CN111049134A - 一种多能互补园区响应电力系统削峰需求的计算方法 - Google Patents

一种多能互补园区响应电力系统削峰需求的计算方法 Download PDF

Info

Publication number
CN111049134A
CN111049134A CN201911362886.3A CN201911362886A CN111049134A CN 111049134 A CN111049134 A CN 111049134A CN 201911362886 A CN201911362886 A CN 201911362886A CN 111049134 A CN111049134 A CN 111049134A
Authority
CN
China
Prior art keywords
power
energy complementary
ith
energy
complementary park
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911362886.3A
Other languages
English (en)
Other versions
CN111049134B (zh
Inventor
孙宏斌
吴磊
王彬
郭庆来
潘昭光
赵昊天
段丽娟
田兴涛
霍现旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Tianjin Electric Power Co Ltd
Original Assignee
Tsinghua University
State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Tianjin Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN201911362886.3A priority Critical patent/CN111049134B/zh
Publication of CN111049134A publication Critical patent/CN111049134A/zh
Application granted granted Critical
Publication of CN111049134B publication Critical patent/CN111049134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种多能互补园区响应电力系统削峰需求的计算方法,属于综合能源系统的运行控制技术领域。本发明方法计算出多能互补园区可响应的不同削峰需求比例下,联络线功率计划曲线、多能互补园区内部的能源设备运行计划和最小调节成本。通过合理安排热电联产机组、燃气锅炉、吸收式制冷机、电热锅炉和电制冷机能源设备的出力,以及合理控制蓄电池的充/放电时间和充/放电功率,可以改变多能互补园区联络线功率,从而将多能互补园区作为灵活性资源,响应电力系统的削峰需求。

Description

一种多能互补园区响应电力系统削峰需求的计算方法
技术领域
本发明涉及一种多能互补园区响应电力系统削峰需求的计算方法,属于综合能源系统的运行控制技术领域。
背景技术
随着社会经济的不断发展和人民生活水平的提高,电负荷逐年上升,与此同时电力峰谷差也日益增大。以往的电力系统中,电力设备以满足最大电负荷为目标进行配置,此种方案导致电力设备在电力低谷阶段运行效率较低,造成资源的浪费。此外,日益增大的电力峰谷差也使得电力系统安全、稳定运行面临严峻挑战。如何有效发掘能源系统中的灵活性资源来实现电力削峰是亟待研究的技术问题。
多能互补园区内的能源需求类型包括电力、供热和供冷。园区可利用冷热电三联供机组(CCHP)、光伏、储能、直燃机、燃气锅炉、电锅炉、电制冷机组等设备满足园区全部的供冷、供热需求和部分电力需求,并通过联络线与电力系统交换电力。冷热电三联供机组(CCHP)、电锅炉、电制冷机组等设备是能量耦合设备,通过合理安排这些能量耦合设备的出力,可以改变园区联络线功率。此外,通过控制蓄电池的充/放电时间和充/放电功率,也可以改变联络线功率。由此说明,多能互补园区可以作为灵活性资源响应电力系统的削峰需求,通过合理利用多能互补园区能源设备降低电力系统调峰成本。例如专利申请号为201910359105.9、发明名称为“一种基于电网调峰需求的多能互补园区需求响应方法”的中国专利申请,提出了园区内分布式电源系统、可中断负荷等设备响应电网削峰需求的方法。但该方法未考虑多能互补园区中多种能量转换设备的调节能力,例如热电联产机组和电锅炉等,且该方法按照优先级调控园区内设备,并未考虑成本最优及各种耦合约束,且没有计算调节成本,因此该方法不能保证多能互补园区对电网削峰需求的最佳响应。
发明内容
本发明的目的是提出一种多能互补园区响应电力系统削峰需求的计算方法,旨在解决已有技术中存在的问题,计算出多能互补园区可响应的不同削峰需求比例下,联络线功率计划曲线、多能互补园区内部的能源设备运行计划和最小调节成本。通过合理安排热电联产机组、燃气锅炉、吸收式制冷机、电热锅炉和电制冷机能源设备的出力,以及合理控制蓄电池的充/放电时间和充/放电功率,可以改变多能互补园区联络线功率,从而将多能互补园区作为灵活性资源,响应电力系统的削峰需求。
本发明提出的多能互补园区响应电力系统削峰需求的计算方法,包括以下步骤:
(1)设定多能互补园区中的能源设备包含发电机、热电联产机组、燃气锅炉、吸收式制冷机组、电锅炉、电制冷机和蓄电池,该多能互补园区与电力系统通过联络线相连,建立一个第一优化模型,第一优化模型用于计算多能互补园区向电力系统上报的联络线功率基线,作为电力系统日前调度的功率基线,第一优化模型以不加调控时多能互补园区自身总运行成本c0最小为目标,第一优化模型的目标函数为使c0为最小:
Figure BDA0002337665880000021
其中,x为该第一优化模型中所有待求解变量构成的列向量,即:
Figure BDA0002337665880000022
其中,
Figure BDA0002337665880000023
为第iG台发电机在调度时刻t发出的有功功率;
Figure BDA0002337665880000024
Figure BDA0002337665880000025
分别为第iCHP台热电联产机组在调度时刻t的有功功率和供热功率;
Figure BDA0002337665880000026
为第iGB台燃气锅炉在调度时刻t的供热功率;
Figure BDA0002337665880000027
为第iAC台吸收式制冷机组在调度时刻t的供冷功率;
Figure BDA0002337665880000028
Figure BDA0002337665880000029
分别为第iEB台电锅炉在调度时刻t的耗电功率和供热功率;
Figure BDA00023376658800000210
Figure BDA00023376658800000211
分别为第iEC台电制冷机在调度时刻t的耗电功率和供冷功率;
Figure BDA00023376658800000212
Figure BDA00023376658800000213
分别为第iES台蓄电池在调度时刻t的充电功率和放电功率;
Figure BDA00023376658800000214
为第iES台蓄电池在调度时刻t的充电状态的0-1变量,
Figure BDA00023376658800000215
代表蓄电池在调度时刻t处在充电状态,
Figure BDA00023376658800000216
代表蓄电池在调度时刻t未处在充电状态;
Figure BDA00023376658800000217
为描述第iES台蓄电池在调度时刻t的放电状态的0-1变量,
Figure BDA00023376658800000218
代表蓄电池在调度时刻t处在放电状态,
Figure BDA00023376658800000219
代表蓄电池在调度时刻t未处在放电状态;
Figure BDA00023376658800000220
为第iES台蓄电池在调度时刻t的充电转换状态的0-1变量,即
Figure BDA00023376658800000221
代表蓄电池在调度时刻t-1未在充电、在调度时刻t处在充电状态,
Figure BDA00023376658800000222
代表蓄电池在调度时刻t-1在充电、调度时刻t处在未充电状态;
Figure BDA00023376658800000223
为第iES台蓄电池在调度时刻t的放电转换状态的0-1变量,即
Figure BDA0002337665880000031
代表蓄电池在调度时刻t-1未在放电、调度时刻t处在放电状态,
Figure BDA0002337665880000032
代表蓄电池在调度时刻t-1处在放电、调度时刻t未在放电状态;
Figure BDA0002337665880000033
为调度时刻t的联络线功率,即多能互补园区与电力系统交换的电功率,以电功率流入多能互补园区为正方向;上标T为向量转置;
Figure BDA0002337665880000034
为电力系统所有调度时刻t构成的集合;SG为多能互补园区内所有发电机构成的集合;
Figure BDA0002337665880000035
为第iG台发电机在一个调度时刻发出单位有功功率所需成本,对于分布式光伏发电装置和分布式风电机组该值可取为0;SGB为所有燃气锅炉构成的集合;
Figure BDA0002337665880000036
为第iGB台燃气锅炉在一个调度时刻内维持单位供热功率所需成本;SAC为所有吸收式制冷机构成的集合;
Figure BDA0002337665880000037
为第iAC台吸收式制冷机组在一个调度时刻内维持单位供冷功率所需成本;SCHP为所有热电联产机组构成的集合;
Figure BDA0002337665880000038
为第iCHP台热电联产机组在一个调度时刻内维持单位发电功率所需成本;
Figure BDA0002337665880000039
为第iCHP台热电联产机组在一个调度时刻内维持单位供热功率所需成本;
Figure BDA00023376658800000310
为调度时刻t的联络线电价;ΔT为相邻两个调度时刻的时间间隔;
第一优化模型的约束条件包括:
(1-1)多能互补园区中发电机的有功功率范围和爬坡约束:
Figure BDA00023376658800000311
Figure BDA00023376658800000312
其中,
Figure BDA00023376658800000313
Figure BDA00023376658800000314
分别为多能互补园区中第iG台发电机的有功功率上限和下限,
Figure BDA00023376658800000315
Figure BDA00023376658800000316
为第iG台发电机有功功率的向上爬坡速率最大值和向下爬坡速率最大值;
(1-2)多能互补园区中热电联产机组的有功功率范围约束、供热功率范围约束和热电联产机组的有功功率爬坡约束:
Figure BDA00023376658800000317
Figure BDA00023376658800000318
其中,
Figure BDA00023376658800000319
为与第iCHP台热电联产机组的有功功率和供热功率相关的可行域,
Figure BDA00023376658800000320
Figure BDA00023376658800000321
为第iCHP台热电联产机组有功功率的向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由热电联产机组说明书获得;
(1-3)多能互补园区中燃气锅炉供热功率范围及爬坡约束:
Figure BDA0002337665880000041
Figure BDA0002337665880000042
其中,
Figure BDA0002337665880000043
Figure BDA0002337665880000044
为第iGB台燃气锅炉的供热功率上限和供热功率下限,
Figure BDA0002337665880000045
Figure BDA0002337665880000046
为第iGB台燃气锅炉的供热功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由燃气锅炉说明书获得;
(1-4)多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:
Figure BDA0002337665880000047
Figure BDA0002337665880000048
其中,
Figure BDA0002337665880000049
Figure BDA00023376658800000410
为第iAC台吸收式制冷机的供冷功率上限和供冷功率下限,
Figure BDA00023376658800000411
Figure BDA00023376658800000412
为第iAC台吸收式制冷机的供冷功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由吸收式制冷机说明书获得;
(1-5)多能互补园区中电热锅炉的供热功率范围及爬坡约束:
Figure BDA00023376658800000413
Figure BDA00023376658800000414
Figure BDA00023376658800000415
其中,
Figure BDA00023376658800000416
Figure BDA00023376658800000417
为第iEB台电锅炉的耗电功率上限和下限,
Figure BDA00023376658800000418
为第iEB台电锅炉的供热效率,
Figure BDA00023376658800000419
Figure BDA00023376658800000420
为第iEB台电锅炉的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电锅炉说明书获得;
(1-6)多能互补园区中电制冷机的供冷功率范围及爬坡约束:
Figure BDA00023376658800000421
Figure BDA00023376658800000422
Figure BDA00023376658800000423
其中,
Figure BDA00023376658800000424
Figure BDA00023376658800000425
为第iEC台电制冷机的耗电功率上限和下限,
Figure BDA00023376658800000426
为第iEC台电制冷机的性能系数,
Figure BDA00023376658800000427
Figure BDA00023376658800000428
为第iEC台电制冷机的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电制冷机说明书获得;
(1-7)多能互补园区中蓄电池的运行约束:
Figure BDA0002337665880000051
Figure BDA0002337665880000052
Figure BDA0002337665880000053
Figure BDA0002337665880000054
Figure BDA0002337665880000055
Figure BDA0002337665880000056
Figure BDA0002337665880000057
Figure BDA0002337665880000058
其中,
Figure BDA0002337665880000059
Figure BDA00023376658800000510
为第iES台蓄电池的充电功率上限和下限;
Figure BDA00023376658800000511
Figure BDA00023376658800000512
为第iES台蓄电池的放电功率上限和下限;
Figure BDA00023376658800000513
为一个调度日中第i台蓄电池的最大充放电转换次数;
Figure BDA00023376658800000514
Figure BDA00023376658800000515
为第iES台蓄电池中可储存的最大能量和最小能量;上述所有参数均在对应设备的说明书或操作规程中得到;
Figure BDA00023376658800000516
为第iES台蓄电池在该调度日开始时储存的能量,由蓄电池前一日的调度结果得到;
(1-8)多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure BDA00023376658800000517
Figure BDA00023376658800000518
Figure BDA00023376658800000519
其中,
Figure BDA00023376658800000520
为多能互补园区在调度时刻t的电负荷有功功率,
Figure BDA00023376658800000521
为多能互补园区在调度时刻t的热负荷功率,
Figure BDA00023376658800000522
为多能互补园区在调度时刻t的冷负荷功率,上述负荷功率均可根据历史负荷功率数据进行预测得到;
(1-9)多能互补园区中冷、热负荷的惯性及室内温度约束:
Figure BDA00023376658800000523
Figure BDA00023376658800000524
Figure BDA00023376658800000525
Figure BDA0002337665880000061
其中,
Figure BDA0002337665880000062
为热负荷的热容,
Figure BDA0002337665880000063
Figure BDA0002337665880000064
分别为热负荷t和t-1时刻的室内温度,
Figure BDA0002337665880000065
为热负荷的热导,SHL为所有热负荷构成的集合,
Figure BDA0002337665880000066
为t时刻的环境温度,
Figure BDA0002337665880000067
Figure BDA0002337665880000068
分别为热负荷室内温度最小值和最大值,
Figure BDA0002337665880000069
为冷负荷的热容,
Figure BDA00023376658800000610
Figure BDA00023376658800000611
分别为冷负荷t和t-1时刻的室内温度,
Figure BDA00023376658800000612
为冷负荷的热导,SCL为所有冷负荷构成的集合,
Figure BDA00023376658800000613
Figure BDA00023376658800000614
分别为冷负荷室内温度最小值和最大值。
采用分支定界法,求解由上述目标函数和约束条件组成的第一优化模型,得到多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure BDA00023376658800000615
的最优值
Figure BDA00023376658800000616
即多能互补园区联络线功率基线,以及目标函数最优值c0,即多能互补园区最小运行成本,多能互补园区将联络线功率基线上报电力系统;
(2)多能互补园区接收电力系统下发的调度时段t削峰需求
Figure BDA00023376658800000617
为电力系统期望联络线在调度时段t的有功功率低于联络线功率基线的有功功率值;根据该削峰需求
Figure BDA00023376658800000618
计算多能互补园区可提供的削峰需求能力,具体方法如下:
(2-1)选取计算步长ε,ε取值为0~1,置循环次数k初始值1;
(2-2)求解如下的第二优化模型,该第二优化模型用于在调度时段t,当联络线功率为
Figure BDA00023376658800000619
时,求多能互补园区运行费用最小时多能互补园区中的能源设备的运行计划;第二优化模型的目标函数与第一优化模型的目标函数相同;
第二优化模型的约束条件包括:
a、多能互补园区中发电机的有功功率范围和爬坡约束:与第一优化模型中约束条件(1-1)相同;
b、多能互补园区中热电联产机组的有功功率和供热功率范围约束和热电联产机组的有功功率爬坡约束:与第一优化模型中约束条件(1-2)相同;
c、多能互补园区中燃气锅炉供热功率范围及爬坡约束:与第一优化模型中约束条件(1-3)相同;
d、多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-4)相同;
e、多能互补园区中电热锅炉的供热功率范围及爬坡约束:与第一优化模型中约束条件(1-5)相同;
f、多能互补园区中电制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-6)相同;
g、多能互补园区中蓄电池的运行约束:与第一优化模型中约束条件(1-7)相同;
h、多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure BDA0002337665880000071
Figure BDA0002337665880000072
Figure BDA0002337665880000073
i、多能互补园区中冷、热负荷的惯性及室内温度约束:与第一优化模型中约束条件(1-9)相同;
采用分支定界法,求解由上述目标函数和约束条件组成的第二优化模型,若第二优化模型可解,则得到目标函数最优值ck,以及多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure BDA0002337665880000074
的最优值
Figure BDA0002337665880000075
即多能互补园区向电力系统上报的功率基线,转步骤(2-3);若该模型无解,则结束循环,进行步骤(3);
(2-3)计算削峰需求比例为kε时的多能互补园区的调节成本ck*,ck*=ck-c0,记录ck*,并置k=k+1,对kε进行判断,若kε>1,转步骤(3),若kε≤1,返回步骤(2-2),直到kε>1,得到多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*
(3)将步骤(2-3)的多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*上报电力系统,电力系统下发最终采用的多能互补园区的削峰比例,实现由多能互补园区对电力系统削峰需求的响应。
本发明提出的多能互补园区响应电力系统削峰需求的计算方法,其优点是:
本发明的多能互补园区响应电力系统削峰需求的计算方法,可以实现以下功能:在日前计算多能互补园区次日的联络线初始计划即联络线功率基线;在电力系统存在削峰需求时,在日前计算多能互补园区对电力系统发布的削峰需求的最大响应程度;在电力系统存在削峰需求时,在日前计算不同程度削峰后的联络线功率计划曲线、多能互补园区内部的能源设备运行计划和最小调节成本。电力系统可根据这些计算结果向多能互补园区下发联络线功率计划。本发明能够充分利用多能互补园区内部的能源设备响应电力系统削峰需求,有利于降低电力系统调度成本。
具体实施方式
本发明提出的多能互补园区响应电力系统削峰需求的计算方法,包括以下步骤:
(1)计算多能互补园区次日的联络线初始计划即联络线功率基线,一般以园区总供能成本最小化为目标,求解如下优化问题:设定多能互补园区中的能源设备包含发电机、热电联产机组、燃气锅炉、吸收式制冷机组、电锅炉、电制冷机和蓄电池,其中的发电机可以为常规发电机、分布式光伏发电装置或分布式风电机组,该多能互补园区与电力系统通过联络线相连,建立一个第一优化模型,第一优化模型用于计算多能互补园区向电力系统上报的联络线功率基线,作为电力系统日前调度的功率基线,第一优化模型以不加调控时多能互补园区自身总运行成本c0最小为目标,第一优化模型的目标函数为使c0为最小:
Figure BDA0002337665880000081
其中,x为该第一优化模型中所有待求解变量构成的列向量,即:
Figure BDA0002337665880000082
其中,
Figure BDA0002337665880000083
为第iG台发电机在调度时刻t发出的有功功率;
Figure BDA0002337665880000084
Figure BDA0002337665880000085
分别为第iCHP台热电联产机组在调度时刻t的有功功率和供热功率;
Figure BDA0002337665880000086
为第iGB台燃气锅炉在调度时刻t的供热功率;
Figure BDA0002337665880000087
为第iAC台吸收式制冷机组在调度时刻t的供冷功率;
Figure BDA0002337665880000088
Figure BDA0002337665880000089
分别为第iEB台电锅炉在调度时刻t的耗电功率和供热功率;
Figure BDA00023376658800000810
Figure BDA00023376658800000811
分别为第iEC台电制冷机在调度时刻t的耗电功率和供冷功率;
Figure BDA00023376658800000812
Figure BDA00023376658800000813
分别为第iES台蓄电池在调度时刻t的充电功率和放电功率;
Figure BDA00023376658800000814
为第iES台蓄电池在调度时刻t的充电状态的0-1变量,
Figure BDA00023376658800000815
代表蓄电池在调度时刻t处在充电状态,
Figure BDA00023376658800000816
代表蓄电池在调度时刻t未处在充电状态;
Figure BDA00023376658800000817
为描述第iES台蓄电池在调度时刻t的放电状态的0-1变量,
Figure BDA00023376658800000818
代表蓄电池在调度时刻t处在放电状态,
Figure BDA00023376658800000819
代表蓄电池在调度时刻t未处在放电状态;
Figure BDA00023376658800000820
为第iES台蓄电池在调度时刻t的充电转换状态的0-1变量,即
Figure BDA00023376658800000821
代表蓄电池在调度时刻t-1未在充电、在调度时刻t处在充电状态,
Figure BDA00023376658800000822
代表蓄电池在调度时刻t-1在充电、调度时刻t处在未充电状态;
Figure BDA00023376658800000823
为第iES台蓄电池在调度时刻t的放电转换状态的0-1变量,即
Figure BDA00023376658800000824
代表蓄电池在调度时刻t-1未在放电、调度时刻t处在放电状态,
Figure BDA00023376658800000825
代表蓄电池在调度时刻t-1处在放电、调度时刻t未在放电状态;
Figure BDA0002337665880000091
为调度时刻t的联络线功率,即多能互补园区与电力系统交换的电功率,以电功率流入多能互补园区为正方向;上标T为向量转置;
Figure BDA00023376658800000921
为电力系统所有调度时刻t构成的集合;SG为多能互补园区内所有发电机构成的集合;
Figure BDA0002337665880000092
为第iG台发电机在一个调度时刻发出单位有功功率所需成本,对于分布式光伏发电装置和分布式风电机组该值可取为0;SGB为所有燃气锅炉构成的集合;
Figure BDA0002337665880000093
为第iGB台燃气锅炉在一个调度时刻内维持单位供热功率所需成本;SAC为所有吸收式制冷机构成的集合;
Figure BDA0002337665880000094
为第iAC台吸收式制冷机组在一个调度时刻内维持单位供冷功率所需成本;SCHP为所有热电联产机组构成的集合;
Figure BDA0002337665880000095
为第iCHP台热电联产机组在一个调度时刻内维持单位发电功率所需成本;
Figure BDA0002337665880000096
为第iCHP台热电联产机组在一个调度时刻内维持单位供热功率所需成本;
Figure BDA0002337665880000097
为调度时刻t的联络线电价;ΔT为相邻两个调度时刻的时间间隔;
第一优化模型的约束条件包括:
(1-1)多能互补园区中发电机的有功功率范围和爬坡约束:
Figure BDA0002337665880000098
Figure BDA0002337665880000099
其中,
Figure BDA00023376658800000910
Figure BDA00023376658800000911
分别为多能互补园区中第iG台发电机的有功功率上限和下限,
Figure BDA00023376658800000912
Figure BDA00023376658800000913
为第iG台发电机有功功率的向上爬坡速率最大值和向下爬坡速率最大值;
(1-2)多能互补园区中热电联产机组的有功功率范围约束、供热功率范围约束和热电联产机组的有功功率爬坡约束:
Figure BDA00023376658800000914
Figure BDA00023376658800000915
其中,
Figure BDA00023376658800000916
为与第iCHP台热电联产机组的有功功率和供热功率相关的可行域,
Figure BDA00023376658800000917
Figure BDA00023376658800000918
为第iCHP台热电联产机组有功功率的向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由热电联产机组说明书获得;
(1-3)多能互补园区中燃气锅炉供热功率范围及爬坡约束:
Figure BDA00023376658800000919
Figure BDA00023376658800000920
其中,
Figure BDA0002337665880000101
Figure BDA0002337665880000102
为第iGB台燃气锅炉的供热功率上限和供热功率下限,
Figure BDA0002337665880000103
Figure BDA0002337665880000104
为第iGB台燃气锅炉的供热功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由燃气锅炉说明书获得;
(1-4)多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:
Figure BDA0002337665880000105
Figure BDA0002337665880000106
其中,
Figure BDA0002337665880000107
Figure BDA0002337665880000108
为第iAC台吸收式制冷机的供冷功率上限和供冷功率下限,
Figure BDA0002337665880000109
Figure BDA00023376658800001010
为第iAC台吸收式制冷机的供冷功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由吸收式制冷机说明书获得;
(1-5)多能互补园区中电热锅炉的供热功率范围及爬坡约束:
Figure BDA00023376658800001011
Figure BDA00023376658800001012
Figure BDA00023376658800001013
其中,
Figure BDA00023376658800001014
Figure BDA00023376658800001015
为第iEB台电锅炉的耗电功率上限和下限,
Figure BDA00023376658800001016
为第iEB台电锅炉的供热效率,
Figure BDA00023376658800001017
Figure BDA00023376658800001018
为第iEB台电锅炉的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电锅炉说明书获得;
(1-6)多能互补园区中电制冷机的供冷功率范围及爬坡约束:
Figure BDA00023376658800001019
Figure BDA00023376658800001020
Figure BDA00023376658800001021
其中,
Figure BDA00023376658800001022
Figure BDA00023376658800001023
为第iEC台电制冷机的耗电功率上限和下限,
Figure BDA00023376658800001024
为第iEC台电制冷机的性能系数,
Figure BDA00023376658800001025
Figure BDA00023376658800001026
为第iEC台电制冷机的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电制冷机说明书获得;
(1-7)多能互补园区中蓄电池的运行约束:
Figure BDA00023376658800001027
Figure BDA0002337665880000111
Figure BDA0002337665880000112
Figure BDA0002337665880000113
Figure BDA0002337665880000114
Figure BDA0002337665880000115
Figure BDA0002337665880000116
Figure BDA0002337665880000117
其中,
Figure BDA0002337665880000118
Figure BDA0002337665880000119
为第iES台蓄电池的充电功率上限和下限;
Figure BDA00023376658800001110
Figure BDA00023376658800001111
为第iES台蓄电池的放电功率上限和下限;
Figure BDA00023376658800001112
为一个调度日中第i台蓄电池的最大充放电转换次数;
Figure BDA00023376658800001113
Figure BDA00023376658800001114
为第iES台蓄电池中可储存的最大能量和最小能量;上述所有参数均在对应设备的说明书或操作规程中得到;
Figure BDA00023376658800001115
为第iES台蓄电池在该调度日开始时储存的能量,由蓄电池前一日的调度结果得到;
(1-8)多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure BDA00023376658800001116
Figure BDA00023376658800001117
Figure BDA00023376658800001118
其中,
Figure BDA00023376658800001119
为多能互补园区在调度时刻t的电负荷有功功率,
Figure BDA00023376658800001120
为多能互补园区在调度时刻t的热负荷功率,
Figure BDA00023376658800001121
为多能互补园区在调度时刻t的冷负荷功率,上述负荷功率均可根据历史负荷功率数据进行预测得到;
(1-9)多能互补园区中冷、热负荷的惯性及室内温度约束:
Figure BDA00023376658800001122
Figure BDA00023376658800001123
Figure BDA00023376658800001124
Figure BDA00023376658800001125
其中,
Figure BDA00023376658800001126
为热负荷的热容,
Figure BDA00023376658800001127
Figure BDA00023376658800001128
分别为热负荷t和t-1时刻的室内温度,
Figure BDA0002337665880000121
为热负荷的热导,SHL为所有热负荷构成的集合,
Figure BDA0002337665880000122
为t时刻的环境温度,
Figure BDA0002337665880000123
Figure BDA0002337665880000124
分别为热负荷室内温度最小值和最大值,
Figure BDA0002337665880000125
为冷负荷的热容,
Figure BDA0002337665880000126
Figure BDA0002337665880000127
分别为冷负荷t和t-1时刻的室内温度,
Figure BDA0002337665880000128
为冷负荷的热导,SCL为所有冷负荷构成的集合,
Figure BDA0002337665880000129
Figure BDA00023376658800001210
分别为冷负荷室内温度最小值和最大值。
采用分支定界法,求解由上述目标函数和约束条件组成的第一优化模型,得到多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure BDA00023376658800001211
的最优值
Figure BDA00023376658800001212
即多能互补园区联络线功率基线,以及目标函数最优值c0,即多能互补园区最小运行成本,多能互补园区将联络线功率基线上报电力系统;
(2)多能互补园区接收电力系统下发的调度时段t削峰需求
Figure BDA00023376658800001213
为电力系统期望联络线在调度时段t的有功功率低于联络线功率基线的有功功率值;根据该削峰需求
Figure BDA00023376658800001214
计算多能互补园区可提供的削峰需求能力,具体方法如下:
(2-1)选取计算步长ε,ε取值为0~1,本发明的一个实施例中取0.1;置循环次数k初始值1;
(2-2)求解如下的第二优化模型,该第二优化模型用于在调度时段t,当联络线功率为
Figure BDA00023376658800001215
时,求多能互补园区运行费用最小时多能互补园区中的能源设备的运行计划;第二优化模型的目标函数与第一优化模型的目标函数相同;
第二优化模型的约束条件包括:
a、多能互补园区中发电机的有功功率范围和爬坡约束:与第一优化模型中约束条件(1-1)相同;
b、多能互补园区中热电联产机组的有功功率和供热功率范围约束和热电联产机组的有功功率爬坡约束:与第一优化模型中约束条件(1-2)相同;
c、多能互补园区中燃气锅炉供热功率范围及爬坡约束:与第一优化模型中约束条件(1-3)相同;
d、多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-4)相同;
e、多能互补园区中电热锅炉的供热功率范围及爬坡约束:与第一优化模型中约束条件(1-5)相同;
f、多能互补园区中电制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-6)相同;
g、多能互补园区中蓄电池的运行约束:与第一优化模型中约束条件(1-7)相同;
h、多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure BDA0002337665880000131
Figure BDA0002337665880000132
Figure BDA0002337665880000133
i、多能互补园区中冷、热负荷的惯性及室内温度约束:与第一优化模型中约束条件(1-9)相同;
采用分支定界法,求解由上述目标函数和约束条件组成的第二优化模型,若第二优化模型可解,则得到目标函数最优值ck,以及多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure BDA0002337665880000134
的最优值
Figure BDA0002337665880000135
即多能互补园区向电力系统上报的功率基线,转步骤(2-3);若该模型无解,则结束循环,进行步骤(3);
(2-3)计算削峰需求比例为kε时的多能互补园区的调节成本ck*,ck*=ck-c0,记录ck*,并置k=k+1,对kε进行判断,若kε>1,转步骤(3),若kε≤1,返回步骤(2-2),直到kε>1,得到多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*
(3)将步骤(2-3)的多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*上报电力系统,电力系统下发最终采用的多能互补园区的削峰比例,实现由多能互补园区对电力系统削峰需求的响应。

Claims (1)

1.一种多能互补园区响应电力系统削峰需求的计算方法,其特征在于该方法包括以下步骤:
(1)设定多能互补园区中的能源设备包含发电机、热电联产机组、燃气锅炉、吸收式制冷机组、电锅炉、电制冷机和蓄电池,该多能互补园区与电力系统通过联络线相连,建立一个第一优化模型,第一优化模型用于计算多能互补园区向电力系统上报的联络线功率基线,作为电力系统日前调度的功率基线,第一优化模型以不加调控时多能互补园区自身总运行成本c0最小为目标,第一优化模型的目标函数为使c0为最小:
Figure FDA0002337665870000011
其中,x为该第一优化模型中所有待求解变量构成的列向量,即:
Figure FDA0002337665870000012
其中,
Figure FDA0002337665870000013
为第iG台发电机在调度时刻t发出的有功功率;
Figure FDA0002337665870000014
Figure FDA0002337665870000015
分别为第iCHP台热电联产机组在调度时刻t的有功功率和供热功率;
Figure FDA0002337665870000016
为第iGB台燃气锅炉在调度时刻t的供热功率;
Figure FDA0002337665870000017
为第iAC台吸收式制冷机组在调度时刻t的供冷功率;
Figure FDA0002337665870000018
Figure FDA0002337665870000019
分别为第iEB台电锅炉在调度时刻t的耗电功率和供热功率;
Figure FDA00023376658700000110
Figure FDA00023376658700000111
分别为第iEC台电制冷机在调度时刻t的耗电功率和供冷功率;
Figure FDA00023376658700000112
Figure FDA00023376658700000113
分别为第iES台蓄电池在调度时刻t的充电功率和放电功率;
Figure FDA00023376658700000114
为第iES台蓄电池在调度时刻t的充电状态的0-1变量,
Figure FDA00023376658700000115
代表蓄电池在调度时刻t处在充电状态,
Figure FDA00023376658700000116
代表蓄电池在调度时刻t未处在充电状态;
Figure FDA00023376658700000117
为描述第iES台蓄电池在调度时刻t的放电状态的0-1变量,
Figure FDA00023376658700000118
代表蓄电池在调度时刻t处在放电状态,
Figure FDA00023376658700000119
代表蓄电池在调度时刻t未处在放电状态;
Figure FDA00023376658700000120
为第iES台蓄电池在调度时刻t的充电转换状态的0-1变量,即
Figure FDA00023376658700000121
代表蓄电池在调度时刻t-1未在充电、在调度时刻t处在充电状态,
Figure FDA00023376658700000122
代表蓄电池在调度时刻t-1在充电、调度时刻t处在未充电状态;
Figure FDA00023376658700000123
为第iES台蓄电池在调度时刻t的放电转换状态的0-1变量,即代表蓄电池在调度时刻t-1未在放电、调度时刻t处在放电状态,
Figure FDA0002337665870000021
代表蓄电池在调度时刻t-1处在放电、调度时刻t未在放电状态;
Figure FDA0002337665870000022
为调度时刻t的联络线功率,即多能互补园区与电力系统交换的电功率,以电功率流入多能互补园区为正方向;上标T为向量转置;Υ为电力系统所有调度时刻t构成的集合;SG为多能互补园区内所有发电机构成的集合;
Figure FDA0002337665870000023
为第iG台发电机在一个调度时刻发出单位有功功率所需成本,对于分布式光伏发电装置和分布式风电机组该值可取为0;SGB为所有燃气锅炉构成的集合;
Figure FDA0002337665870000024
为第iGB台燃气锅炉在一个调度时刻内维持单位供热功率所需成本;SAC为所有吸收式制冷机构成的集合;
Figure FDA0002337665870000025
为第iAC台吸收式制冷机组在一个调度时刻内维持单位供冷功率所需成本;SCHP为所有热电联产机组构成的集合;
Figure FDA0002337665870000026
为第iCHP台热电联产机组在一个调度时刻内维持单位发电功率所需成本;
Figure FDA0002337665870000027
为第iCHP台热电联产机组在一个调度时刻内维持单位供热功率所需成本;
Figure FDA0002337665870000028
为调度时刻t的联络线电价;ΔT为相邻两个调度时刻的时间间隔;
第一优化模型的约束条件包括:
(1-1)多能互补园区中发电机的有功功率范围和爬坡约束:
Figure FDA0002337665870000029
Figure FDA00023376658700000210
其中,
Figure FDA00023376658700000211
Figure FDA00023376658700000212
分别为多能互补园区中第iG台发电机的有功功率上限和下限,
Figure FDA00023376658700000213
Figure FDA00023376658700000214
为第iG台发电机有功功率的向上爬坡速率最大值和向下爬坡速率最大值;
(1-2)多能互补园区中热电联产机组的有功功率范围约束、供热功率范围约束和热电联产机组的有功功率爬坡约束:
Figure FDA00023376658700000215
Figure FDA00023376658700000216
其中,
Figure FDA00023376658700000217
为与第iCHP台热电联产机组的有功功率和供热功率相关的可行域,
Figure FDA00023376658700000218
Figure FDA00023376658700000219
为第iCHP台热电联产机组有功功率的向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由热电联产机组说明书获得;
(1-3)多能互补园区中燃气锅炉供热功率范围及爬坡约束:
Figure FDA00023376658700000220
Figure FDA0002337665870000031
其中,
Figure FDA0002337665870000032
Figure FDA0002337665870000033
为第iGB台燃气锅炉的供热功率上限和供热功率下限,
Figure FDA0002337665870000034
Figure FDA0002337665870000035
为第iGB台燃气锅炉的供热功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由燃气锅炉说明书获得;
(1-4)多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:
Figure FDA0002337665870000036
Figure FDA0002337665870000037
其中,
Figure FDA0002337665870000038
Figure FDA0002337665870000039
为第iAC台吸收式制冷机的供冷功率上限和供冷功率下限,
Figure FDA00023376658700000310
Figure FDA00023376658700000311
为第iAC台吸收式制冷机的供冷功率向上爬坡速率最大值和向下爬坡速率最大值,上述参数均由吸收式制冷机说明书获得;
(1-5)多能互补园区中电热锅炉的供热功率范围及爬坡约束:
Figure FDA00023376658700000312
Figure FDA00023376658700000313
Figure FDA00023376658700000314
其中,
Figure FDA00023376658700000315
Figure FDA00023376658700000316
为第iEB台电锅炉的耗电功率上限和下限,
Figure FDA00023376658700000317
为第iEB台电锅炉的供热效率,
Figure FDA00023376658700000318
Figure FDA00023376658700000319
为第iEB台电锅炉的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电锅炉说明书获得;
(1-6)多能互补园区中电制冷机的供冷功率范围及爬坡约束:
Figure FDA00023376658700000320
Figure FDA00023376658700000321
Figure FDA00023376658700000322
其中,
Figure FDA00023376658700000323
Figure FDA00023376658700000324
为第iEC台电制冷机的耗电功率上限和下限,
Figure FDA00023376658700000325
为第iEC台电制冷机的性能系数,
Figure FDA00023376658700000326
Figure FDA00023376658700000327
为第iEC台电制冷机的耗电功率向上爬坡速率最大值和向下爬坡速率最大值;上述参数均可由电制冷机说明书获得;
(1-7)多能互补园区中蓄电池的运行约束:
Figure FDA0002337665870000041
Figure FDA0002337665870000042
Figure FDA0002337665870000043
Figure FDA0002337665870000044
Figure FDA0002337665870000045
Figure FDA0002337665870000046
Figure FDA0002337665870000047
Figure FDA0002337665870000048
其中,
Figure FDA0002337665870000049
Figure FDA00023376658700000410
为第iES台蓄电池的充电功率上限和下限;
Figure FDA00023376658700000411
Figure FDA00023376658700000412
为第iES台蓄电池的放电功率上限和下限;
Figure FDA00023376658700000413
为一个调度日中第i台蓄电池的最大充放电转换次数;
Figure FDA00023376658700000414
Figure FDA00023376658700000415
为第iES台蓄电池中可储存的最大能量和最小能量;上述所有参数均在对应设备的说明书或操作规程中得到;
Figure FDA00023376658700000416
为第iES台蓄电池在该调度日开始时储存的能量,由蓄电池前一日的调度结果得到;
(1-8)多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure FDA00023376658700000417
Figure FDA00023376658700000418
Figure FDA00023376658700000419
其中,
Figure FDA00023376658700000420
为多能互补园区在调度时刻t的电负荷有功功率,
Figure FDA00023376658700000421
为多能互补园区在调度时刻t的热负荷功率,
Figure FDA00023376658700000422
为多能互补园区在调度时刻t的冷负荷功率,上述负荷功率均可根据历史负荷功率数据进行预测得到;
(1-9)多能互补园区中冷、热负荷的惯性及室内温度约束:
Figure FDA00023376658700000423
Figure FDA00023376658700000424
Figure FDA00023376658700000425
Figure FDA00023376658700000426
其中,
Figure FDA0002337665870000051
为热负荷的热容,
Figure FDA0002337665870000052
Figure FDA0002337665870000053
分别为热负荷t和t-1时刻的室内温度,
Figure FDA0002337665870000054
为热负荷的热导,SHL为所有热负荷构成的集合,
Figure FDA0002337665870000055
为t时刻的环境温度,
Figure FDA0002337665870000056
Figure FDA0002337665870000057
分别为热负荷室内温度最小值和最大值,
Figure FDA0002337665870000058
为冷负荷的热容,
Figure FDA0002337665870000059
Figure FDA00023376658700000510
分别为冷负荷t和t-1时刻的室内温度,
Figure FDA00023376658700000511
为冷负荷的热导,SCL为所有冷负荷构成的集合,
Figure FDA00023376658700000512
Figure FDA00023376658700000513
分别为冷负荷室内温度最小值和最大值。
采用分支定界法,求解由上述目标函数和约束条件组成的第一优化模型,得到多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure FDA00023376658700000514
的最优值
Figure FDA00023376658700000515
即多能互补园区联络线功率基线,以及目标函数最优值c0,即多能互补园区最小运行成本,多能互补园区将联络线功率基线上报电力系统;
(2)多能互补园区接收电力系统下发的调度时段t削峰需求
Figure FDA00023376658700000516
为电力系统期望联络线在调度时段t的有功功率低于联络线功率基线的有功功率值;根据该削峰需求
Figure FDA00023376658700000517
计算多能互补园区可提供的削峰需求能力,具体方法如下:
(2-1)选取计算步长ε,ε取值为0~1,置循环次数k初始值1;
(2-2)求解如下的第二优化模型,该第二优化模型用于在调度时段t,当联络线功率为
Figure FDA00023376658700000518
时,求多能互补园区运行费用最小时多能互补园区中的能源设备的运行计划;第二优化模型的目标函数与第一优化模型的目标函数相同;
第二优化模型的约束条件包括:
a、多能互补园区中发电机的有功功率范围和爬坡约束:与第一优化模型中约束条件(1-1)相同;
b、多能互补园区中热电联产机组的有功功率和供热功率范围约束和热电联产机组的有功功率爬坡约束:与第一优化模型中约束条件(1-2)相同;
c、多能互补园区中燃气锅炉供热功率范围及爬坡约束:与第一优化模型中约束条件(1-3)相同;
d、多能互补园区中吸收式制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-4)相同;
e、多能互补园区中电热锅炉的供热功率范围及爬坡约束:与第一优化模型中约束条件(1-5)相同;
f、多能互补园区中电制冷机的供冷功率范围及爬坡约束:与第一优化模型中约束条件(1-6)相同;
g、多能互补园区中蓄电池的运行约束:与第一优化模型中约束条件(1-7)相同;
h、多能互补园区中的电能、热能、冷能的能量守恒约束:
Figure FDA0002337665870000061
Figure FDA0002337665870000062
Figure FDA0002337665870000063
i、多能互补园区中冷、热负荷的惯性及室内温度约束:与第一优化模型中约束条件(1-9)相同;
采用分支定界法,求解由上述目标函数和约束条件组成的第二优化模型,若第二优化模型可解,则得到目标函数最优值ck,以及多能互补园区与电力系统之间的联络线在调度时刻t的有功功率
Figure FDA0002337665870000064
的最优值
Figure FDA0002337665870000065
即多能互补园区向电力系统上报的功率基线,转步骤(2-3);若该模型无解,则结束循环,进行步骤(3);
(2-3)计算削峰需求比例为kε时的多能互补园区的调节成本ck*,ck*=ck-c0,记录ck*,并置k=k+1,对kε进行判断,若kε>1,转步骤(3),若kε≤1,返回步骤(2-2),直到kε>1,得到多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*
(3)将步骤(2-3)的多个与不同削峰需求比例kε相对应的多能互补园区的调节成本ck*上报电力系统,电力系统下发最终采用的多能互补园区的削峰比例,实现由多能互补园区对电力系统削峰需求的响应。
CN201911362886.3A 2019-12-26 2019-12-26 一种多能互补园区响应电力系统削峰需求的计算方法 Active CN111049134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911362886.3A CN111049134B (zh) 2019-12-26 2019-12-26 一种多能互补园区响应电力系统削峰需求的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911362886.3A CN111049134B (zh) 2019-12-26 2019-12-26 一种多能互补园区响应电力系统削峰需求的计算方法

Publications (2)

Publication Number Publication Date
CN111049134A true CN111049134A (zh) 2020-04-21
CN111049134B CN111049134B (zh) 2021-02-02

Family

ID=70239956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911362886.3A Active CN111049134B (zh) 2019-12-26 2019-12-26 一种多能互补园区响应电力系统削峰需求的计算方法

Country Status (1)

Country Link
CN (1) CN111049134B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049184A (zh) * 2019-12-26 2020-04-21 国网吉林省电力有限公司 一种多能互补园区响应电力系统风电消纳需求的计算方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022503A (zh) * 2016-03-17 2016-10-12 北京睿新科技有限公司 面向具有耦合型电冷热需求的微电网容量规划方法
CN108596525A (zh) * 2018-06-29 2018-09-28 国家电网有限公司 冷热电气多能互补的微能源网鲁棒优化调度方法
WO2019076279A1 (zh) * 2017-10-16 2019-04-25 深圳市爱能森科技有限公司 多能互补应用系统
CN110009152A (zh) * 2019-04-03 2019-07-12 东南大学 一种考虑电转气和不确定性的区域综合能源系统运行鲁棒优化方法
CN110046773A (zh) * 2019-05-30 2019-07-23 东北大学 综合能源系统多主体合作优化运行与成本效益分配方法
CN110165713A (zh) * 2019-04-30 2019-08-23 南京谷峰智能技术有限公司 一种基于电网调峰需求的多能互补园区需求响应方法
CN110264012A (zh) * 2019-06-26 2019-09-20 山东大学 基于经验模态分解的可再生能源功率组合预测方法及系统
CN110443410A (zh) * 2019-07-10 2019-11-12 国网福建省电力有限公司 一种区域多能源系统的运行优化方法
CN110458353A (zh) * 2019-08-08 2019-11-15 上海交通大学 电热联合微网能量梯级优化方法及系统
CN110611336A (zh) * 2019-10-10 2019-12-24 国网(苏州)城市能源研究院有限责任公司 包含双级需求侧响应的园区综合能源系统优化运行方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022503A (zh) * 2016-03-17 2016-10-12 北京睿新科技有限公司 面向具有耦合型电冷热需求的微电网容量规划方法
WO2019076279A1 (zh) * 2017-10-16 2019-04-25 深圳市爱能森科技有限公司 多能互补应用系统
CN108596525A (zh) * 2018-06-29 2018-09-28 国家电网有限公司 冷热电气多能互补的微能源网鲁棒优化调度方法
CN110009152A (zh) * 2019-04-03 2019-07-12 东南大学 一种考虑电转气和不确定性的区域综合能源系统运行鲁棒优化方法
CN110165713A (zh) * 2019-04-30 2019-08-23 南京谷峰智能技术有限公司 一种基于电网调峰需求的多能互补园区需求响应方法
CN110046773A (zh) * 2019-05-30 2019-07-23 东北大学 综合能源系统多主体合作优化运行与成本效益分配方法
CN110264012A (zh) * 2019-06-26 2019-09-20 山东大学 基于经验模态分解的可再生能源功率组合预测方法及系统
CN110443410A (zh) * 2019-07-10 2019-11-12 国网福建省电力有限公司 一种区域多能源系统的运行优化方法
CN110458353A (zh) * 2019-08-08 2019-11-15 上海交通大学 电热联合微网能量梯级优化方法及系统
CN110611336A (zh) * 2019-10-10 2019-12-24 国网(苏州)城市能源研究院有限责任公司 包含双级需求侧响应的园区综合能源系统优化运行方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FAN WU ET AL.: "Research on the Collaborative Optimization of Multi-Energy Flow Microgrids", 《EISEVIER SCIENCE》 *
SHANSHAN FAN ET AL.: "Research on Collaborative Optimization Model of Park-level Integrated Energy System Participating in Power Peak Shaving", 《IEEE》 *
吴鸣 等: "基于模型预测控制的冷热电联供型微网动态优化调度", 《中国电机工程学报》 *
甘霖 等: "含可再生能源的微网冷- 热- 电多能流协同优化与案例分析", 《电力自动化设备》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049184A (zh) * 2019-12-26 2020-04-21 国网吉林省电力有限公司 一种多能互补园区响应电力系统风电消纳需求的计算方法

Also Published As

Publication number Publication date
CN111049134B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN107832979B (zh) 一种考虑能量梯级利用的工厂综合能源系统经济优化调度方法
CN106058942B (zh) 考虑风电不确定性的含电转气和cchp的能量枢纽优化模型
CN102710013B (zh) 基于微电网的园区能源网能量优化管理系统及其实现方法
CN103246263B (zh) 冷热电联供微网系统的通用优化调度方法
CN108491992A (zh) 一种含光伏和蓄能的冷热电联供系统调峰调蓄优化调度模型
CN108631343A (zh) 一种多能互补能源互联网优化调度方法
CN109919478A (zh) 一种考虑综合供能可靠性的综合能源微网规划方法
CN113315151B (zh) 一种基于相变储能构建的综合能源调峰站及调峰方法
CN106950840A (zh) 面向电网削峰的综合能源系统分层分布式协调控制方法
CN110990785A (zh) 一种基于多目标的智慧园区综合能源系统优化调度方法
CN111400641A (zh) 一种含蓄热式电采暖的综合能源系统日前优化调度方法
CN107749645B (zh) 一种控制高压大容量储热供暖装置的方法
CN110544175A (zh) 一种面向家庭智能用电的多能源综合优化调度方法
CN104730923A (zh) 基于冷热电三联供的智能电网园区综合能源优化控制方法
CN112615370A (zh) 一种基于电熔镁负荷的风电消纳协调控制方法
CN111313400B (zh) 一种基于鲁棒修正的多能虚拟电厂运行参数聚合方法
CN113240166A (zh) 考虑高比例新能源消纳的微能源网日前经济调度方法
CN116308881A (zh) 利用供热管网储热的综合能源系统多时间尺度调度方法
CN111049134B (zh) 一种多能互补园区响应电力系统削峰需求的计算方法
CN109617052B (zh) 一种大规模电储热单元智能化分层控制方法
CN204407890U (zh) 一种可再生能源冷热电微网系统
CN112465236B (zh) 一种考虑综合满意度的社区综合能源系统调度方法
CN112072645A (zh) 一种日前聚合与日内滚动修正衔接的虚拟电厂等值方法
CN111049184B (zh) 一种多能互补园区响应电力系统风电消纳需求的计算方法
CN112993997A (zh) 一种提高风电消纳的固态储热与储能协调调度与控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant