WO2019076279A1 - 多能互补应用系统 - Google Patents

多能互补应用系统 Download PDF

Info

Publication number
WO2019076279A1
WO2019076279A1 PCT/CN2018/110357 CN2018110357W WO2019076279A1 WO 2019076279 A1 WO2019076279 A1 WO 2019076279A1 CN 2018110357 W CN2018110357 W CN 2018110357W WO 2019076279 A1 WO2019076279 A1 WO 2019076279A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
application system
heating
cooling
hot pool
Prior art date
Application number
PCT/CN2018/110357
Other languages
English (en)
French (fr)
Inventor
曾智勇
李珂
崔小敏
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2019076279A1 publication Critical patent/WO2019076279A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present disclosure relates to the field of energy system planning techniques, for example, to a versatile complementary application system.
  • the heating is basically based on boilers.
  • the boiler emits a large amount of greenhouse gases, such as CO 2 and tiny particles, which has become the chief culprit in the recent smog in the north.
  • the present disclosure provides a multi-energy complementary application system that can solve the problems of high heating costs and high carbon emissions.
  • a multi-energy complementary application system comprising a hot pool tank, wherein the hot pool tank is provided with molten salt, the hot pool tank is set to store heat; the valley electric energy storage device, the valley electric energy storage device and the a first end of the hot pool tank, the valley electric energy storage device is configured to heat molten salt in the hot pool tank; a cold and warm tank connected to a second end of the hot pool tank, A medium is disposed in the heating and cooling tank, and the hot pool tank is disposed to heat the medium in the heating and cooling tank; and an air source heat pump is connected to the heating and cooling tank.
  • FIG. 1 is a schematic structural diagram of a multi-energy complementary application system according to an embodiment
  • FIG. 2 is a schematic diagram of a control component of a versatile complementary application system provided by an embodiment.
  • the embodiment provides a multi-energy complementary application system, which includes a hot pool tank 1, and the first end of the hot pool tank 1 is connected to the valley electric energy storage device 3.
  • the valley electric energy storage device 3 heats the molten salt in the hot water tank 1, the valley electric energy storage device 3 is set to store heat, the heat storage temperature is related to the heat storage medium, the medium is different, and the heat storage temperature is different, in an embodiment
  • the maximum temperature of heat storage can reach 1200 ° C;
  • the heating and cooling tank 2, the heating and cooling tank 2 is connected with the second end of the hot pool tank 1, and the hot pool tank 1 uses its own heat to heat the water in the heating and cooling tank 2;
  • the air source heat pump 4 The air source heat pump 4 is connected to the heating and cooling tank 2; the ground source heat pump 5, the ground source heat pump 5 is located inside the well, and is connected to the heating and cooling tank 2 through the heat exchanger 51;
  • the user side equipment 6, the user side equipment 6 is connected to the heating and cooling tank 2 Photovoltaic module 7, photo
  • the hot pool tank 1 is connected to the valley electric energy storage device 3 through a plurality of high-voltage electric heaters 200, and converts the electric energy into heat energy during the nighttime electricity valley, and stores the electricity during the peak period of electricity consumption.
  • the heat is released to meet the heat supply needs, so as to save electricity costs and reduce the power load, which will greatly save the operating costs of the enterprise.
  • the valley electric storage system is highly intelligent and does not require special care. Unlike coal-fired boilers, it is not a special equipment, which reduces operating and maintenance costs and reduces safety hazards.
  • the temperature of the heated molten salt in the hot pool tank 1 is from 100 ° C to 500 ° C. In one embodiment, the temperature of the molten salt is from 100 ° C to 120 ° C. In one embodiment, the hot pool tank 1 is The temperature of the molten salt after heating is 120 ° C, and the temperature range of the molten salt material is -20 ° C - 120 ° C. The energy storage is the core of the whole system, and the temperature range is sufficient for heating or cooling, and the molten salt is heated to Above 100 ° C, fully meet the heat required to heat cold water.
  • the temperature of the heated water in the heating and cooling tank 2 is 40 ° C - 60 ° C. In one embodiment, the temperature of the heated water in the heating and cooling tank 2 is 50 ° C, according to the "Design Specification for Urban Heating Pipe Network" ⁇ Standard, residential heating pipe network adopts energy-saving measures. In addition, according to the local construction conditions, the heating index is 45W/m2 2 , the heating period is 120 days, the water supply temperature is 50°C, and the return water temperature is 40°C. The temperature of domestic water that meets human habitation applications.
  • the user side device 6 is further provided with an air conditioning water cooling component 61 for cooling using a central air conditioner that uses water as a refrigerant.
  • the summer cooling design load is 216.3KW
  • the building area cooling load index is 105.2W/m 2 .
  • Cold source designed to meet the cooling requirements of the building area of 2056m 2 throughout the building, the design of only the end of the hall 160m 2.
  • the maximum design cooling load is 216.3 KW
  • the energy station supply return water temperature is 7-12 ° C
  • the summer chilled water flow rate is 37.2 m/h.
  • two air source heat pumps with a nominal cooling capacity of 130 KW are selected for the cold source.
  • the photovoltaic module 7 is provided with a flat plate collector 71 and a polycrystalline silicon photovoltaic plate 72.
  • the two sets of flat heat collectors 71 are used to convert the sunlight into heat energy.
  • the cold water is heated to 50 ° C by the flat plate collector 71, and the flat plate collector 71 heats the cold water to 50 ° C, and returns to the cold and warm tank.
  • the photovoltaic module 7 uses 34 polycrystalline silicon photovoltaic panels 72 with a power of 260W in parallel, with a total power of approximately 8.8 kW, providing power for indoor lighting.
  • the water supply side device 8 is provided with a water supply tank 81, and additionally provided with a makeup water pump (not shown), and the makeup water pump is provided to supply the water of the water supply tank 81 to the cold and warm tank 2; 81, can control the amount of water supplemented by the complementary multi-energy complementary application system.
  • a temperature sensor 91, a flow sensor 92, and a pressure sensor 93 are also disposed between the devices.
  • the user side device 6 is provided with a temperature sensor 91, and the water flow sensor 92 and the pressure sensor 93 are disposed on the water pipe connected to the inlet and the outlet of the user side device 6, thereby realizing the monitoring of the temperature of the user side device 6 and the flow pressure of the water. , to ensure that the user side device 6 is always in a normal living state.
  • the multi-energy complementary application system has the following characteristics: 1 using clean energy such as valley electricity, air energy, geothermal energy and solar energy to achieve zero pollution and zero emissions; 2 making full use of local geothermal energy, air energy, solar energy and valley electricity to achieve Complementary energy and rational use of resources; 3Using Gudian night energy storage, releasing energy during the day, can minimize the system electricity consumption; 4With energy storage system, it can achieve stable heating and cooling, even in extreme weather, geothermal and Under the condition of failure of air energy heat pump, stable heating and cooling can still be realized; 5 kinds of energy sources can be supplemented by cascaded use of automatic intelligent energy management system to achieve “1+1>2” effect, thus improving energy The comprehensive utilization efficiency of the system will alleviate the contradiction between energy supply and demand.
  • the local energy-rich, low-cost energy combination can be selected according to local conditions, and the model can be enlarged according to the specific project conditions to achieve large-scale application.
  • 7 The whole system is simple in process, mature in technology, safe and reliable, and highly reproducible. Promotion and application; 8 can help solve the problem of smog caused by current winter coal heating.
  • the roof photovoltaic module has the following characteristics: 1
  • the roof component can “regulate” the indoor temperature, and it can cool down in the summer and have the heat preservation effect in the winter.
  • the roof photovoltaic power station uses the sunlight to generate green power, which is truly energy-saving and environmentally friendly.
  • 3 Distributed photovoltaic power generation, energy consumption in situ, saving a lot of cost and time; 4 solar modules and roof combined, so that the original reinforced concrete roof is more beautiful.
  • This embodiment provides a multi-energy complementary application system, which uses a variety of energy sources such as valley electricity, air energy, geothermal energy and solar energy to store heat, which greatly saves heating costs and reduces carbon emissions;
  • the heat and molten salt have the advantages of heat transfer without phase change, uniform heat transfer and stability, good heat transfer performance, high use temperature, low price and safety, and the heat transfer of the cold and warm tanks as the medium is due to the heating of the water.
  • the suitable temperature can be supplied to humans and can be heated by hot water;
  • the air source heat pump 4, the ground source heat pump 5 and the photovoltaic module 7 can use the clean energy of air energy, geothermal energy and solar energy to supply heat for human heating and cooling;
  • the roof type photovoltaic module can place the photovoltaic module on the roof, which is both beautiful and practical;
  • the control assembly 300 can be used to control the temperature of the hot pool tank 1, the heating and cooling tank 2 and the user side equipment 6 after being heated; , can control the amount of water replenishing the multi-energy complementary application system; using temperature sensor 91, flow sensor 92 and pressure sensor 93 can bring temperature and water of multiple devices Flow and pressure control assembly 300 to pass.

Abstract

一种多能互补应用系统,包括热池罐(1),热池罐(1)的第一端与谷电蓄能设备(3)连接,热池罐(1)内设有熔盐,热池罐(1)设置为储热;谷电蓄能设备(3),谷电蓄能设备(3)与热池罐(1)的第一端连接,谷电蓄能设备(3)设置为加热热池罐(1)中的熔盐;冷暖罐(2),冷暖罐(2)与热池罐(1)的第二端连接,冷暖罐(2)内设置有介质,且热池罐(1)设置为对冷暖罐(2)中的介质进行加热;及空气源热泵(4),与冷暖罐(2)连接。

Description

多能互补应用系统
本申请要求申请日为2017年10月16日、申请号为201721337924.6、名称为“一种多能互补应用系统”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及能源系统规划技术领域,例如涉及一种多能互补应用系统。
背景技术
北方地区的冬季供暖基本都是采用锅炉,锅炉采用煤和生物质燃烧时排放出大量的温室气体CO 2和微小颗粒物,成为最近北方地区雾霾越来越严重的罪魁祸首。
相关技术中,通过对锅炉进行煤改气或煤改电的改造,希望来减少尾气和污染物的排放,但单纯的用天然气或电进行供暖,使得供暖成本上升,老百姓难以承受。
发明内容
本公开提供一种多能互补应用系统,可以解决供暖成本和碳排放较高的问题。
一种多能互补应用系统,包括热池罐,所述热池罐内设有熔盐,所述热池罐设置为储热;谷电蓄能设备,所述谷电蓄能设备与所述热池罐的第一端连接,所述谷电蓄能设备设置为加热所述热池罐中的熔盐;冷暖罐,所述冷暖罐与所述热池罐的第二端连接,所述冷暖罐内设置有介质,且所述热池罐设置为对所述冷暖罐中的介质进行加热;及空气源热泵,与所述冷暖罐连接。
附图说明
图1是一实施例提供的多能互补应用系统的结构示意图;
图2是一实施例提供的多能互补应用系统的控制组件的示意图。
图中标记如下:
100、地井;200、高压电加热器;300、控制组件;
1、热池罐;2、冷暖罐;3、谷电蓄能设备;4、空气源热泵;5、地源热泵;51、换热器;6、用户侧设备;61、空调水冷组件;7、光伏组件;71、平板集热器;72、多晶硅光伏板;8、补水侧设备;81、补水箱;
91、温度传感器;92、流量传感器;93、压力传感器。
具体实施方式
如图1和图2所示,本实施方式提供了一种多能互补应用系统,该多能互补应用系统包括热池罐1,热池罐1的第一端与谷电蓄能设备3连接,谷电蓄能设备3加热热池罐1中的熔盐,谷电蓄能设备3设置为储热,储热温度与储热介质有关,介质不同,储热温度不同,在一实施例中,储热的最高温度可达1200℃;冷暖罐2,冷暖罐2与热池罐1的第二端连接,热池罐1利用自身的热量对冷暖罐2中的水加热;空气源热泵4,空气源热泵4与冷暖罐2连接;地源热泵5,地源热泵5位于地井内部,且通过换热器51与冷暖罐2连接;用户侧设备6,用户侧设备6与冷暖罐2连接;光伏组件7,光伏组件7与用户侧设备6连接,光伏组件7设置为供热、供电和温度调节,在一实施例中,光伏组件7设置于房顶上;补水侧设备8,补水侧设备8与用户侧设备6和冷暖罐2连接;控制组件300,控制组件300可控制上述设备之间的温度和流量。本实施例通过采用谷电、空气能、地热能和太阳能等多种能源进行储热的方式,大大节约了采暖成本,降低了碳的排放。
在一实施例中,热池罐1通过多台高压电加热器200与谷电蓄能设备3连接,在夜间用电低谷期间将电能转化为热能储存起来,在用电高峰期将储存的热能释放出来,满足供热的需要,以达到节省电费,减轻电力负荷的需要,这将大大节省企业的运营成本。谷电蓄热系统高度智能化,不需要专人看管,且与燃煤锅炉不同,不属于特种设备,减少了运营维护成本,降低了安全隐患。
热池罐1内的被加热后的熔盐的温度为100℃-500℃,在一实施例中,熔盐的温度为100℃-120℃,在一实施例中,热池罐1内被加热后的熔盐的温度为120℃,熔盐材料温度范围为-20℃-120℃,储能是整个系统的核心,温度范围相对于供暖或供冷来说已经足够,将熔盐加热到100℃以上,完全满足加热冷水所需的热量。
冷暖罐2内的被加热后的水的温度为40℃-60℃,在一实施例中,冷暖罐2内的被加热后的水的温度为50℃,根据《城镇供热管网设计规范》标准,住宅用供热管网采取节能措施,另外,根据当地的建筑情况,采暖指标选取45W/m2 2, 供暖期为120天,供水温度为50℃,回水温度为40℃,以满足符合人类居住应用的生活用水的温度。
在一实施例中,用户侧设备6还设置有空调水冷组件61,采用以水为冷媒的中央空调进行制冷。夏季制冷设计负荷为216.3KW,建筑面积冷负荷指标为105.2W/m 2
冷源设计满足建筑面积为2056m 2的整栋建筑的供冷要求,末端设计仅为160m 2的大厅。夏季最大设计冷负荷为216.3KW,能源站供回水温度为7-12℃,夏季冷冻水流量为37.2m/h。本实施例冷源选用两台名义制冷量为130KW的空气源热泵。
在一实施例中,光伏组件7设置有平板集热器71和多晶硅光伏板72。在日照充足的时候,利用两台平板集热器71将太阳光转化为热能,冷水通过平板集热器71被加热至50℃,平板集热器71将冷水加热至50℃,回流入冷暖罐2中储存。光伏组件7采用34块功率为260W的多晶硅光伏板72并联,总功率大约为8.8KW,为室内照明提供电力。
在一实施例中,补水侧设备8设置有补水箱81,另外还设置有补水泵(图中未示出),补水泵设置为将补水箱81的水供给到冷暖罐2中;采用补水箱81,可以控制补充多能互补应用系统的补水量。
在一实施例中,设备之间还设有温度传感器91、流量传感器92和压力传感器93。例如用户侧设备6设置有温度传感器91,用户侧设备6的入口和出口连接的水管上均设置有流量传感器92和压力传感器93,从而实现对用户侧设备6的温度和水的流量压力的监测,确保用户侧设备6始终处于正常生活状态。
其中,多能互补应用系统具有以下特点:①采用谷电、空气能、地热能以及太阳能等清洁能源,实现了零污染零排放;②充分利用当地地热能源、空气能、太阳能及谷电,实现能源互补及资源合理利用;③采用谷电夜间储能,白天释放能量,可实现系统用电费用最小化;④带有储能系统,可实现稳定供热和制冷,即使极端天气时,地热及空气能热泵失效情况下,仍可实现稳定供热和制冷;⑤多种能源之间通过全自动智慧能源管理系统,相互补充和梯级利用,达到“1+1>2”的效果,从而提升能源系统的综合利用效率,缓解能源供需矛盾。⑥可因地制宜地选用当地资源丰富,价格低廉的能源组合,根据具体项目情况进行模型放大,实现大规模应用;⑦整套系统工艺简单,技术成熟,安全可靠,可复制性强,可在多地复制推广应用;⑧有助于解决当前冬季煤供暖所导致产 生雾霾的难题。
屋顶光伏组件具有以下特点:①屋面的组件可以起到“调节”室内温度作用,在夏天起到降温,在冬天具有保温功效;②屋顶光伏电站,利用阳光产生绿色电力,真正做到了节能及环保;③分布式光伏发电,电能就地消纳,节约了大量费用和时间;④太阳能组件和屋顶结合,让原本钢筋混泥土筑成的屋顶,更显美感。
本实施例通过提供一种多能互补应用系统,采用谷电、空气能、地热能和太阳能等多种能源进行储热的方式,大大节约了采暖成本,降低了碳的排放;采用熔盐储热,熔盐具有传热无相变,传热均匀稳定,传热性能好,使用温度较高,价格低和安全可靠等优点;冷暖罐采2用水作为介质传热,是由于水被加热到合适的温度可以供给人类使用且可以通过热水供暖;采用空气源热泵4、地源热泵5和光伏组件7,可以利用空气能、地热能和太阳能这些清洁能源为人类供热供冷供电;采用屋顶式的光伏组件,可以使光伏组件放置于屋顶,既美观又实用;采用控制组件300,可以控制热池罐1、冷暖罐2和用户侧设备6被供热后的温度;采用补水箱81,可以控制补充多能互补应用系统的补水量;采用温度传感器91、流量传感器92和压力传感器93可以将多个设备的温度、水的流量和压力传给控制组件300。

Claims (12)

  1. 一种多能互补应用系统,包括:
    热池罐(1),所述热池罐(1)内设有熔盐,所述热池罐(1)设置为储热;
    谷电蓄能设备(3),所述谷电蓄能设备(3)与所述热池罐(1)的第一端连接,所述谷电蓄能设备(3)设置为加热所述热池罐(1)中的熔盐;
    冷暖罐(2),所述冷暖罐(2)与所述热池罐(1)的第二端连接,所述冷暖罐(2)内设置有介质,且所述热池罐(1)设置为对所述冷暖罐(2)中的介质进行加热;及
    空气源热泵(4),与所述冷暖罐(2)连接。
  2. 根据权利要求1所述的应用系统,还包括:
    地源热泵(5),设置为位于地井(100)内部;
    换热器(51),所述换热器(51)分别与所述地源热泵(5)和所述冷暖罐(2)连接;
    用户侧设备(6),与所述冷暖罐(2)连接;
    光伏组件(7),与所述用户侧设备(6)连接,所述光伏组件(7)设置为供热、供电和温度调节;
    补水侧设备(8),所述补水侧设备分别与所述用户侧设备(6)和所述冷暖罐(2)连接;及
    控制组件(300),设置为控制所述热池罐(1)、冷暖罐(2)、空气源热泵(4)、地源热泵(5)、换热器(51)、用户侧设备(6)、光伏组件(7)及补水侧设备(8)的温度和流量。
  3. 根据权利要求1所述的应用系统,其中,所述热池罐(1)通过多台加热器与所述谷电蓄能设备(3)连接。
  4. 根据权利要求3所述的应用系统,其中,所述热池罐(1)内被加热后的熔盐的温度为100℃-120℃。
  5. 根据权利要求3所述的应用系统,其中,所述热池罐(1)内被加热后的熔盐的温度为100℃-500℃。
  6. 根据权利要求1所述的应用系统,其中,所述冷暖罐(2)内的被加热后的介质的温度为40℃-60℃。
  7. 根据权利要求2所述的应用系统,其中,所述用户侧设备(6)包 括空调水冷组件(61)。
  8. 根据权利要求2所述的应用系统,其中,所述光伏组件(7)包括平板集热器(71)和多晶硅光伏板(72)。
  9. 根据权利要求2所述的应用系统,其中,所述补水侧设备(8)包括补水箱(81)。
  10. 根据权利要求1-9中任一项所述的应用系统,还包括温度传感器(91)、流量传感器(92)和压力传感器(93)。
  11. 根据权利要求1所述的应用系统,其中,所述介质为水。
  12. 根据权利要求3所述的应用系统,其中,所述加热器为高压电加热器(200)。
PCT/CN2018/110357 2017-10-16 2018-10-16 多能互补应用系统 WO2019076279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721337924.6U CN207350892U (zh) 2017-10-16 2017-10-16 一种多能互补应用系统
CN201721337924.6 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019076279A1 true WO2019076279A1 (zh) 2019-04-25

Family

ID=62355285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110357 WO2019076279A1 (zh) 2017-10-16 2018-10-16 多能互补应用系统

Country Status (2)

Country Link
CN (1) CN207350892U (zh)
WO (1) WO2019076279A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873356A (zh) * 2019-12-23 2020-03-10 北京市热力集团有限责任公司 一种供热实施精细化调节和多能互补改造的系统及方法
CN111049134A (zh) * 2019-12-26 2020-04-21 清华大学 一种多能互补园区响应电力系统削峰需求的计算方法
CN114001465A (zh) * 2021-11-03 2022-02-01 常州大学 一种调节土壤温度场平衡的太阳能原油加热复合系统及方法
CN116398926A (zh) * 2023-03-16 2023-07-07 广州森茂智慧能源科技有限公司 一种基于热泵智慧能源调配的供热供冷系统及其运行方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207350892U (zh) * 2017-10-16 2018-05-11 深圳市爱能森科技有限公司 一种多能互补应用系统
CN108758586B (zh) * 2018-07-18 2024-02-27 深圳市爱能森设备技术有限公司 一种清洁能源储能蒸汽发生系统
CN109323320A (zh) * 2018-11-22 2019-02-12 上海电气集团股份有限公司 一种单罐熔盐供暖系统
CN109899863B (zh) * 2019-03-18 2023-11-28 国电南瑞科技股份有限公司 一种自然循环高温蓄热供汽供暖装置及使用方法
CN111765509B (zh) * 2020-07-01 2021-02-26 河北工业大学 一种分布式风光互补双向供应能源站

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
CN101988775A (zh) * 2010-11-16 2011-03-23 山东建筑大学 太阳能-空气-地能多源双机热泵供热空调复合系统
CN102506472A (zh) * 2011-09-29 2012-06-20 浙江工商大学 多能源驱动蓄冷蓄热空调热水器一体机
CN103206807A (zh) * 2013-05-03 2013-07-17 广东吉荣空调有限公司 集成太阳能、空气能和套管蓄能的多源热泵冷热水机组
CN103836703A (zh) * 2014-03-13 2014-06-04 北京工业大学 熔盐蓄热式电加热集中供暖系统
CN104393587A (zh) * 2014-11-19 2015-03-04 张洪亮 利用可再生能源的冷热电多联供能源站
CN106524574A (zh) * 2016-11-04 2017-03-22 北京绿源众邦节能科技有限公司 一种太阳能、空气能、地热设备转换节能补偿系统
CN207350892U (zh) * 2017-10-16 2018-05-11 深圳市爱能森科技有限公司 一种多能互补应用系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
CN101988775A (zh) * 2010-11-16 2011-03-23 山东建筑大学 太阳能-空气-地能多源双机热泵供热空调复合系统
CN102506472A (zh) * 2011-09-29 2012-06-20 浙江工商大学 多能源驱动蓄冷蓄热空调热水器一体机
CN103206807A (zh) * 2013-05-03 2013-07-17 广东吉荣空调有限公司 集成太阳能、空气能和套管蓄能的多源热泵冷热水机组
CN103836703A (zh) * 2014-03-13 2014-06-04 北京工业大学 熔盐蓄热式电加热集中供暖系统
CN104393587A (zh) * 2014-11-19 2015-03-04 张洪亮 利用可再生能源的冷热电多联供能源站
CN106524574A (zh) * 2016-11-04 2017-03-22 北京绿源众邦节能科技有限公司 一种太阳能、空气能、地热设备转换节能补偿系统
CN207350892U (zh) * 2017-10-16 2018-05-11 深圳市爱能森科技有限公司 一种多能互补应用系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873356A (zh) * 2019-12-23 2020-03-10 北京市热力集团有限责任公司 一种供热实施精细化调节和多能互补改造的系统及方法
CN110873356B (zh) * 2019-12-23 2023-10-20 北京市热力集团有限责任公司 一种供热实施精细化调节和多能互补改造的系统及方法
CN111049134A (zh) * 2019-12-26 2020-04-21 清华大学 一种多能互补园区响应电力系统削峰需求的计算方法
CN114001465A (zh) * 2021-11-03 2022-02-01 常州大学 一种调节土壤温度场平衡的太阳能原油加热复合系统及方法
CN114001465B (zh) * 2021-11-03 2024-03-08 常州大学 一种调节土壤温度场平衡的太阳能原油加热复合系统及方法
CN116398926A (zh) * 2023-03-16 2023-07-07 广州森茂智慧能源科技有限公司 一种基于热泵智慧能源调配的供热供冷系统及其运行方法
CN116398926B (zh) * 2023-03-16 2024-01-30 广州森茂智慧能源科技有限公司 一种基于热泵智慧能源调配的供热供冷系统及其运行方法

Also Published As

Publication number Publication date
CN207350892U (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2019076279A1 (zh) 多能互补应用系统
CN204555418U (zh) 一种风光储热式冷热电联供系统
CN203823873U (zh) 一种太阳能热泵蓄热采暖系统
CN105914863B (zh) 自适应风气光热能源优化系统及控制方法
CN106613531B (zh) 一种用于温室大棚的光伏光热一体化循环系统
WO2007000112A1 (fr) Procede de production d'eau chaude utilisant des ressources thermiques combinees d'energie solaire et de pompe thermique, permettant de chauffer l'eau a plusieurs etapes et d'accumuler l'energie, et dispositif specifique a la mise en oeuvre du procede
CN104864449A (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN202004690U (zh) 光伏发电供热系统
CN214841747U (zh) 一种多能源联合驱动的太阳能与地源热泵复合系统
CN102809245A (zh) 完全太阳能全天候冷热电气联产联供系统
CN210050873U (zh) 一种梯级蓄热式太阳能与地源热泵复合供暖系统
CN216716614U (zh) 一种风光电热互补式冷热水双供系统
CN204612185U (zh) 一种太阳能与地源热泵复合热水系统
CN204313372U (zh) 一种利用太阳能和地热能的供暖供热装置
CN103712500B (zh) 一种应用于极端条件下的模块化太阳能蓄热系统
CN203364241U (zh) 一种碟式太阳能供暖系统
CN205878678U (zh) 太阳能风能空气能采暖制冷及热水系统
CN210197447U (zh) 多能源互补的学校供暖节能系统
CN204693564U (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置
CN209181062U (zh) 一种农业设施自供暖系统
CN216114281U (zh) 煤矿综合能源供能系统
CN204678668U (zh) 一种节能电热水炉系统
CN204047378U (zh) 一种风光互补发电的零排放温室装置
CN113776110A (zh) 一种煤矿综合能源供能系统
CN102748896A (zh) 互补式供电装置实现供热、制冷的一体化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18868325

Country of ref document: EP

Kind code of ref document: A1