CN111044082B - 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法 - Google Patents

一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法 Download PDF

Info

Publication number
CN111044082B
CN111044082B CN202010040968.2A CN202010040968A CN111044082B CN 111044082 B CN111044082 B CN 111044082B CN 202010040968 A CN202010040968 A CN 202010040968A CN 111044082 B CN111044082 B CN 111044082B
Authority
CN
China
Prior art keywords
gyro
error
star sensor
error parameter
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010040968.2A
Other languages
English (en)
Other versions
CN111044082A (zh
Inventor
杨静
郑凯
钱自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010040968.2A priority Critical patent/CN111044082B/zh
Publication of CN111044082A publication Critical patent/CN111044082A/zh
Application granted granted Critical
Publication of CN111044082B publication Critical patent/CN111044082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,根据卫星系统限制角速度和限制角加速度,规划姿态机动的角速度和角加速度,设置姿态机动策略;根据卫星姿态运动学方程、陀螺输出方程、星敏感器输出方程,基于高阶毕卡逼近解算方法,建立线性近似的陀螺误差参数标定模型;根据建立的线性近似的陀螺误差参数标定模型,结合姿态机动过程中的陀螺和星敏感器的测量数据,利用最小二乘方法,进行误差参数标定,获得参数估计值;根据线性化展开点对精度影响效果,将参数估计作为新的线性化展开点,对估计参数残差进行迭代补偿,直至残差向量平方和不再减少或估计参数误差的变化小于给定的门限或迭代次数超过预设的限制次数。

Description

一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法
技术领域
本发明涉及卫星姿态传感器测量技术领域,更具体的说是涉及一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法。
背景技术
随着对卫星观测任务的精确度、复杂度需求的提高,人们对卫星姿态确定的精度要求越来越高。提高定姿传感器测量精度是实现高精度的卫星姿态确定的最重要的方法之一。目前,由星敏感器和陀螺组合作为定姿传感器是高精度定姿系统的首选。陀螺自主性良好,可靠性强,但测量误差会随时间增加不断累积。影响陀螺测量精度的主要误差项有常值偏差、安装误差、刻度因子误差等,尽管通过地面标校的方法进行这些参数补偿处理,但是受到在卫星发射过程中的振动、温度和磁场等空间复杂环境因素的影响,标定参数不可避免的会发生变化,为此就必须对陀螺的误差参数在轨进行快速、准确、有效、可靠的标定和补偿,来确保其使用精度。星敏感器作为星载定姿系统的另一重要传感器,虽易受动态环境的影响,但其精度较高,误差不随时间发散,长期运行条件下精度良好。用星敏感器测量来实现对陀螺相关误差参数的标定和补偿,是提高卫星定姿精度的有效途径。
常用的陀螺误差参数标定方法有两类:一类是基于状态估计的方法,如扩展卡尔曼滤波、无迹滤波等滤波方法,该类方法在建立陀螺误差参数的动态模型的基础上,将其增广为状态向量的一部分,再利用滤波方法在估计姿态参数的同时在线递推估计陀螺误差参数,被估误差参数需要一定的时间才能稳定收敛;与此同时,还需要星敏感器作为姿态参考,要能够提供满足数量和精度要求的有效测量信息。为了保证陀螺误差参数具备可观测性,能被有效估计,卫星需要执行姿态机动。但是,星敏感器受到动态性能约束,只能在缓慢机动条件下才能提供有效输出,这使得基于状态估计的方法难以满足快速性要求,且估计精度也会受到系统模型及噪声参数的准确程度的影响。另一类是基于参数估计的方法,如常用的最小二乘方法,仅需建立关于被估的陀螺误差参数与系统测量量之间的测量模型,利用最小二乘准则来获得误差参数的估计值,该方法对测量噪声的统计特性无特定要求,但需要星敏感器在标定过程中提供满足最小二乘求解的有效输出。
因此,如何实现星敏感器对陀螺误差参数的在轨精确、快速标定是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,根据卫星系统限制角速度和限制角加速度,规划机动角速度和角加速度,设置机动策略;根据卫星姿态运动学方程、陀螺输出方程、星敏感器输出方程,基于高阶毕卡逼近解算方法,建立线性近似的陀螺误差参数标定模型;根据建立的陀螺误差标定模型,结合机动过程中的陀螺和星敏感器的测量数据,利用最小二乘方法,进行误差参数标定,获得参数估计值;根据线性化展开点对精度影响效果,将参数估计作为新的线性化展开点,对估计参数残差进行迭代补偿,直至残差向量平方和不再减少或估计参数误差的变化小于给定的门限或迭代次数超过预设的限制次数。从解决在轨应用时保证标定过程的快速性问题出发,将最小二乘参数估计思想与快速机动策略设计相结合,实现了一种利用星敏感器测量,在卫星进行快速姿态机动的情况下,进行陀螺误差参数标定的方法,大幅减少了标定过程的耗时,解决了由于受到星敏感器在高动态情况下无有效输出限制而难以实现陀螺误差参数在轨快速标定的问题;同时通过建立关于陀螺误差参数的准确标定模型,利用星敏感器和陀螺的测量输出,采用参数迭代估计策略,改善了线性化处理过程带来的模型精度损失对参数估计精度的影响,提高了陀螺误差参数估计的精度。
为了实现上述目的,本发明采用如下技术方案:
一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,具体步骤包括:
步骤1:根据卫星系统参数设置卫星姿态机动策略,所述卫星依据所述卫星姿态机动策略实施姿态机动;
根据卫星姿态机动策略原则设计所述卫星姿态机动策略,可采用梯形或三角函数形或三角形或样条函数的所述卫星姿态机动策略,所述卫星绕卫星的三个惯性主轴依次进行若干轮机动;
步骤2:根据卫星姿态运动学方程、陀螺输出方程、星敏感器输出方程,在建立非线性陀螺误差参数标定模型基础上,基于高阶毕卡逼近解算方法建立线性近似的陀螺误差参数标定模型;
所述步骤2中所述陀螺输出方程为:
Figure GDA0002901448230000031
其中,ωg表示陀螺输出角速度向量
Figure GDA0002901448230000032
T表示包含刻度因子误差的标度因数对应的矩阵,
Figure GDA0002901448230000033
表示陀螺的安装误差矩阵,
Figure GDA0002901448230000034
表示所述陀螺的安装矩阵,b表示陀螺常值偏差,η表示所述陀螺的角速率随机测量噪声;ωb表示真实转动角速度;
动坐标系相对参考坐标系的方位,等效于动坐标系绕某一个等效转轴转动一个角度;定义描述某两坐标系之间转动关系的四元数为Q=[q0 q1 q2 q3]T,其中,标量部分为q0,矢量部分为[q1 q2 q3]T;设en为等效转轴方向的单位向量,
Figure GDA00029014482300000312
为旋转角,有
Figure GDA0002901448230000035
以四元数形式输出的所述星敏感器输出方程为:
Figure GDA0002901448230000036
其中,Qst表示星敏感器输出的姿态四元数,也即星敏感器坐标系相对于惯性系的四元数;
Figure GDA0002901448230000037
表示卫星本体系相对于惯性系的姿态四元数;
Figure GDA0002901448230000038
表示星敏感器安装矩阵对应的四元数;
Figure GDA0002901448230000039
表示星敏感器安装误差对应的四元数;Qλ表示星敏感器低频误差对应的四元数;Qξ表示星敏感器随机测量误差对应的四元数;由于所述星敏感器安装误差、所述星敏感器低频误差和所述星敏感器随机测量误差是小量,对应的四元数可近似为
Figure GDA00029014482300000310
Qλ≈[1 λ1 λ2 λ3]T,Qξ≈[1 ξ1 ξ2 ξ3]T,这里将所述星敏感器安装误差、所述星敏感器低频误差和所述星敏感器随机测量误差的所述四元数的矢量部分分别记为χ=[χ1 χ2 χ3]T,λ=[λ1 λ2 λ3]T,ξ=[ξ1 ξ2 ξ3]T
卫星姿态运动学方程可用姿态四元数描述如下:
Figure GDA00029014482300000311
由以上方程,可推得所述陀螺误差参数标定模型,所述陀螺误差参数标定模型线性化后获得的线性化标定模型可表示为Z=HX+v;其中,Z为由陀螺测量输出、星敏测量输出构造的线性化标定模型观测量;X=[bT ΔT sT]T为待标定陀螺误差参数向量,其中,Δ为安装误差,s为刻度因子误差;H为由所述陀螺测量输出、所述星敏测量输出构造的线性化标定模型量测矩阵;v为所述陀螺和所述星敏感器的随机测量误差、线性化过程中近似误差引起的所述线性化标定模型的等效噪声;
步骤3:根据所述陀螺误差参数标定模型,结合所述卫星姿态机动过程中的陀螺测量数据和星敏感器测量数据,采用最小二乘方法,进行误差参数标定,获得陀螺误差参数估计值,并计算残差向量平方和;
采集所述卫星按照所述卫星姿态机动策略机动过程中的星敏感器测量数据和陀螺测量数据,提取机动时间段内的所述陀螺和所述星敏感器的有效测量数据,基于最小二乘准则,通过令实际线性化标定模型观测量Z和由所述陀螺误差参数估计值
Figure GDA0002901448230000041
求得的所述线性化标定模型观测量的估计值
Figure GDA0002901448230000042
之差的平方和最小,得到待定的所述陀螺误差参数估计值
Figure GDA0002901448230000043
步骤4:利用所述陀螺误差参数估计值计算补偿后陀螺测量值和所述残差向量平方和;
利用所述陀螺误差参数估计值
Figure GDA0002901448230000044
其中
Figure GDA0002901448230000045
为常值偏差估计值,
Figure GDA0002901448230000046
为安装误差估计值,
Figure GDA0002901448230000047
为刻度因子误差估计值,计算在所述姿态机动过程中经过补偿的所述补偿后陀螺测量值
Figure GDA0002901448230000048
所述补偿后t时刻的所述补偿后陀螺测量值为
Figure GDA0002901448230000049
其中
Figure GDA00029014482300000410
为由所述刻度因子估计误差
Figure GDA00029014482300000411
形成的对角矩阵;
根据所述补偿后陀螺测量值和卫星姿态四元数计算t时刻的残差向量:
Figure GDA00029014482300000412
由于[t+kΔt,t+(k+1)Δt]时间间隔内的角速度基本保持恒定,则在所述时间间隔内有
Figure GDA00029014482300000413
则所述机动过程中的所述残差向量平方和为:
Figure GDA00029014482300000414
将所述残差向量平方和作为评估误差参数估计质量的指标;
步骤5:根据所述补偿后陀螺测量值建立陀螺误差参数线性化标定模型,并利用最小二乘估计方法计算出陀螺误差参数修正量;
步骤6:根据所述陀螺误差参数修正量对所述陀螺误差参数估计值进行修正,获得修正后陀螺误差参数估计值,并计算修正后的所述残差向量平方和;当所述残差向量平方和不再减少或所述陀螺误差参数估计值变化小于设定门限或迭代次数超过预设限制次数,则将所述修正后陀螺误差参数估计值作为陀螺误差参数最终标定结果;否则将所述修正后陀螺误差参数估计值作为所述陀螺误差参数估计值,并进入所述步骤4。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,通过规划的姿态机动策略激发陀螺测量模型中误差参数的可观性;通过对卫星姿态运动学方程的分析,构建出高精度的陀螺误差参数标定模型;然后利用陀螺误差参数标定模型结合基于最小二乘准则的标定算法,使用陀螺和星敏感器的测量数据,对陀螺误差参数进行初步估计;最后利用陀螺误差参数的初步估计结果对陀螺测量误差进行补偿,并以此作为更精准的线性化展开点,对陀螺误差参数进行进一步的迭代估计,进而获取更准确的参数估计值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的基于星敏感器辅助的陀螺误差参数在轨快速标定方法流程图;
图2附图为本发明提供的单轮机动曲线及星敏感器采样对照图;
图3附图为本发明提供的卫星姿态机动示意图;
图4附图为本发明提供的残差向量平方和变化曲线示意图;
图5附图为本发明提供的常值偏差估计参数变化曲线示意图;
图6附图为本发明提供的安装误差估计参数变化曲线示意图;
图7附图为本发明提供的刻度因子误差估计参数变化曲线示意图;
图8附图为本发明提供的最终标定误差百分比示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,根据卫星系统限制角速度和限制角加速度,规划机动角速度和角加速度,设置姿态机动策略;根据卫星姿态运动学方程、陀螺输出方程、星敏感器输出方程,基于高阶毕卡逼近解算方法,建立线性近似的陀螺误差参数标定模型;根据建立的陀螺误差标定模型,结合机动过程中的陀螺和星敏感器的测量数据,利用最小二乘方法,进行误差参数标定,获得参数估计值;根据线性化展开点对精度影响效果,将参数估计作为新的线性化展开点,对估计参数残差进行迭代补偿,直至估计参数误差的变化小于给定的门限或迭代次数超过预设的限制次数。具体的实现过程如下:
S1:姿态机动策略的设定;
在卫星稳定运行条件下实施姿态机动,根据卫星的实际运动参数情况,从保障标定快速性和参数估计有效性角度出发,本发明设定满足以下原则的卫星姿态机动策略:
1.根据卫星系统最大角度、最大角速度、最大角加速度等参数、设置目标姿态机动的相关参数;
2.绕卫星的三个惯性主轴均进行姿态机动,机动进行数轮;
3.不同轮次采用不同的机动角速度,且在目标机动的参数限制下,设置出各轮次机动角速度,若对安装误差和刻度因子误差的标定精度要求较高,机动角速度可在满足限制的条件下尽量取大;
4.根据星敏感器的动态性能,在设计机动时保留可使星敏感器获得有效输出的时间区间,即在机动过程中有使星敏感器输出的时间;
5.在姿态机动结束后,卫星恢复到保证正常工作的姿态;
6.机动易实施;
根据上述原则,可以采用梯形、三角函数形、三角形、样条函数等机动角速度的变化形式;机动绕卫星的三个惯性主轴依次进行,机动顺序不限;重复进行若干轮机动。
按照上述原则,本实施例中展示一种三角形的机动策略如下:
根据卫星系统的卫星最大角速度χmax,确定机动最大角速度χm,可取机动最大角速度小于或等于卫星最大角速度χm≤χmax;根据卫星系统最大角加速度
Figure GDA0002901448230000071
确定机动最大角加速度
Figure GDA0002901448230000072
可取机动最大角加速度小于或等于卫星系统最大角加速度
Figure GDA0002901448230000073
卫星绕三轴分别进行姿态机动,每个轴向的机动过程分为六个阶段,分为正向机动加速阶段、正向机动减速阶段、正向平稳运行阶段、反向机动加速阶段、反向机动减速阶段、反向平稳运行阶段;三轴机动的轴向顺序为x-y-z;共进行三轮机动,每轮机动的最大角速度χi,m满足
Figure GDA0002901448230000074
其中,i为机动轮数;每轮机动的最大角加速度
Figure GDA0002901448230000075
满足
Figure GDA0002901448230000076
机动角加速度
Figure GDA0002901448230000077
在满足限制条件下在各机动阶段取为固定值;
计算机动过程的特征时间:设机动开始时刻为t0;正向加速阶段时间为
Figure GDA0002901448230000078
第i轮该阶段机动角加速度为
Figure GDA0002901448230000079
正向减速阶段时间
Figure GDA00029014482300000710
第i轮该阶段机动角加速度为
Figure GDA00029014482300000711
正向平稳运行阶段时间
Figure GDA00029014482300000712
其角加速度为
Figure GDA00029014482300000713
反向机动加速阶段时间
Figure GDA00029014482300000714
第i轮该阶段机动角加速度为
Figure GDA00029014482300000715
反向机动减速阶段时间
Figure GDA00029014482300000716
第i轮该阶段机动角加速度为
Figure GDA00029014482300000717
反向平稳运行阶段时间
Figure GDA00029014482300000718
其角加速度为
Figure GDA00029014482300000719
令六个阶段时间相等,即:
Figure GDA00029014482300000720
则单轮每个轴向的机动时间
Figure GDA00029014482300000721
(j=x,y,z分别代表机动轴次,i=1,2,3为机动轮数);总计机动时长
Figure GDA00029014482300000722
该机动形式可满足卫星系统对于快速性的要求;
单轮机动曲线图及星敏感器采样示意图如图2所示,三个单轮机动曲线横轴均表示时间,纵轴分别表示三轴方向上的机动角速度;
在卫星系统中机动实例如上所述。在本发明实际应用过程中,只需根据实际情况,在满足设定原则下进行机动策略设定,其设定不受固定机动形式约束;
S2:建立陀螺误差参数标定模型;
陀螺输出方程为:
Figure GDA0002901448230000081
上式中,ωg表示陀螺输出角速度向量
Figure GDA0002901448230000082
T表示包含刻度因子误差的标度因数对应的矩阵,
Figure GDA0002901448230000083
表示陀螺的安装误差矩阵,
Figure GDA0002901448230000084
表示陀螺的安装矩阵,b表示陀螺常值偏差,η表示陀螺的角速率随机测量噪声;
Figure GDA0002901448230000085
θ和ψ为陀螺沿卫星本体的x、y和z轴的安装误差角,并记
Figure GDA0002901448230000086
由Δ形成的反对称矩阵记为[Δ×],则
Figure GDA0002901448230000087
可由三轴安装误差角近似表示为
Figure GDA0002901448230000088
其中,I表示3×3的单位矩阵;记s=[sx sy sz]T,sx、sy和sz为陀螺三轴的刻度因子误差,并记Λ为由陀螺三轴的刻度因子误差构成的对角阵,刻度因子误差对应的矩阵T=I-Λ;
假定陀螺的敏感轴均沿机体轴安装,则陀螺安装矩阵
Figure GDA0002901448230000089
为单位阵,由陀螺输出方程进行整理,忽略高阶无穷小量,可知真实转动角速度ωb满足如下关系:
ωb≈(I-[Δ×]+Λ)(ωg-b-η) (5)
将描述两个坐标系之间的转动关系的四元数定义为Q=[q0 q1 q2 q3]T,标量部分为q0,且||Q||=1。用四元数形式描述的星敏感器输出方程为:
Figure GDA00029014482300000810
在上式星敏感器输出方程中,
Figure GDA00029014482300000811
表示卫星本体系相对于惯性系的姿态四元数;Qst表示星敏感器输出的姿态四元数,也即星敏感器坐标系相对于惯性系的四元数;
Figure GDA00029014482300000812
表示星敏感器安装矩阵对应的四元数;
Figure GDA00029014482300000813
表示星敏感器安装误差对应的四元数;Qλ表示星敏感器低频误差对应的四元数;Qξ表示星敏感器随机测量误差对应的四元数。由于星敏感器安装误差、星敏感器低频误差、星敏感器随机测量误差是小量,其对应四元数可近似为
Figure GDA00029014482300000814
Qλ≈[1 λ1 λ2 λ3]T,Qξ≈[1 ξ1 ξ2 ξ3]T,这里将矢量部分分别记为χ=[χ1 χ2 χ3]T,λ=[λ1 λ2 λ3]T,ξ=[ξ1 ξ2 ξ3]T
一般地,星敏感器在实际系统中的安装矩阵已知,由此经过转换星敏感器可以输出卫星本体系相对于惯性系的姿态,为简化模型推导设
Figure GDA00029014482300000815
那么由星敏感器输出模型可得卫星本体相对于惯性系的姿态四元数
Figure GDA00029014482300000816
满足如下方程:
Figure GDA00029014482300000817
由于
Figure GDA0002901448230000091
Qλ、Qξ为小误差四元数,令:
Figure GDA0002901448230000092
其中,δ=χ+λ+ξ,则由式(6)可得如下方程:
Figure GDA0002901448230000093
卫星姿态运动学方程可用姿态四元数描述如下:
Figure GDA0002901448230000094
其中,
Figure GDA0002901448230000095
采用毕卡逼近法,上述四元数微分方程的解为:
Figure GDA0002901448230000096
考虑到陀螺的输出频率通常比较高,而卫星姿态变化相对稳定,假定在[t,t+nΔt]时间段内,星敏感器连续两次输出的时间间隔为nΔt,而陀螺的输出时间间隔为Δt,设在Δt内的角速度基本保持恒定,即该时间间隔内
Figure GDA0002901448230000097
由此可以建立在该时间段内的真实转动角速度ωb与真实姿态四元数
Figure GDA0002901448230000098
间的递推关系如下:
Figure GDA0002901448230000099
Figure GDA00029014482300000910
由上式(9)可得:
Figure GDA00029014482300000911
将式(7)代入上式(10)中,可得:
Figure GDA00029014482300000912
由四元数乘法法则,有:
Figure GDA00029014482300000913
将式(12)代入式(11),经过整理可推得:
Figure GDA00029014482300000914
将式(13)右端取三阶近似,可得:
Figure GDA0002901448230000101
其中,Δθ=[Δθx Δθy Δθz]T
Figure GDA0002901448230000102
这里,
Figure GDA0002901448230000103
(i=x,y,z),[Δθ]=χ(Δθ)=Δtχ(Ωb)。那么:
Figure GDA0002901448230000104
根据四元数与角速度叉乘关系,可知
χ(Ωb)(Qst)t=M((Qst)tb (16)
其中,
Figure GDA0002901448230000105
则可推得:
Figure GDA0002901448230000106
根据式(5),可得:
Figure GDA0002901448230000107
其中,
Figure GDA0002901448230000108
将上式展开,可推得Δθ2近似计算公式:
Figure GDA0002901448230000109
其中,w为模型近似处理带来的误差;
将式(18)、式(19)代入式(17),忽略关于误差参数的高阶项,有:
Figure GDA0002901448230000111
Figure GDA0002901448230000112
将(21)代入(20),可得:
Figure GDA0002901448230000113
设待标定陀螺误差参数向量为X=[bT ΔT sT]T,根据上式(22)可以利用[t,t+nΔt]的陀螺和星敏感器测量建立如下线性化的误差参数标定方程:
Zt=HtX+vt (23)
其中,
Figure GDA0002901448230000114
Figure GDA0002901448230000115
vt为由陀螺和星敏感器的测量误差、线性化过程中近似误差等引起的线性化标定模型等效噪声;
对整个姿态机动区间,按照上述方法,利用相邻两次星敏感器的测量以及两次测量间隔内的陀螺测量数据,建立多组标定方程,将它们组合在一起,得到整体的误差参数标定方程即陀螺误差参数线性化标定模型如下:
Z=HX+v
其中,Z为在姿态机动过程中由陀螺测量输出、星敏测量输出构造的线性化标定模型观测量
Figure GDA0002901448230000121
X=[bT ΔT sT]T为待标定陀螺误差参数向量,Δ为安装误差,s为刻度因子误差;H为由陀螺测量输出、星敏测量输出构造的线性化标定模型量测矩阵
Figure GDA0002901448230000122
v为陀螺和所述星敏感器的随机测量误差、线性化过程中近似误差引起的线性化标定模型的等效噪声
Figure GDA0002901448230000123
这里,tj(j=1,2…N)表示从标定开始至标定结束时间段内N个星敏感器输出时刻,且在[tj,tj+1]时间间隔内陀螺进行了nj次输出,即有tj+1=tj+njΔt;
S3:基于最小二乘准则的参数估计;
在噪声v统计特性未知的情况下,基于最小二乘准则,通过使估计测量与实际测量的误差平方和最小,得到待定的陀螺误差参数的估计:
Figure GDA0002901448230000124
S4:评价陀螺误差参数的估计效果;
在算得
Figure GDA0002901448230000125
后,可计算姿态机动过程中经过补偿的陀螺测量
Figure GDA0002901448230000126
利用t时刻的陀螺测量
Figure GDA0002901448230000127
计算得的t时刻经过补偿的陀螺测量
Figure GDA0002901448230000128
Figure GDA0002901448230000129
由[tj,tj+1]时间间隔内各时刻补偿后的陀螺测量可以计算残差向量:
Figure GDA00029014482300001210
由于[t+kΔt,t+(k+1)Δt]时间间隔内的角速度基本保持恒定,则在所述时间间隔内有
Figure GDA00029014482300001211
并可以进一步计算机动过程中的所有残差向量的平方和
Figure GDA00029014482300001212
将其作为评价误差参数估计质量的指标;
S5:陀螺误差参数的迭代估计
由于在S2建立线性化的陀螺误差参数标定模型的过程中,舍去高阶小等近似处理带来了模型误差,接下来采用最小二乘迭代估计的方法,来进一步逼近陀螺误差参数的真值。
采用S2基于毕卡逼近解算建立线性化的陀螺误差参数标定模型的方法,利用补偿后的陀螺测量
Figure GDA0002901448230000131
建立陀螺误差参数修正量的线性化标定模型;设迭代前陀螺误差参数向量
Figure GDA0002901448230000132
再采用S3基于最小二乘准则的参数估计方法求解得到陀螺误差参数修正量的估计为
Figure GDA0002901448230000133
以此修正
Figure GDA0002901448230000134
此时,经过迭代修正后的陀螺误差参数向量为
Figure GDA0002901448230000135
再采用S4中计算残差向量平方和的方法计算此时的残差ε1;不断重复以上迭代过程,直到满足以下任意条件,迭代终止;
(1)第m步迭代的残差平方和εm不再减少,即εm≥εm-1
(2)陀螺误差参数修正量的估计
Figure GDA0002901448230000136
其中α为误差参数修正系数,且α>0,取小值,在这里意味着迭代处理对误差参数的调整作用不大;
(3)m>ma,ma为最大迭代次数;
此时,迭代终止,陀螺误差参数的最终标定结果为:
Figure GDA0002901448230000137
实施例
以低轨卫星为应用对象进行仿真。假设卫星限制角速度为3°/s,一直处于平稳运行状态;假设卫星星敏感器的输出频率为1Hz,在整秒时刻输出,星敏感器的敏感轴均沿机体轴安装,低频误差具有三个频点,周期分别6000s、400s、3000s,幅值分别为5.0”、0.5”、0.2”,随机测量噪声误差标准差为1”;假设陀螺的输出频率为50Hz,敏感轴均沿机体轴安装,角速率随机噪声标准差为0.05°/h;根据卫星系统实际情况,取常值偏差为0.6°/h、0.6°/h、-0.6°/h,安装误差为60”、60”、60”,刻度因子误差量级为1000ppm,即取为0.001、0.001、-0.001。已知待标定参数由常值偏差、安装误差、刻度因子误差依次组成,则待标定陀螺误差参数向量的真值为
Xreal=[bT real ΔT real sT real]T
其中
breal=[0.6 0.6 -0.6]T°/h
Δreal=[60 60 -60]T
sreal=[1.0e-3 1.0e-3 -1.0e-3]T
设置最大迭代次数ma=10,误差参数修正系数α=e-5
设置机动开始时刻为仿真第2700s,单轮每个轴向单阶段机动时间为1s,则机动结束时刻为仿真第2754s,机动示意图如图3,横轴表示时间,纵轴分别表示三轴方向上的机动角速度。对卫星实施该机动。
取仿真第2690s至第2764s时间段内的星敏感器和陀螺的测量数据,代入误差参数标定模型获得56组Zt和Ht,由此构成陀螺误差参数标定方程组。
根据最小二乘估计法求出保留六位有效数字的陀螺误差参数估计值为
Figure GDA0002901448230000141
其中
Figure GDA0002901448230000142
Figure GDA0002901448230000143
Figure GDA0002901448230000144
求得残差向量平方和为ε0=2.354693642931023e-9
Figure GDA0002901448230000145
作为展开点对姿态运动学方程的解进行展开,利用最小二乘估计法迭代估计参数变化量。经过第一次迭代,估计出的参数变化量保留六位有效数字后为:
Figure GDA0002901448230000146
其中
Figure GDA0002901448230000147
Figure GDA0002901448230000148
Figure GDA0002901448230000149
则修正后的参数估计值
Figure GDA00029014482300001410
保留六位有效数字后为:
Figure GDA0002901448230000151
其中
Figure GDA0002901448230000152
Figure GDA0002901448230000153
Figure GDA0002901448230000154
求得残差平方和ε1=2.354688737897910e-7。此时,ε1<ε0,估计参数修正量不满足
Figure GDA0002901448230000155
同时迭代次数m<ma,迭代继续。
Figure GDA0002901448230000156
作为展开点进行第二次迭代,估计出的参数变化量保留六位有效数字后为:
Figure GDA0002901448230000157
其中
Figure GDA0002901448230000158
Figure GDA0002901448230000159
Figure GDA00029014482300001510
修正后的参数估计值
Figure GDA00029014482300001511
保留六位有效数字后为:
Figure GDA00029014482300001512
其中
Figure GDA00029014482300001513
Figure GDA00029014482300001514
Figure GDA00029014482300001515
求得残差平方和ε2=2.354688732056278e-7。此时,ε2>ε1,估计参数修正量不满足
Figure GDA00029014482300001516
同时迭代次数m<ma,迭代继续。
Figure GDA00029014482300001517
作为展开点进行第三次迭代,估计出的参数变化量保留六位有效数字后为:
Figure GDA00029014482300001518
其中
Figure GDA00029014482300001519
Figure GDA00029014482300001520
Figure GDA00029014482300001521
修正后的参数估计值
Figure GDA0002901448230000161
保留六位有效数字后为:
Figure GDA0002901448230000162
其中
Figure GDA0002901448230000163
Figure GDA0002901448230000164
Figure GDA0002901448230000165
求得残差平方和ε3=2.354688731978770e-7。此时,ε3<ε2,残差向量平方和仍有略微减小;迭代次数m<ma;但估计参数修正量
Figure GDA0002901448230000166
迭代处理对误差参数的调整作用较小,满足终止条件(2),算法终止。则求得的误差参数估计为
Figure GDA0002901448230000167
估计误差为参数估计值
Figure GDA0002901448230000168
与待标定陀螺误差参数向量真值Xreal的差值,设标定误差百分比为估计误差相对参数真值的百分比绝对值,则第i个标定参数的误差百分比为
Figure GDA0002901448230000169
可求得所有标定参数保留三位有效数字的标定误差百分比:
η=[4.61 8.37 6.77 4.94 7.03 8.09 6.02 3.57 0.603]T
迭代过程中的残差向量平方和变化曲线如图4,常值偏差估计参数变化曲线如图5所示,安装误差估计参数变化曲线如图6所示,刻度因子误差估计参数变化曲线如图7所示,横轴均表示迭代次数;最终标定误差百分比如图8所示,纵轴表示误差百分比,横轴表示对应的误差参数。
本发明的有益效果:
1、本发明提供的陀螺误差参数在轨标定方法具有快速性;
2、不受星敏感器测量时对卫星角运动的动态条件的限制,可在卫星以较大的角速度进行机动时应用;
3、通过多轮次的姿态机动,采用变角速度的机动策略,提高陀螺误差参数估计的精度;
4、采用高阶模型近似建立的陀螺误差参数估计的线性化模型精度高,获得良好的标定性能;
5、采用迭代求解方法,保证陀螺误差参数的标定精度;
6、本发明实现简单,不仅适用于卫星,也可以扩展到其他领域。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

1.一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,其特征在于,具体步骤包括:
步骤1:根据卫星系统参数设置卫星姿态机动策略,卫星依据所述卫星姿态机动策略实施姿态机动;
步骤2:根据卫星姿态运动学方程、陀螺输出方程、星敏感器输出方程,在建立非线性陀螺误差参数标定模型基础上,基于高阶毕卡逼近解算方法建立线性化的陀螺误差参数标定模型;
所述陀螺输出方程为:
Figure FDA0003090262520000011
其中,ωg表示陀螺输出角速度向量
Figure FDA0003090262520000012
T表示包含刻度因子误差的标度因数对应的矩阵,
Figure FDA0003090262520000013
表示陀螺的安装误差矩阵,
Figure FDA0003090262520000014
表示所述陀螺的安装矩阵,b表示陀螺常值偏差,η表示所述陀螺的角速率随机测量噪声;ωb表示真实转动角速度;
所述星敏感器输出方程为:
Figure FDA0003090262520000015
其中,Qst表示星敏感器输出的姿态四元数;
Figure FDA0003090262520000016
表示卫星本体系相对于惯性系的姿态四元数;
Figure FDA0003090262520000017
表示星敏感器安装矩阵对应的四元数;
Figure FDA0003090262520000018
表示星敏感器安装误差对应的四元数;Qλ表示星敏感器低频误差对应的四元数;Qξ表示星敏感器随机测量误差对应的四元数;由于所述星敏感器安装误差、所述星敏感器低频误差和所述星敏感器随机测量误差是小量,对应的四元数分别表示为
Figure FDA0003090262520000019
Qλ≈[1 λ1 λ2 λ3]T,Qξ≈[1 ξ1 ξ2 ξ3]T,将所述星敏感器安装误差、所述星敏感器低频误差和所述星敏感器随机测量误差的所述四元数的矢量部分分别记为χ=[χ1 χ2 χ3]T,λ=[λ1 λ2 λ3]T,ξ=[ξ1 ξ2 ξ3]T
卫星姿态运动学方程用姿态四元数表示如下:
Figure FDA00030902625200000110
获得所述非线性陀螺误差参数标定模型,所述非线性陀螺误差参数标定模型线性化后获得的线性化的陀螺误差参数标定模型表示为Z=HX+v;其中,Z为在姿态机动过程中由陀螺测量输出、星敏测量输出构造的线性化标定模型观测量;X=[bT ΔT sT]T为待标定陀螺误差参数向量,其中,Δ为安装误差,s为刻度因子误差;H为由所述陀螺测量输出、所述星敏测量输出构造的线性化标定模型量测矩阵;v为陀螺和星敏感器的随机测量误差、线性化过程中近似误差引起的所述线性化标定模型的等效噪声;
其中,
Figure FDA0003090262520000021
采用毕卡逼近法,得到公式(3)的解为:
Figure FDA0003090262520000022
步骤3:根据所述线性化的陀螺误差参数标定模型,结合姿态机动过程中的陀螺测量数据和星敏感器测量数据,采用最小二乘方法,进行误差参数标定,获得陀螺误差参数估计值,并计算残差向量平方和;
步骤4:利用所述陀螺误差参数估计值计算补偿后陀螺测量值;
利用陀螺误差参数估计值
Figure FDA0003090262520000023
其中
Figure FDA0003090262520000024
为常值偏差估计值,
Figure FDA0003090262520000025
为安装误差估计值,
Figure FDA0003090262520000026
为刻度因子误差估计值,计算在所述姿态机动过程中经过补偿的补偿后陀螺测量值
Figure FDA0003090262520000027
t时刻的所述补偿后陀螺测量值为
Figure FDA0003090262520000028
其中
Figure FDA0003090262520000029
为由所述刻度因子误差估计值
Figure FDA00030902625200000210
形成的对角矩阵;
根据所述补偿后陀螺测量值和卫星姿态四元数计算残差向量:
Figure FDA00030902625200000211
由于[t+kΔt,t+(k+1)Δt]时间间隔内的角速度保持恒定,则在所述时间间隔内有
Figure FDA00030902625200000212
则所述姿态机动过程的残差向量平方和为:
Figure FDA00030902625200000213
将所述残差向量平方和作为评估误差参数估计质量的指标;
步骤5:根据所述补偿后陀螺测量值建立陀螺误差参数修正量的线性化标定模型,并利用最小二乘估计方法计算出陀螺误差参数修正量;
步骤6:根据所述陀螺误差参数修正量对所述陀螺误差参数估计值进行修正,获得修正后陀螺误差参数估计值,并计算修正后的所述残差向量平方和;当所述残差向量平方和不再减少或所述陀螺误差参数估计值变化小于设定门限或迭代次数超过预设限制次数,则将所述修正后陀螺误差参数估计值作为陀螺误差参数最终标定结果;否则将所述修正后陀螺误差参数估计值作为所述陀螺误差参数估计值,并进入所述步骤4。
2.根据权利要求1所述的一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,其特征在于,在所述步骤1中,采用梯形或三角函数形或三角形或样条函数的卫星姿态机动策略原则制定所述卫星姿态机动策略,所述卫星绕卫星三个惯性主轴依次进行若干轮机动。
3.根据权利要求1所述的一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法,其特征在于,在所述步骤3中采集所述卫星按照所述卫星姿态机动策略进行机动过程中的星敏感器测量数据和陀螺测量数据,提取机动时间段内的所述陀螺和所述星敏感器的有效测量数据,基于最小二乘准则,通过令所述Z和由所述陀螺误差参数估计值
Figure FDA0003090262520000031
求得的所述线性化标定模型观测量的估计值
Figure FDA0003090262520000032
两者之差的平方和最小,得到待定的所述陀螺误差参数估计值
Figure FDA0003090262520000033
CN202010040968.2A 2020-01-15 2020-01-15 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法 Active CN111044082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040968.2A CN111044082B (zh) 2020-01-15 2020-01-15 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040968.2A CN111044082B (zh) 2020-01-15 2020-01-15 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法

Publications (2)

Publication Number Publication Date
CN111044082A CN111044082A (zh) 2020-04-21
CN111044082B true CN111044082B (zh) 2021-07-06

Family

ID=70244628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040968.2A Active CN111044082B (zh) 2020-01-15 2020-01-15 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法

Country Status (1)

Country Link
CN (1) CN111044082B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393742B (zh) * 2020-09-08 2022-07-19 武汉大学 一种高频角位移传感器安装参数在轨标定方法及系统
CN113310505B (zh) * 2021-06-15 2024-04-09 苏州挚途科技有限公司 传感器系统的外参标定方法、装置及电子设备
CN114279310B (zh) * 2021-12-24 2024-02-02 江苏希太芯科技有限公司 带有温度补偿的晶圆厚度测量双电容传感器标定算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879011A (zh) * 2012-09-21 2013-01-16 北京控制工程研究所 一种基于星敏感器辅助的月面惯导对准方法
CN106052716A (zh) * 2016-05-25 2016-10-26 南京航空航天大学 惯性系下基于星光信息辅助的陀螺误差在线标定方法
CN108225337A (zh) * 2017-12-28 2018-06-29 西安电子科技大学 基于sr-ukf滤波的星敏感器和陀螺组合定姿方法
CN108827310A (zh) * 2018-07-12 2018-11-16 哈尔滨工程大学 一种船用星敏感器辅助陀螺仪在线标定方法
CN109470266A (zh) * 2018-11-02 2019-03-15 佛山科学技术学院 一种处理乘性噪声的星敏感器陀螺组合定姿方法
CN110109470A (zh) * 2019-04-09 2019-08-09 西安电子科技大学 基于无迹卡尔曼滤波的联合定姿方法、卫星姿态控制系统
CN110411477A (zh) * 2019-08-06 2019-11-05 广州泾渭信息科技有限公司 基于序列机动的星敏安装误差在轨标定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681182B2 (en) * 2002-02-01 2004-01-20 The Aerospace Corporation Fault detection pseudo gyro

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879011A (zh) * 2012-09-21 2013-01-16 北京控制工程研究所 一种基于星敏感器辅助的月面惯导对准方法
CN106052716A (zh) * 2016-05-25 2016-10-26 南京航空航天大学 惯性系下基于星光信息辅助的陀螺误差在线标定方法
CN108225337A (zh) * 2017-12-28 2018-06-29 西安电子科技大学 基于sr-ukf滤波的星敏感器和陀螺组合定姿方法
CN108827310A (zh) * 2018-07-12 2018-11-16 哈尔滨工程大学 一种船用星敏感器辅助陀螺仪在线标定方法
CN109470266A (zh) * 2018-11-02 2019-03-15 佛山科学技术学院 一种处理乘性噪声的星敏感器陀螺组合定姿方法
CN110109470A (zh) * 2019-04-09 2019-08-09 西安电子科技大学 基于无迹卡尔曼滤波的联合定姿方法、卫星姿态控制系统
CN110411477A (zh) * 2019-08-06 2019-11-05 广州泾渭信息科技有限公司 基于序列机动的星敏安装误差在轨标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CCD星敏感器辅助光纤陀螺在线标定技术;高伟等;《系统工程与电子技术》;20120831;第34卷(第8期);全文 *
基于卫星和星敏感器的冗余激光惯组在轨标定;王易南等;《飞行器测控学报》;20161031;第35卷(第5期);全文 *

Also Published As

Publication number Publication date
CN111044082A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN111044082B (zh) 一种基于星敏感器辅助的陀螺误差参数在轨快速标定方法
CN107655493B (zh) 一种光纤陀螺sins六位置系统级标定方法
CN105737823B (zh) 一种基于五阶ckf的gps/sins/cns组合导航方法
CN110672078B (zh) 一种基于地磁信息的高旋弹丸姿态估计方法
CN112504275B (zh) 一种基于级联卡尔曼滤波算法的水面舰船水平姿态测量方法
CN102937450B (zh) 一种基于陀螺测量信息的相对姿态确定方法
CN110702113B (zh) 基于mems传感器的捷联惯导系统数据预处理和姿态解算的方法
CN109708663B (zh) 基于空天飞机sins辅助的星敏感器在线标定方法
CN110954102A (zh) 用于机器人定位的磁力计辅助惯性导航系统及方法
CN111912427B (zh) 一种多普勒雷达辅助捷联惯导运动基座对准方法及系统
Deschênes et al. Lidar scan registration robust to extreme motions
CN108871319B (zh) 一种基于地球重力场与地磁场序贯修正的姿态解算方法
CN111605736B (zh) 地月l2点转移轨道最优误差修正点选择方法
CN101943585B (zh) 一种基于ccd星敏感器的标定方法
CN111238532B (zh) 一种适用于晃动基座环境的惯性测量单元标定方法
CN111220151B (zh) 载体系下考虑温度模型的惯性和里程计组合导航方法
CN108871312B (zh) 一种重力梯度仪及星敏感器的联合定姿方法
CN104296747A (zh) 基于火箭橇轨道坐标系的惯性测量系统一维定位方法
CN103591960A (zh) 一种基于旋转调制的静基座惯性导航系统粗对准方法
CN107702718B (zh) 一种基于瞬间可观测度模型的机载pos机动优化方法与装置
Zarei et al. Performance improvement for mobile robot position determination using cubature Kalman filter
CN110260862B (zh) 一种基于捷联惯导系统的旋翼直升机载导航装置
CN111351483A (zh) 一种递归多子样大动态惯性导航方法
Yuan et al. Robot position realization based on multi-sensor information fusion algorithm
CN110779551A (zh) 一种基于加性四元数的两阶段线性对准在线切换方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant