热器的工艺流的温度,以及通过所述工艺流出口离开所述换热器的工艺流的温度;
第二多个传感器,其配置为测量指示在所述临界换热器中发生的多种不同潜在结垢机制的数据,所述结垢机制包括水垢结垢、生物结垢和腐蚀结垢;
泵,其定位成将化学添加剂注入所述冷却水流中;和
控制器,其与所述第一多个传感器、所述第二多个传感器和泵可通信地耦合,并配置为:
接收来自所述第一多个传感器的数据,基于所述接收到的来自所述第一多个传感器的数据确定所述换热器的传热效率,确立所述换热器在一段时间内的传热效率趋势,并检测所述传热效率趋势的变化,
基于所接收的指示所述多种不同潜在结垢机制的数据,确定所述传热效率趋势变化的预测原因;并且
基于所述预测原因,控制向与所述冷却水中添加化学添加剂。
CN201880058889.5A 2017-11-10 2018-11-09 冷却水监测和控制系统 Active CN111051806B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762584671P 2017-11-10 2017-11-10
US62/584,671 2017-11-10
US201862720605P 2018-08-21 2018-08-21
US62/720,605 2018-08-21
PCT/US2018/060071 WO2019094747A1 (en) 2017-11-10 2018-11-09 Cooling water monitoring and control system

Publications (2)

Publication Number Publication Date
CN111051806A true CN111051806A (zh) 2020-04-21
CN111051806B CN111051806B (zh) 2022-10-25

Family

ID=64477311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880058889.5A Active CN111051806B (zh) 2017-11-10 2018-11-09 冷却水监测和控制系统

Country Status (13)

Country Link
US (2) US11668535B2 (zh)
EP (1) EP3707457B1 (zh)
JP (1) JP7344201B2 (zh)
KR (1) KR20200086253A (zh)
CN (1) CN111051806B (zh)
AU (1) AU2018364983A1 (zh)
BR (1) BR112020005049B1 (zh)
CL (1) CL2020001188A1 (zh)
CO (1) CO2020003099A2 (zh)
ES (1) ES2933502T3 (zh)
MX (1) MX2020003586A (zh)
PL (1) PL3707457T3 (zh)
WO (1) WO2019094747A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466844A (zh) * 2022-08-23 2022-12-13 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 一种抑制换热器结垢的方法
CN117553385A (zh) * 2024-01-08 2024-02-13 联科信达物联网有限公司 一种中央空调智能管控平台用监控终端

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891309B2 (en) 2017-09-19 2024-02-06 Ecolab Usa Inc. Cooling water monitoring and control system
DE102019211361B3 (de) * 2019-07-30 2020-09-24 BSH Hausgeräte GmbH Verfahren zum Betreiben eines Geräteverbunds
US11662314B2 (en) 2019-10-24 2023-05-30 Ecolab Usa Inc. System and method of inline deposit detection in process fluid
US11959695B2 (en) * 2019-10-29 2024-04-16 Fositek Corporation Liquid cooling system with water quality monitoring
US11229143B2 (en) * 2019-10-29 2022-01-18 Asia Vital Components Co., Ltd. Liquid-cooling heat dissipation system capable of regulating water quality
CN112782378B (zh) * 2019-11-06 2023-05-09 中国石油化工股份有限公司 常减压装置塔顶氮化物盐类结垢风险预测系统及方法
CN112990516A (zh) * 2019-12-12 2021-06-18 中国石油化工股份有限公司 一种循环水系统腐蚀预测方法及其应用
CN111125951B (zh) * 2019-12-16 2023-11-03 新奥数能科技有限公司 一种蒸发器结垢预测模型的优化方法及装置
CN111651876B (zh) * 2020-05-27 2023-06-30 沈阳艾柏瑞环境科技有限公司 工业循环冷却水腐蚀状况在线分析方法及检测系统
US20220083716A1 (en) * 2020-09-17 2022-03-17 Tata Consultancy Services Limited System and method for identification and forecasting fouling of heat exchangers in a refinery
CN113252500A (zh) * 2021-05-20 2021-08-13 华北电力科学研究院有限责任公司西安分公司 一种间接空冷循环水腐蚀在线智能监控系统及方法
BR112023024644A2 (pt) * 2021-05-27 2024-02-20 Angara Global Ltd Sistemas de limpeza industrial incluindo soluções para remoção de diversos tipos de depósitos, e limpeza cognitiva
WO2023023328A2 (en) * 2021-08-19 2023-02-23 Dracool Dataplate, Llc Working fluid system monitoring based on heat exchanger parameters
US20230159358A1 (en) * 2021-11-24 2023-05-25 Aquatech International, Llc Process of Mitigation and Control of BioFilm
CN114459070B (zh) * 2021-12-31 2023-11-03 威乐(中国)水泵系统有限公司 一种家用地暖控制系统、方法、设备和存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155826A2 (en) * 1984-03-23 1985-09-25 International Control Automation Finance S.A. Heat exchanger performance monitors
US5590706A (en) * 1993-12-10 1997-01-07 Electric Power Research Institute On-line fouling monitor for service water system heat exchangers
US20040254682A1 (en) * 2001-12-27 2004-12-16 Tim Kast Apparatus, system and method for non-chemical treatment and management of cooling water
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
CN1873362A (zh) * 2006-06-30 2006-12-06 王正方 一种无沉积水垢的板式换热器及其换热方式
EP1980535A2 (en) * 1996-02-29 2008-10-15 Ashland Licensing and Intellectual Property LLC Performance-based Control System
US20090090613A1 (en) * 2007-10-05 2009-04-09 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer and method of improving heat transfer
CN102026921A (zh) * 2008-05-07 2011-04-20 纳尔科公司 最小化冷却塔系统中腐蚀、结垢和耗水量的方法
US20120330474A1 (en) * 2010-02-26 2012-12-27 Kreider Marc A Method and apparatus for evaluating repair and remediation alternatives for heat exchangers
CN103629959A (zh) * 2013-12-09 2014-03-12 山东大学 管束菱形排列的水泥回转窑余热利用换热器及其吹灰方法
US20140254682A1 (en) * 2013-03-06 2014-09-11 Qualcomm Incorporated Derived disparity vector in 3d video coding
CN104267072A (zh) * 2014-09-04 2015-01-07 卢岳 一种管路水垢检测方法
CN105758879A (zh) * 2016-03-02 2016-07-13 陕西省石油化工研究设计院 一种油田管道设备内腐蚀结垢物的分析方法

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB770242A (en) 1954-04-08 1957-03-20 Svenska Rotor Maskiner Ab Improvements in or relating to heat exchangers
US3069003A (en) 1959-11-30 1962-12-18 Westinghouse Electric Corp Duplex container and locking means therefor
SE399765B (sv) 1974-11-15 1978-02-27 Stal Laval Apparat Ab Metapparat for metning av forsmutsningsgrad i vermevexlare och andra rorledningar
US4339945A (en) 1980-10-30 1982-07-20 Drew Chemical Corporation Process and apparatus for testing fluids for fouling
US4383438A (en) 1981-06-02 1983-05-17 Petrolite Corporation Fouling test apparatus
JPS5915800A (ja) 1982-07-19 1984-01-26 Kurita Water Ind Ltd フアウリング防止装置
EP0596863A1 (en) 1988-07-25 1994-05-11 Nalco Chemical Company Portable product refill tank unit
JP2764046B2 (ja) 1988-12-13 1998-06-11 株式会社日阪製作所 プレート式熱交換器
US5085831A (en) 1989-10-17 1992-02-04 Nalco Chemical Company Apparatus for continually and automatically measuring the level of a water treatment product in boiler feedwater
JP2675684B2 (ja) 1990-05-10 1997-11-12 株式会社東芝 熱交換器の異常監視装置
US5171450A (en) 1991-03-20 1992-12-15 Nalco Chemical Company Monitoring and dosage control of tagged polymers in cooling water systems
JPH0820144B2 (ja) 1991-05-23 1996-03-04 株式会社荏原製作所 冷凍機用凝縮器の運転方法
US5278074A (en) 1992-04-22 1994-01-11 Nalco Chemical Company Method of monitoring and controlling corrosion inhibitor dosage in aqueous systems
US5273687A (en) 1992-12-09 1993-12-28 Baltimore Aircoil Company Microbiological control of recirculating water in evaporative cooling systems at idle conditions
JPH06330747A (ja) 1993-05-26 1994-11-29 Kubota Corp インライン形熱交換器の診断方法
US5603840A (en) 1995-05-15 1997-02-18 Nalco Chemical Company Method of achieving microbiological control in open recirculating cooling water
US5734098A (en) 1996-03-25 1998-03-31 Nalco/Exxon Energy Chemicals, L.P. Method to monitor and control chemical treatment of petroleum, petrochemical and processes with on-line quartz crystal microbalance sensors
JP2000028557A (ja) 1998-07-15 2000-01-28 Tlv Co Ltd 熱交換器の汚れ検出装置
US6419817B1 (en) 2000-06-22 2002-07-16 United States Filter Corporation Dynamic optimization of chemical additives in a water treatment system
US6454995B1 (en) 2000-08-14 2002-09-24 Ondeo Nalco Energy Services, L.P. Phosphine coke inhibitors for EDC-VCM furnaces
US6556027B2 (en) 2001-01-12 2003-04-29 Ondeo Nalco Company Low cost, on-line corrosion monitor and smart corrosion probe
EP1239129B1 (en) 2001-03-06 2007-10-31 Calsonic Kansei Corporation Cooling system for water-cooled internal combustion engine and control method applicable to cooling system therefor
US6581409B2 (en) 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US6740231B1 (en) 2001-07-11 2004-05-25 Nalco Company Self-contained cooling system feed and bleed system
US7146231B2 (en) 2002-10-22 2006-12-05 Fisher-Rosemount Systems, Inc.. Smart process modules and objects in process plants
CA2437264C (en) 2003-08-12 2013-12-03 Brian Wilson Varney Heat exchanger optimization process and apparatus
JP2005300404A (ja) 2004-04-14 2005-10-27 Japan Science & Technology Agency 電気泳動用ゲル作製器具
DE102004021423A1 (de) 2004-04-30 2005-12-01 Siemens Ag Verfahren und Einrichtung zur Ermittlung der Leistungsfähigkeit eines Wärmetauschers
US7866211B2 (en) 2004-07-16 2011-01-11 Rosemount Inc. Fouling and corrosion detector for process control industries
US7110906B2 (en) 2004-07-22 2006-09-19 Abb Inc. System and method for monitoring the performance of a heat exchanger
CA2602818C (en) 2005-03-31 2013-03-26 Ashland Licensing And Intellectual Property Llc Apparatuses and systems for monitoring fouling of aqueous systems including enhanced heat exchanger tubes
CN1731068B (zh) 2005-08-01 2010-05-12 东北电力学院 管侧对流换热强化技术动态模拟综合评价方法及装置
KR100652249B1 (ko) 2005-12-26 2006-12-01 주식회사 성지공조기술 냉각탑 제어시스템
BRPI0601967B1 (pt) 2006-06-01 2021-03-23 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. Sistema e método de controle de operação de um sistema de refrigeração
EP2392982B1 (en) * 2006-09-28 2015-03-25 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a heat exchanger
US7428055B2 (en) * 2006-10-05 2008-09-23 General Electric Company Interferometer-based real time early fouling detection system and method
GB0623608D0 (en) 2006-11-27 2007-01-03 Ashe Morris Ltd Improved monitoring system
FR2910546B1 (fr) 2006-12-22 2009-01-23 Renault Sas Procede et dispositif de controle moteur selon l'encrassement du systeme de recirculation des gaz d'echappement d'un moteur diesel de vehicule automobile.
US7827006B2 (en) * 2007-01-31 2010-11-02 Fisher-Rosemount Systems, Inc. Heat exchanger fouling detection
EP2070608B1 (en) 2007-07-19 2012-09-05 Nippon Steel Corporation Method of cooling control, cooling control unit and cooling water quantity computing unit
US8489240B2 (en) 2007-08-03 2013-07-16 General Electric Company Control system for industrial water system and method for its use
US20090188645A1 (en) 2008-01-28 2009-07-30 Intec, Inc Tube fouling monitor
US20100028202A1 (en) 2008-07-30 2010-02-04 Zhaoyang Wan Proactive control system for an industrial water system
US20100163469A1 (en) 2008-12-26 2010-07-01 Zhaoyang Wan Control system for monitoring localized corrosion in an industrial water system
CN101655477B (zh) 2009-06-12 2012-12-05 东北电力大学 基于电导滴定的污垢特性参数检测方法及实验系统
CA2710899A1 (en) 2009-07-23 2011-01-23 H2Tronics, Inc. Cooling tower system with chemical feed responsive to actual load
US8235128B2 (en) 2009-08-18 2012-08-07 Halliburton Energy Services, Inc. Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well
EP2571818B1 (en) * 2010-05-19 2017-02-22 Voltea B.V. Evaporative Recirculation Cooling Water System, Method of Operating an Evaporative Recirculation Cooling Water System
US20120018907A1 (en) 2010-07-23 2012-01-26 Dumler Stephen E Cooling Tower System With Chemical Feed Responsive to Actual Load
JP2013015259A (ja) 2011-07-04 2013-01-24 Miura Co Ltd 水処理システム
WO2013148937A1 (en) * 2012-03-28 2013-10-03 Amsa, Inc. Multiple uses of amine salts for industrial water treatment
US9689790B2 (en) 2012-07-05 2017-06-27 Honeywell International Inc. Environmental control systems and techniques for monitoring heat exchanger fouling
US9389000B2 (en) 2013-03-13 2016-07-12 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US20160169825A1 (en) * 2013-05-17 2016-06-16 Rocsole Ltd Arrangement and method for monitoring scaling in heat exchanger
CA2916636C (en) 2013-07-01 2020-06-09 Knew Value, LLC Heat exchanger testing device
JP2015080780A (ja) 2013-10-24 2015-04-27 栗田工業株式会社 水処理状況監視装置、水処理装置、水処理状況の監視方法、及び水処理方法
CN105445319B (zh) 2014-08-29 2018-03-09 宝山钢铁股份有限公司 一种测定钢板表面水冷换热系数的方法及装置
CN104483448B (zh) 2014-12-02 2017-01-18 国家海洋局天津海水淡化与综合利用研究所 一体化移动式海水循环冷却水处理药剂评价装置和方法
CN104502532B (zh) 2014-12-02 2016-10-26 国家海洋局天津海水淡化与综合利用研究所 化工系统海水循环冷却水处理药剂性能评价装置和方法
US10288548B2 (en) 2015-04-17 2019-05-14 Hamilton Sundstrand Corporation Wavelet-based analysis for fouling diagnosis of an aircraft heat exchanger
CN104819993B (zh) 2015-05-18 2018-04-03 河海大学 一种冷却水管管壁热交换系数测试装置及测试方法
US20180149588A1 (en) * 2015-07-01 2018-05-31 King Abdullah University Of Science And Technology In-Situ Non-Invasive Device for Early Detection of Fouling in Aquatic Systems
CN105158293B (zh) 2015-10-10 2017-10-31 中国石油化工股份有限公司 用于炼油装置封油水冷器传热与阻垢性能可视化测试系统
CN205538771U (zh) 2016-01-04 2016-08-31 华能南京金陵发电有限公司 电站锅炉水冷壁管传热特性的监测系统
CN205748090U (zh) 2016-05-12 2016-11-30 山东鲁亮压力容器制造有限公司 一种换热器自动除垢系统
CN106017965B (zh) 2016-07-12 2018-11-20 扬州大学 一种u型地埋管换热器热湿传递性能模拟测试装置及测试方法
CN106288940A (zh) 2016-09-08 2017-01-04 深圳达实智能股份有限公司 一种制冷机冷凝器在线清洗控制方法及系统
CN106932214B (zh) 2016-12-22 2023-10-20 江苏省特种设备安全监督检验研究院 一种换热器性能及能效测试平台
CN106872514A (zh) 2017-02-21 2017-06-20 沈阳艾柏瑞环境科技有限公司 稳态换热过程传热系数及污垢热阻值在线监测系统和方法
CN106989908A (zh) 2017-04-19 2017-07-28 山东大学 一种用于研究尾部烟气换热管积灰的仿真测试试验台
CN206648815U (zh) 2017-04-19 2017-11-17 山东大学 一种用于研究尾部烟气换热管积灰的仿真测试试验台
CN107091590A (zh) 2017-06-17 2017-08-25 深圳市纽乐节能设备工程有限公司 冷凝器胶球自动在线清洗系统及方法
US11891309B2 (en) 2017-09-19 2024-02-06 Ecolab Usa Inc. Cooling water monitoring and control system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155826A2 (en) * 1984-03-23 1985-09-25 International Control Automation Finance S.A. Heat exchanger performance monitors
US5590706A (en) * 1993-12-10 1997-01-07 Electric Power Research Institute On-line fouling monitor for service water system heat exchangers
EP1980535A2 (en) * 1996-02-29 2008-10-15 Ashland Licensing and Intellectual Property LLC Performance-based Control System
US20040254682A1 (en) * 2001-12-27 2004-12-16 Tim Kast Apparatus, system and method for non-chemical treatment and management of cooling water
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
CN1873362A (zh) * 2006-06-30 2006-12-06 王正方 一种无沉积水垢的板式换热器及其换热方式
US20090090613A1 (en) * 2007-10-05 2009-04-09 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer and method of improving heat transfer
CN102026921A (zh) * 2008-05-07 2011-04-20 纳尔科公司 最小化冷却塔系统中腐蚀、结垢和耗水量的方法
US20120330474A1 (en) * 2010-02-26 2012-12-27 Kreider Marc A Method and apparatus for evaluating repair and remediation alternatives for heat exchangers
US20140254682A1 (en) * 2013-03-06 2014-09-11 Qualcomm Incorporated Derived disparity vector in 3d video coding
CN103629959A (zh) * 2013-12-09 2014-03-12 山东大学 管束菱形排列的水泥回转窑余热利用换热器及其吹灰方法
CN104267072A (zh) * 2014-09-04 2015-01-07 卢岳 一种管路水垢检测方法
CN105758879A (zh) * 2016-03-02 2016-07-13 陕西省石油化工研究设计院 一种油田管道设备内腐蚀结垢物的分析方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466844A (zh) * 2022-08-23 2022-12-13 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 一种抑制换热器结垢的方法
CN117553385A (zh) * 2024-01-08 2024-02-13 联科信达物联网有限公司 一种中央空调智能管控平台用监控终端
CN117553385B (zh) * 2024-01-08 2024-05-31 联科信达物联网有限公司 一种中央空调智能管控平台用监控终端

Also Published As

Publication number Publication date
JP2021502533A (ja) 2021-01-28
JP7344201B2 (ja) 2023-09-13
US20190145722A1 (en) 2019-05-16
ES2933502T3 (es) 2023-02-09
BR112020005049A2 (pt) 2020-09-15
EP3707457A1 (en) 2020-09-16
PL3707457T3 (pl) 2023-01-09
KR20200086253A (ko) 2020-07-16
MX2020003586A (es) 2020-07-22
US20230288153A1 (en) 2023-09-14
EP3707457B1 (en) 2022-09-28
BR112020005049B1 (pt) 2023-05-16
CN111051806B (zh) 2022-10-25
US11668535B2 (en) 2023-06-06
CL2020001188A1 (es) 2020-09-25
WO2019094747A1 (en) 2019-05-16
AU2018364983A1 (en) 2020-04-02
CO2020003099A2 (es) 2020-04-13

Similar Documents

Publication Publication Date Title
CN111051806B (zh) 冷却水监测和控制系统
KR102628369B1 (ko) 냉각수 모니터링 및 제어 시스템
AU2001272969B2 (en) Dynamic optimization of chemical additives in a water treatment system
CA2356153C (en) Performance-based control system
US20050133211A1 (en) Heat exchanger performance monitoring and analysis method and system
AU2001272969A1 (en) Dynamic optimization of chemical additives in a water treatment system
Rubio et al. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system
Boullosa-Falces et al. Validation of CUSUM control chart for biofouling detection in heat exchangers
Licina Monitoring biofilms on metallic surfaces in real time
Boullosa-Falces et al. Biofouling control in heat exchangers by statistical techniques
Young | Water Handling Systems
Deru et al. Testing and Evaluation of a Chemical-Free Cooling Tower Water Treatment Technology
Beardwood THE USE OF COMPARATIVE MODELLING OF HEAT EXCHANGERS IN COOLING WATER TO AVOID UNSCHEDULED PRODUCTION DOWNTIME
Beardwood OPERATIONAL AND CHEMISTRY MODELING AND MONITORING OF COOLING WATER HEAT EXCHANGERS FOR THE AVOIDANCE OF WATERSIDE FOULING
Ukpaka Application of chemical injection on cooling treatment technology control of corrosion and fouling in petrochemical plant: Case study of Indorama Plc, Akpajo-Eleme
CN118145765A (zh) 基于膜壳利用变频电磁场杀菌阻垢监测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant