CN111036238A - 一种Fe2O3/WS2异质结光催化剂及其制备方法 - Google Patents

一种Fe2O3/WS2异质结光催化剂及其制备方法 Download PDF

Info

Publication number
CN111036238A
CN111036238A CN201911141450.1A CN201911141450A CN111036238A CN 111036238 A CN111036238 A CN 111036238A CN 201911141450 A CN201911141450 A CN 201911141450A CN 111036238 A CN111036238 A CN 111036238A
Authority
CN
China
Prior art keywords
preparation
heterojunction photocatalyst
photocatalyst
stirring
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911141450.1A
Other languages
English (en)
Other versions
CN111036238B (zh
Inventor
王姝
姜久兴
杨文龙
姬广举
柴戡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201911141450.1A priority Critical patent/CN111036238B/zh
Publication of CN111036238A publication Critical patent/CN111036238A/zh
Application granted granted Critical
Publication of CN111036238B publication Critical patent/CN111036238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种Fe2O3/WS2异质结光催化剂及其制备方法,属于光催化技术领域。本申请提供一种具有高效光化学能转换效率的光催化剂。本发明所述光催化剂由附载有Fe2O3纳米颗粒的WS2片层构成,呈花状结构;是通过水热反应耦合两种窄带半导体制备得到的一种具有异质结结构的复合材料。本发明制得的光催化剂具有较高的光生电子‑空穴对分离效率,在模拟太阳光光源照射下对亚甲基蓝指示剂溶液具有良好氧化降解效果的同时,对六价铬离子还具有较强的还原性。

Description

一种Fe2O3/WS2异质结光催化剂及其制备方法
技术领域
本发明涉及一种Fe2O3/WS2异质结光催化剂及其制备方法,属于光催化技术领域。
背景技术
自Honda-Fujishima效应发现以来,光催化技术受到了科学界的极大关注。以半导体材料为核心的光催化技术可将太阳能作为光源驱动室温化学反应,即催化剂吸附催化目标物、催化剂吸收光能并受激发产生电子和空穴、电子和空穴迁移并和吸附目标物发生光化学反应。研究表明,制约半导体光催化剂效率的因素主要有以下三点:(1)太阳光谱利用率——常用的金属氧化物通常仅限紫外光激发,太阳光谱利用率尚不足<5%;(2)光生电荷分离转移效率——光生电荷在体相迅速复合,在迁移过程中也易被杂质或缺陷俘获;(3)表面化学反应效率——到达反应活性位点的电子与质子易于表面复合,逆反应的同时发生也大量消耗载流子。因此,提供一种具有高效光化学能转换效率的光催化剂及其制备方法是十分必要的。
发明内容
本发明目的是为了提供一种具有高效光化学能转换效率的Fe2O3/WS2异质结及其制备方法。
本发明中Fe2O3/WS2异质结光催化剂是由附载有Fe2O3纳米颗粒的WS2片层构成,呈花状结构;其制备方法是按下述步骤进行的:
步骤一、Fe2O3纳米颗粒的制备:将FeCl3·6H2O溶解于无水乙醇中,超声震荡后加入去离子水和醋酸钠,搅拌,然后水热反应,自然冷却至室温,再经洗涤、真空干燥后得到Fe2O3纳米颗粒;
步骤二、Fe2O3/WS2复合材料的制备:将步骤一制得的纳米颗粒加入去离子水中,搅拌,然后依次加入WCl6和CH4N2S,超声震荡同时磁力搅拌,再加热反应后自然冷却至室温,再经洗涤、干燥处理,得到花状Fe2O3/WS2异质结光催化剂。
进一步地限定,步骤一中FeCl3·6H2O与醋酸钠的摩尔比为(0.5~2.0)∶1。
进一步地限定,步骤一中搅拌速度为100rpm~500rpm,搅拌时间为1h。
进一步地限定,步骤一中水热反应温度为180℃~200℃,水热反应时间为20h~24h。
进一步地限定,步骤一中在60℃下真空干燥10h。
进一步地限定,步骤二中Fe2O3纳米颗粒、WCl6和CH4N2S的摩尔比为1∶(1~6)∶(6~36)。
进一步地限定,步骤二中搅拌速度为100rpm~500rpm,搅拌时间为30min。
进一步地限定,步骤二中180℃~220℃下保温24h~36h。
进一步地限定,步骤一中所述洗涤是先用无水乙醇洗涤3次后再用去离子水洗涤3次。
进一步地限定,步骤二中所述洗涤是先用无水乙醇洗涤3次后再用去离子水洗涤3次。
本发明具有以下有益效果:
本发明的方法制备得到的花状Fe2O3/WS2异质结光催化剂具有较高的光生电子-空穴对分离效率,在模拟太阳光光源下对亚甲基蓝指示剂溶液具有良好的氧化降解效果的同时,对六价铬离子还具有较强的还原性。
附图说明
图1为本发明Fe2O3/WS2异质结的合成过程示意图;
图2(a)是WS2纳米片和Fe2O3纳米颗粒的X射线衍射图谱;
图2(b)是2WF、0.5WF、1WF和3WF的X射线衍射图谱;
图2(c)是对2WF在31~35°处以及37.5~42°处进行分峰拟合;
图3(a)是Fe2O3纳米颗粒、WS2纳米片、0.5WF、1WF、2WF和3WF的扫描电镜照片;
图3(b)是Fe2O3/WS2异质结的各元素分布图像;
图3(c)是Fe2O3/WS2异质结的透射电镜;
图3(d)是图3(c)选区高分辨透射电镜照片;
图4是Fe2O3/WS2异质结的X射线光电子能谱,(a)Fe元素,(b)W元素,(c)O元素,(d)S元素;
图5是Fe2O3纳米颗粒、WS2纳米片和2WF的光致发光光谱;
图6(a)是Fe2O3/WS2异质结对30mL 20mg/L的亚甲基蓝溶液的光催化降解情况比较;
图6(b)是Fe2O3/WS2异质结对30mL 40mg/L的重铬酸钾溶液的光催化还原情况比较;
图7是Fe2O3/WS2异质结的催化反应原理示意图。
具体实施方式
具体实施方式一:本实施例中Fe2O3/WS2异质结光催化剂的制备方法是按下述步骤进行的:
步骤一:Fe2O3纳米颗粒的制备:将5mmol FeCl3·6H2O溶于20mL无水乙醇中,超声震荡30min后加入3.4mL去离子水和5mmol醋酸钠,以500rpm的速度搅拌1h,转移至100mL反应釜中,在200℃条件下水热反应24h,自然冷却至室温,取出后先用无水乙醇洗涤3遍再用去离子水洗涤3遍,置于真空干燥箱中,在60℃下保温10h后获得Fe2O3纳米颗粒;
步骤二:Fe2O3/WS2复合材料的制备:将0.5mmol步骤一制得的Fe2O3纳米颗粒加到40mL去离子水中,以500rpm的速度搅拌30min,然后依次加入2mmol的WCl6和12mmol的CH4N2S,在超声频率为45KHz条件下超声震荡同时磁力搅拌30min,然后转移至50mL反应釜中,在200℃下保温24h,先用无水乙醇洗涤3遍再用去离子水洗涤3遍,转移至真空干燥箱中,在60℃保温10h,得到花状Fe2O3/WS2异质结光催化剂,命名为2WF,合成路线如图1所示。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二中Fe2O3纳米颗粒用量为2mmol,WCl6用量为2mmol,CH4N2S用量为12mmol,产品命名为0.5WF。其它步骤和参数与具体实施一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是:步骤二中Fe2O3纳米颗粒用量为1mmol,WCl6用量为2mmol,CH4N2S用量为12mmol,命名为1WF。其它步骤和参数与具体实施一相同。
具体实施方式四:本实施方式与具体实施方式一不同的是:步骤二中Fe2O3纳米颗粒用量为0.3mmol,WCl6用量为2mmol,CH4N2S用量为12mmol,样品命名为3WF。其它步骤和参数与具体实施一相同。
对比例1:
将2mmol WCl6和12mmol CH4N2S,在超声频率为45KHz下超声震荡同时磁力搅拌30min后转移至50mL反应釜中,200℃下保温24h,然后先用无水乙醇洗涤3遍再用去离子水洗涤3遍,然后在60℃真空干燥箱中保温10h后,得到WS2纳米片。
对比例2:
将5mmol的FeCl3·6H2O溶于20mL无水乙醇中,在超声频率为45KHz下超声震荡30min后加入3.4mL去离子水和5mmol醋酸钠,以500rpm的速度搅拌1h,转移至100mL反应釜中,200℃下水热反应24h,自然冷却至室温后取出,先用无水乙醇洗涤3遍再用去离子水洗涤3遍,在60℃真空干燥箱中保温10h后,获得Fe2O3纳米颗粒。
WS2和Fe2O3的X射线衍射图谱如图2(a)所示;2WF、0.5WF、1WF和3WF的X射线衍射图谱如图2(b)所示。由图2(a)图和2(b)图可知,Fe2O3/WS2异质结各衍射峰分别在33.0°,36.2°,40.0°,41.2°,43.6°,54.4°,64.1°和66.3°对应赤铁矿相α-Fe2O3的(104),(110),(113),(202),(116),(214),(300)和(125)晶面,在14.2°,28.7°,33.7°,39.2°,49.6°,56.1°和58.6°对应辉钨矿相2H-WS2的(002),(004),(101),(103),(105),(106)和(110)晶面。图2(c)是对2WF在31~35°处以及37.5~42°处进行分峰拟合,确定该试样在33.7°,39.2°以及39.6°分别对应2H-WS2的(101)、(103)晶面,以及α-Fe2O3的(006)晶面。并且当Fe/W元素占比较多时(如0.5WF和1.0WF),复合材料中存在杂质相FeWO4,但当WS2含量比重增加时(如2.0WF和3.0WF),该杂质相消失。这是因为在水热反应中,依靠S源(CH4N2S)分解释放的H2S还原W源(WCl6)中的W6+。当Fe2O3较多时,因Fe3+的氧化性强于W6+,更易被还原,故而生成副产物FeWO4。当WS2较多时,复合材料表现为纯净的α-Fe2O3和2H-WS2相。
Fe2O3纳米颗粒、WS2纳米片、0.5WF、1WF、2WF和3WF的扫描电镜照片如图3(a)所示。由图3(a)可知,单一组分的Fe2O3纳米颗粒和WS2纳米片分别呈现零维圆角纳米颗粒和二维纳米片层形貌。合成的Fe2O3/WS2异质结中,WS2片层依附Fe2O3粒子生长,随着WS2含量的增加,Fe2O3逐渐被WS2片层包覆,并形成稳定的三维花状结构。WS2片层形似花瓣,Fe2O3粒子形似露珠覆于其表面。这种特殊的形貌使得复合材料二组分紧密结合,有利于形成大量的异质结构。
对具体实施方式一制得的2WF进行各元素能谱分析,测试结果如图3(b)所示。由图3(b)可知,Fe、W、O、S四种元素均匀分布于材料表面,进一步说明该复合材料是由Fe2O3和WS2二组分构成。
具体实施方式一制得的Fe2O3/WS2异质结(2WF)的透射电镜如图3中(c)图所示,并对图3(c)中图的选区进行高分辨透射电镜测试,测试结果如图3(d)所示。由图3(d)可知,选区部分的HRTEM照片清楚显示由Fe2O3的(104)晶面和WS2的(002)晶面形成的异质结结构。
对具体实施方式一制得的2WF进行X射线光电子能谱测试,测试结果如图4所示,其中图4中(a)为Fe元素、(b)为W元素、(c)为O元素、(d)为S元素。由图4可知,进一步证明Fe、W、O、S四种元素分布于材料表面,进一步说明该复合材料是由Fe2O3和WS2二组分构成。
对Fe2O3纳米颗粒、WS2纳米片和2WF进行光致发光测试(PL)光谱测试,获得光致发光谱线,如图5所示。由图5可知,2WF的光致发光强度与WS2和Fe2O3相比显著降低,说明花状Fe2O3/WS2的异质结构能够降低复合材料中光生电子-空穴对复合几率,有效促进光生载流子寿命的增加。
对具体实施方式一制得的2WF进行光催化性能测试,具体测试条件为:选用300W的氙灯加AM1.5滤镜模拟太阳光光源。测试过程为:在100mL的烧杯中放入30mL的20mg/L的亚甲基蓝溶液和10mg光催化剂,将烧杯置于光源前方搅拌台上,并固定烧杯与光源的距离为5cm,降解反应过程中保持匀速的磁力搅拌。每10min对反应液进行吸光度检测,以此绘制光照时间与降解率变化曲线,如图6(a)所示。
对具体实施方式一制得的2WF进行光催化性能测试,具体测试条件为:选用300W的氙灯加AM1.5滤镜模拟太阳光光源。测试过程为:在100mL的烧杯中放入30mL的40mg/L重铬酸钾溶液,加入20mg乙二胺四乙酸EDTA作为空穴牺牲剂,并加入20mg的2WF作为光催化剂,然后将烧杯置于光源前方搅拌台上,并固定烧杯与光源的距离为5cm,降解反应过程中保持匀速的磁力搅拌。每10min对反应液进行吸光度检测,以此绘制光照时间与降解率变化曲线,如图6(b)所示。
由图6可知,2WF与WS2纳米片和Fe2O3纳米颗粒相比对指示剂的降解效率有了较大幅度的提高,说明复合材料独特的三维花状结构促进形成大量的异质结构,进而说明本方法制得的光催化剂在模拟太阳光光源下在具有较强的光催化性能,即表现为光催化氧化同时还具有可观的光催化还原性能。Fe2O3/WS2异质结的催化反应原理示意图如图7所示,在水环境中,光诱导产生的电子和空穴分别与吸附的溶解氧和水分子作用产生具有强氧化性的羟基自由基(·OH)和超氧离子自由基(·O2-),这类活性基团具有无选择性的氧化降解有机污染物(MB)的能力;另一方面,光生电子还可用以还原有毒无机重金属Cr6+离子。

Claims (10)

1.一种Fe2O3/WS2异质结光催化剂,其特征在于:所述异质结光催化剂由附载有Fe2O3纳米颗粒的WS2片层构成,呈花状结构。
2.如权利要求1所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:该方法是按下述步骤进行的:
步骤一、Fe2O3纳米颗粒的制备:将FeCl3·6H2O溶解于无水乙醇中,超声震荡后加入去离子水和醋酸钠,搅拌,然后水热反应,自然冷却至室温,再经洗涤、真空干燥后得到Fe2O3纳米颗粒;
步骤二、Fe2O3/WS2复合材料的制备:将步骤一制得的Fe2O3纳米颗粒加入去离子水中,搅拌,然后依次加入WCl6和CH4N2S,超声震荡同时磁力搅拌,再加热反应后自然冷却至室温,再经洗涤、干燥处理,得到花状Fe2O3/WS2异质结光催化剂。
3.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤一中FeCl3·6H2O与醋酸钠的摩尔比为(0.5~2.0)∶1。
4.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤一中搅拌速度为100rpm~500rpm,搅拌时间为1h。
5.根据权利要求2所述的一种花状Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤一中水热反应温度为180℃~200℃,水热反应时间为20h~24h。
6.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤一中在60℃下真空干燥10h。
7.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤二中Fe2O3纳米颗粒、WCl6和CH4N2S的摩尔比为1∶(1~6)∶(6~36)。
8.根据权利要求2所述的一种花状Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤二中搅拌速度为100rpm~500rpm,搅拌时间为30min。
9.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤二中所述加热反应是在180℃~220℃下保温24h~36h。
10.根据权利要求2所述的一种Fe2O3/WS2异质结光催化剂的制备方法,其特征在于:所述的步骤一和步骤二中洗涤是先用无水乙醇洗涤3次后再用去离子水洗涤3次。
CN201911141450.1A 2019-11-20 2019-11-20 一种Fe2O3/WS2异质结光催化剂及其制备方法 Active CN111036238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911141450.1A CN111036238B (zh) 2019-11-20 2019-11-20 一种Fe2O3/WS2异质结光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911141450.1A CN111036238B (zh) 2019-11-20 2019-11-20 一种Fe2O3/WS2异质结光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111036238A true CN111036238A (zh) 2020-04-21
CN111036238B CN111036238B (zh) 2022-08-12

Family

ID=70232481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911141450.1A Active CN111036238B (zh) 2019-11-20 2019-11-20 一种Fe2O3/WS2异质结光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111036238B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661194A (zh) * 2020-12-24 2021-04-16 厦门大学 一种尺寸可调的均匀片状三氧化二铁的制备方法
CN112717932A (zh) * 2020-12-31 2021-04-30 武汉理工大学 一种铜掺杂三氧化二铁纳米盘的制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133203A (zh) * 1994-12-26 1996-10-16 武田药品工业株式会社 催化剂组合物以及使用它们的除臭方法
CN1843952A (zh) * 2006-04-30 2006-10-11 南京大学 以锂电池和太阳能电池为供能装置的可见光响应型光催化反应器
CN103273157A (zh) * 2013-05-31 2013-09-04 哈尔滨工业大学 一种加快Zr基块体金属玻璃与Sn基钎料冶金结合的方法
CN106356195A (zh) * 2016-08-31 2017-01-25 江苏大学 一种Fe3O4/WS2纳米复合材料及其制备方法
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
TW201905162A (zh) * 2017-06-02 2019-02-01 法商奈科斯多特股份公司 包括經包覆之奈米粒子之發光粒子及其用途
CN109453792A (zh) * 2018-11-22 2019-03-12 哈尔滨理工大学 一种在光芬顿反应中抗光腐蚀的硫化物异质结材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133203A (zh) * 1994-12-26 1996-10-16 武田药品工业株式会社 催化剂组合物以及使用它们的除臭方法
CN1843952A (zh) * 2006-04-30 2006-10-11 南京大学 以锂电池和太阳能电池为供能装置的可见光响应型光催化反应器
CN103273157A (zh) * 2013-05-31 2013-09-04 哈尔滨工业大学 一种加快Zr基块体金属玻璃与Sn基钎料冶金结合的方法
CN106356195A (zh) * 2016-08-31 2017-01-25 江苏大学 一种Fe3O4/WS2纳米复合材料及其制备方法
TW201905162A (zh) * 2017-06-02 2019-02-01 法商奈科斯多特股份公司 包括經包覆之奈米粒子之發光粒子及其用途
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
CN109453792A (zh) * 2018-11-22 2019-03-12 哈尔滨理工大学 一种在光芬顿反应中抗光腐蚀的硫化物异质结材料的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHENCHENG DONG ET AL: "Enhancement of H2O2 Decomposition by the Co-catalytic Effect of WS2 on the Fenton Reaction for the Synchronous Reduction of Cr(VI) and Remediation of Phenol", 《ENVIRON. SCI. TECHNOL.》 *
CHU, DM ET AL: "Zn-doped hematite modified by graphene-like WS2: A p-type semiconductor hybrid photocathode for water splitting to produce hydrogen", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
JI, JH ET AL: "Magnetic separation of metal sulfides/oxides by Fe3O4 at room temperature and atmospheric pressure", 《RARE METALS》 *
M.BEHTAJ LEJBINI ET AL: "Hydrothermal synthesis of α-Fe2O3-decorated MoS2 nanosheets with enhanced photocatalytic activity", 《OPTIK》 *
MINGYANG XING ET AL: "Metal Sulfides as Excellent Co-catalysts for H2O2 Decomposition in Advanced Oxidation Processes", 《CHEM》 *
MOHD ZAHID ANSARI ET AL: "Lithium ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets", 《NEW J. CHEM.》 *
YANG, XIJIA ET AL: "High Efficient Photo-Fenton Catalyst of alpha-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors", 《SCIENTIFIC REPORTS》 *
钱婷婷 等: "磁性CuS/γ-Fe2O3复合材料光催化处理染料废水", 《化工环保》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661194A (zh) * 2020-12-24 2021-04-16 厦门大学 一种尺寸可调的均匀片状三氧化二铁的制备方法
CN112661194B (zh) * 2020-12-24 2023-05-23 厦门大学 一种尺寸可调的均匀片状三氧化二铁的制备方法
CN112717932A (zh) * 2020-12-31 2021-04-30 武汉理工大学 一种铜掺杂三氧化二铁纳米盘的制备方法和应用

Also Published As

Publication number Publication date
CN111036238B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Shi et al. Construction of CuBi2O4/Bi2MoO6 pn heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation
Yang et al. Graphdiyne (g-CnH2n-2) based Co3S4 anchoring and edge-covalently modification coupled with carbon-defects g-C3N4 for photocatalytic hydrogen production
Zhou et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity
Zhang et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation
Su et al. Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light
Guo et al. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis
Bi et al. Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
Guan et al. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light
Xu et al. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light
Bai et al. Synergistic effect of multiple-phase rGO/CuO/Cu2O heterostructures for boosting photocatalytic activity and durability
Feng et al. Novel visible light induced Ag2S/g-C3N4/ZnO nanoarrays heterojunction for efficient photocatalytic performance
Guo et al. High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays
Hu et al. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis
Wang et al. Few-layer porous carbon nitride anchoring Co and Ni with charge transfer mechanism for photocatalytic CO2 reduction
Huang et al. Simultaneously enhanced photocatalytic cleanup of Cr (VI) and tetracycline via a ZnIn 2 S 4 nanoflake-decorated 24-faceted concave MIL-88B (Fe) polyhedron S-scheme system
WO2019085532A1 (zh) 一种三价钛自掺杂二氧化钛纳米颗粒-部分还原氧化石墨烯纳米片复合材料及其制备方法
He et al. In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution
CN111036238B (zh) 一种Fe2O3/WS2异质结光催化剂及其制备方法
Nguyen et al. Heterojunction of graphene and titanium dioxide nanotube composites for enhancing photocatalytic activity
CN109453792B (zh) 一种在光芬顿反应中抗光腐蚀的硫化物异质结材料的制备方法
Zheng et al. A visible-light active pn heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue
Ren et al. 2D Porous graphitic C 3 N 4 nanosheets/Ag 3 PO 4 nanocomposites for enhanced visible-light photocatalytic degradation of 4-chlorophenol
CN111185210A (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
Lin et al. Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production
Cai et al. rGO-modified BiOX (X= Cl, I, Br) for enhanced photocatalytic eradication of gaseous mercury

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant