CN111031944A - 具有可调节的能量模式的组合超声和电外科器械以及用于限制刀温度的方法 - Google Patents
具有可调节的能量模式的组合超声和电外科器械以及用于限制刀温度的方法 Download PDFInfo
- Publication number
- CN111031944A CN111031944A CN201880034248.6A CN201880034248A CN111031944A CN 111031944 A CN111031944 A CN 111031944A CN 201880034248 A CN201880034248 A CN 201880034248A CN 111031944 A CN111031944 A CN 111031944A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- ultrasonic blade
- blade
- temperature
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000008859 change Effects 0.000 claims abstract description 38
- 239000012636 effector Substances 0.000 claims abstract description 22
- 230000004044 response Effects 0.000 claims abstract description 7
- 210000001519 tissue Anatomy 0.000 description 68
- 238000002604 ultrasonography Methods 0.000 description 29
- 238000007789 sealing Methods 0.000 description 13
- 238000005520 cutting process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000015271 coagulation Effects 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000002674 endoscopic surgery Methods 0.000 description 2
- 230000002439 hemostatic effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B18/1233—Generators therefor with circuits for assuring patient safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00106—Sensing or detecting at the treatment site ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00137—Details of operation mode
- A61B2017/00154—Details of operation mode pulsed
- A61B2017/00181—Means for setting or varying the pulse energy
- A61B2017/0019—Means for setting or varying the pulse width
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320074—Working tips with special features, e.g. extending parts blade
- A61B2017/320075—Working tips with special features, e.g. extending parts blade single edge blade, e.g. for cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320088—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with acoustic insulation, e.g. elements for damping vibrations between horn and surrounding sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320094—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320095—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00607—Coagulation and cutting with the same instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
- A61B2018/00648—Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
- A61B2018/00654—Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
- A61B2018/00672—Sensing and controlling the application of energy using a threshold value lower
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
- A61B2018/00678—Sensing and controlling the application of energy using a threshold value upper
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
- A61B2018/00708—Power or energy switching the power on or off
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00714—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00755—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00761—Duration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00779—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00845—Frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/0088—Vibration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
- A61B2018/00928—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device by sending a signal to an external energy source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/1452—Probes having pivoting end effectors, e.g. forceps including means for cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/1452—Probes having pivoting end effectors, e.g. forceps including means for cutting
- A61B2018/1457—Probes having pivoting end effectors, e.g. forceps including means for cutting having opposing blades cutting tissue grasped by the jaws, i.e. combined scissors and pliers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1467—Probes or electrodes therefor using more than two electrodes on a single probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
Abstract
本发明提供了一种超声外科器械(12)和一种限制超声刀温度的方法,该方法包括响应于在超声刀(28)中达到将超声刀(28)的温度限制到温度上限的预定频率参数变化阈值来调节超声能量的至少一个功率参数。超声外科器械(12)还包括端部执行器(20),该端部执行器具有超声刀(28)、钳口(26)和控制器(46)。钳口(26)相对于超声刀(28)可移动地定位,并且被配置成在打开位置和闭合位置之间移动。控制器(46)操作地连接到超声刀(28)并且被配置成测量超声刀(28)的超声频率。控制器(46)具有包含多个预定数据相关性的存储器,该相关性使超声刀(28)的所测量的超声频率的变化与超声刀(28)的刀温度相关联。
Description
相关申请的交叉引用
本申请要求2017年5月22日提交的名称为“Control Algorithm for SurgicalInstrument with Ultrasonic and Electrosurgical Modalities”的美国临时专利申请62/509,336的优先权,其公开内容以引用方式并入本文。
背景技术
超声外科器械将超声能量同时用于精确切割和受控凝固。超声能量通过振动与组织接触的刀进行切割和凝固。例如,在大约55.5千赫(kHz)的频率下振动,超声刀将组织中的蛋白质变性以形成粘性凝结物。刀表面施加到组织上的压力使血管塌缩并且允许凝固物形成止血密封。例如,可通过外科医生的技术以及对功率电平、刀刃、组织牵引力和刀压力的调节来控制切割和凝固的精度。
超声外科设备的示例包括HARMONIC超声剪刀、HARMONIC超声剪刀、HARMONIC超声剪刀和HARMONIC超声刀,上述全部器械均得自俄亥俄州的辛辛那提的爱惜康内镜外科公司(Ethicon Endo-Surgery,Inc.of Cincinnati,Ohio)。此类设备的其它示例和相关概念在以下专利中公开:1994年6月21日公布的名称为“ClampCoagulator/Cutting System for Ultrasonic Surgical Instruments”的美国专利5,322,055,该专利的公开内容以引用方式并入本文;1999年2月23日公布的名称为“Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Mechanism”的美国专利5,873,873,其公开内容以引用方式并入本文;1999年11月9日公布的名称为“Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount”的美国专利5,980,510,其公开内容以引用方式并入本文;2001年9月4日公布的名称为“Method of Balancing Asymmetric Ultrasonic Surgical Blades”的美国专利6,283,981,其公开内容以引用方式并入本文;2001年10月30日公布的名称为“Curved UltrasonicBlade having a Trapezoidal Cross Section”的美国专利6,309,400,其公开内容以引用方式并入本文;2001年12月4日公布的名称为“Blades with Functional BalanceAsymmetries for use with Ultrasonic Surgical Instruments”的美国专利6,325,811,其公开内容以引用方式并入本文;2002年7月23日公布的名称为“Ultrasonic SurgicalBlade with Improved Cutting and Coagulation Features”的美国专利6,423,082,其公开内容以引用方式并入本文;2004年8月10日公布的名称为“Blades with FunctionalBalance Asymmetries for Use with Ultrasonic Surgical Instruments”的美国专利6,773,444,其公开内容以引用方式并入本文;2004年8月31日发布的名称为“RoboticSurgical Tool with Ultrasound Cauterizing and Cutting Instrument”的美国专利6,783,524,其公开内容以引用方式并入本文;2011年11月15日公布的名称为“UltrasonicSurgical Instrument Blades”的美国专利8,057,498,其公开内容以引用方式并入本文;2013年6月11日公布的名称为“Rotating Transducer Mount for Ultrasonic SurgicalInstruments”的美国专利8,461,744,其公开内容以引用方式并入本文;2013年11月26日公布的名称为“Ultrasonic Surgical Instrument Blades”的美国专利8,591,536,其公开内容以引用方式并入本文;2014年1月7日发布的名称为“Ergonomic Surgical Instruments”的美国专利8,623,027,其公开内容以引用方式并入本文;以及2016年1月28日公布的名称为“Ultrasonic Blade Overmold”的美国公布2016/0022305,其公开内容以引用方式并入本文。
电外科器械利用电能以密封组织,并且通常包括被配置用于双极或单极操作的远侧安装的端部执行器。在双极操作期间,电流通过端部执行器的有源电极和返回电极被提供穿过组织。在单极操作期间,电流通过端部执行器的有源电极和单独设置在患者身体上的返回电极(例如,接地垫)被提供穿过组织中。由流过组织的电流所产生的热可在组织内和/或在组织之间形成止血密封,并因此可尤其适用于例如密封血管。电外科装置的端部执行器也可包括能够相对于组织运动的切割构件以及用以横断组织的电极。
由电外科装置施加的电能可通过与器械耦合的发生器传递至器械。电能可为射频(“RF”)能量的形式,该射频能量为电能的形式,其频率范围一般为约300千赫(kHz)至1兆赫(MHz)内。在使用中,电外科设备可穿过组织传递此种能量,这会引起离子振荡或摩擦,并实际上造成电阻性加热,从而升高组织的温度。由于受影响的组织与周围组织之间形成明显的边界,因此外科医生能够以高精确度进行操作,并在不损伤相邻的非目标组织的情况下进行控制。RF能量的低操作温度可适用于在密封血管的同时移除软组织、收缩软组织、或对软组织塑型。RF能量尤其奏效地适用于结缔组织,该结缔组织主要由胶原构成并且在接触热时收缩。
射频电外科装置的示例为由俄亥俄州的辛辛那提的爱惜康内镜外科公司(Ethicon Endo-Surgery,Inc.,of Cincinnati,Ohio)制造的组织密封装置。电外科设备的其他示例以及相关理念公开于下列美国专利中:2002年12月31公布的名称为“Electrosurgical Systems and Techniques for Sealing Tissue”的美国专利6,500,176,其公开内容以引用方式并入本文;2006年9月26日公布的名称为“ElectrosurgicalInstrument and Method of Use”的美国专利7,112,201,其公开内容以引用方式并入本文;2006年10月24日公布的名称为“Electrosurgical Working End for ControlledEnergy Delivery”的美国专利7,125,409,其公开内容以引用方式并入本文;2007年1月30日公布的名称为“Electrosurgical Probe and Method of Use”的美国专利7,169,146,其公开内容以引用方式并入本文;2007年3月6日公布的名称为“Electrosurgical JawStructure for Controlled Energy Delivery”的美国专利7,186,253,其公开内容以引用方式并入本文;2007年3月13日公布的名称为“Electrosurgical Instrument”的美国专利7,189,233,其公开内容以引用方式并入本文;2007年5月22日公布的名称为“SurgicalSealing Surfaces and Methods of Use”的美国专利7,220,951,其公开内容以引用方式并入本文;2007年12月18日公布的名称为“Polymer Compositions Exhibiting a PTCProperty and Methods of Fabrication”的美国专利7,309,849,其公开内容以引用方式并入本文;2007年12月25日公布的名称为“Electrosurgical Instrument and Method ofUse”的美国专利7,311,709,其公开内容以引用方式并入本文;2008年4月8日公布的名称为“Electrosurgical Instrument and Method of Use”的美国专利7,354,440,其公开内容以引用方式并入本文;2008年6月3日公布的名称为“Electrosurgical Instrument”的美国专利7,381,209,其公开内容以引用方式并入本文。
电外科设备的其他示例以及相关理念公开于下列美国专利中:2015年1月27公布的名称为“Surgical Instrument Comprising First and Second Drive SystemsActuatable by a Common Trigger Mechanism”的美国专利8,939,974,其公开内容以引用方式并入本文;2015年10月20日公布的名称为“Motor Driven Electrosurgical Devicewith Mechanical and Electrical Feedback”的美国专利9,161,803,其公开内容以引用方式并入本文;2012年3月29日公布的名称为“Control Features for ArticulatingSurgical Device”的美国公布2012/0078243,其公开内容以引用方式并入本文;2016年8月2日公布的名称为“Articulation Joint Features for Articulating Surgical Device”的美国专利9,402,682,其公开内容以引用方式并入本文;2015年7月28日公布的名称为“Surgical Instrument with Multi-Phase Trigger Bias”的美国专利9,089,327,其公开内容以引用方式并入本文;2017年1月17日公布的名称为“Surgical Instrument withContained Dual Helix Actuator Assembly”的美国专利9,545,253,其公开内容以引用方式并入本文;以及2017年2月21日公布的名称为“Bipolar Electrosurgical Features forTargeted Hemostasis”的美国专利9,572,622,其公开内容以引用方式并入本文。
一些器械可通过单个外科设备提供超声和射频能量处理能力。此类设备和相关概念的示例在以下专利中有所公开:2014年3月4日公布的名称为“Ultrasonic SurgicalInstruments”的美国专利8,663,220,其公开内容以引用方式并入本文;2015年5月21日公布的名称为“Surgical Instrument with Charging Devices”的美国公布2015/0141981,其公开内容以引用方式并入本文;2017年1月5日公布的名称为“Surgical Instrumentwith User Adaptable Techniques”的美国公布2017/0000541,其公开内容以引用方式并入本文。
尽管已经制造和使用了各种类型的超声外科器械和电外科器械,包括超声-电外科组合设备,但据信在发明人之前没有人制造或使用本文所述的发明。
附图说明
并入本说明书中并构成本说明书的一部分的附图示出了本发明的实施方案,并且与上面给出的本发明的一般描述以及下面给出的实施方案的详细描述一起用于解释本发明的原理。
图1示出了示例性超声外科器械的示意图,该超声外科器械包括轴组件和操作地连接到超声发生器的柄部组件;
图2A示出了图1的超声外科器械的端部执行器的侧视图,示出了处于打开配置的端部执行器以用于接收患者的组织;
图2B示出了图2A的端部执行器的侧视图,但端部执行器处于闭合配置以用于夹持患者的组织;
图3示出了控制图1的超声外科系统的刀温度的高级方法的流程图;
图4示出了图3的控制刀温度的方法的一种型式的流程图;并且
图5示出了具有超声频率上限的图4中的型式的超声能量的超声频率的曲线图。
附图并非旨在以任何方式进行限制,并且可以设想本发明的各种实施方案可以多种其它方式来执行,包括那些未必在附图中示出的方式。并入本说明书中并构成其一部分的附图示出了本发明的若干方面,并与说明书一起用于解释本发明的原理;然而,应当理解,本发明并不限于所示出的明确布置方式。
具体实施方式
本发明的某些示例的以下说明不应用于限定本发明的范围。根据以举例的方式示出的以下说明,本发明的其它示例、特征、方面、实施方案和优点对于本领域的技术人员而言将是显而易见的,一种最佳方式被设想用于实施本发明。如将认识到,本发明能够具有其它不同且明显的方面,所有这些方面均不脱离本发明。因此,附图和说明应被视为实质上是例示性的而非限制性的。
I.示例性外科系统
图1示出了外科系统(10)的一个示例,该外科系统(10)包括外科器械(12)和经由电缆(16)耦合的发生器(14)。外科器械(12)具有近侧定位的柄部组件(18),也可称为手持件;远侧定位的端部执行器(20);在其间延伸的轴组件(22);以及超声换能器(24)。端部执行器(20)通常包括相对于超声刀(28)枢转地连接并且被配置成从打开构型的打开位置枢转到闭合构型的闭合位置的夹持臂(26),如下面更详细地讨论的。超声刀(28)经由声波导管(未示出)与超声换能器(24)声学耦合,以向超声刀(28)提供超声能量。另外,端部执行器(20)还包括沿其定位的多个RF电极(30),用于根据临床医生的需要在打开位置或闭合位置接触组织。发生器(14)操作地连接至超声刀(28)和RF电极(30),以分别向超声刀(28)和RF电极(30)提供超声能量和RF能量,从而切割和/或密封组织。
在一些型式中,夹持臂(26)具有两个或更多个电极(30)。在一些此类型式中,夹持臂的电极(30)能够将双极RF能量施加到组织。在一些此类型式中,超声刀(28)保持电中性的,使得超声刀(28)不是RF电路的一部分。在一些其他型式中,超声刀(28)形成RF电路的部分,使得超声刀(28)与夹持臂(26)的一个或多个电极(30)协作以将双极RF能量施加到组织。仅以举例的方式,夹持臂(26)的一些型式可仅具有一个电极(30),该电极用作RF能量的有源极;而超声波刀(28)为RF能量提供了返回极。因此,术语“电极(30)”应被理解为包括其中夹持臂(26)仅具有一个单个电极的型式。
应当理解,本文中参考外科器械(12)使用术语诸如“近侧”和“远侧”。因此,端部执行器(20)相对于更近侧的柄部组件(18)在远侧。还应当理解,为简洁和清楚起见,本文可结合附图使用诸如“上部”和“下部”的空间术语。然而,外科器械在许多取向和位置中使用,并且这些术语并非旨在为限制性的和绝对的。同样,术语诸如“器械”和“设备”以及“极限”和“上限”可互换使用。
A.示例性发生器
参考图1,发生器(14)驱动具有超声和RF能量的组合外科器械(12)。在本示例中,发生器(14)被示为与外科器械(12)分离,但是另选地,发生器(14)可与外科器械(12)一体形成以形成一体式外科系统。发生器(14)通常包括位于发生器(14)的前面板(34)上的输入设备(32)。输入设备(32)可具有任何合适的设备,该设备生成适合于对发生器(32)的操作进行编程的信号。例如,在操作中,临床医生可使用输入设备(32)(例如,通过发生器中包含的一个或多个处理器)来编程或以其他方式控制发生器(32)的操作以控制发生器(14)的操作(例如,超声发生器驱动电路(未示出)和/或RF发生器驱动电路(未示出)的操作)。
在各种形式中,输入设备(32)包括一个或多个按钮、开关、指轮、键盘、小键盘、触摸屏监视器、指向设备,该指向设备远程连接到通用计算机或专用计算机。在其他形式中,输入设备(32)可具有合适的用户界面,诸如在触摸屏监视器上显示的一个或多个用户界面屏幕。因此,临床医生可选择性地设定或编程发生器的各种操作参数,诸如驱动信号或由超声和RF发生器驱动电路(未示出)产生的信号的电流(I)、电压(V)、频率(f)和/或周期(T)。具体地,在本示例中,发生器(32)被配置成将各种功率状态递送到外科器械(10),包括但不必限于仅超声能量、仅RF能量,以及同时为超声刀(28)和RF电极(30)供电的超声和RF能量的组合。应当理解,输入设备(32)可具有产生适合于对发生器(14)的操作进行编程的信号的任何合适的设备,并且不应不必要地限于本文示出和描述的输入设备(32)。
仅以举例的方式,发生器(14)可包括由俄亥俄州的辛辛那提的爱惜康内镜外科公司(Ethicon Endo-Surgery,Inc.of Cincinnati,Ohio)出售的GEN04或GEN11。除此之外或另选地,发生器(14)可根据以下专利公布的教导内容中的至少一些进行构造:2011年4月14日公布的名称为“用于超声和电外科设备的外科发生器(Surgical Generator forUltrasonic and Electrosurgical Devices)”的美国公布2011/0087212,其公开内容以引用方式并入本文。
B.示例性外科器械
图1所示的本示例的外科器械(10)包括多个能量输入部,在本文中更具体地将其称为上部按钮(36)、下部按钮(38)和侧面按钮(40)。以举例的方式,上部按钮(36)被配置成引导发生器(14)以最大的超声能量输出为超声换能器(24)供电,而下部按钮(38)被配置成引导发生器(14)以较低的超声能量输出为超声换能器(24)供电。以另一个示例的方式,侧面按钮(40)被配置成引导发生器(14)以脉冲能量输出(诸如5个连续信号和5或4或3或2或1个脉冲信号)为超声换能器(24)供电。在一个或多个示例中,可控制和/或基于发生器(14)中的EEPROM设定和/或用户功率水平选择来控制由能量输入部引导的特定驱动信号配置。以另一个示例的方式,外科器械(10)可包括用于选择性地引导如本文所述的超声和RF能量的两按钮配置。在本文引用的各种专利参考文献中描述了具有两按钮输入配置的器械的各种示例。在任何情况下,应当理解,本文所述的发明并非旨在不必要地限于特定的输入按钮、开关等,只要可以使用任何形式的输入即可。
外科器械(12)还包括与发生器(14)通信的第一数据电路(42)和第二数据电路(44)。例如,第一数据电路(42)指示老化频率斜率。除此之外或另选地,任何类型的信息均可经由数据电路接口(例如,使用逻辑电路)传送到第二数据电路(42)以存储于其中。此类信息可包括(例如)其中已使用外科器械(12)的操作的更新数目和/或其使用的日期和/或时间。在其他示例中,第二数据电路(44)可传递由一个或多个传感器(例如,基于器械的温度传感器)采集的数据。在其他示例中,第二数据电路(44)可从发生器(14)接收数据,并基于到外科器械(12)和/或来自外科器械(12)的接收到的数据向临床医生提供指示(例如,LED指示或其他可见指示)。在本示例中,第二数据电路(44)存储关于关联换能器(24)和/或端部执行器(20)的电和/或超声特性的信息,该信息包括从超声刀(28)和/或RF电极(30)测量和收集的数据。
为此,本文所述的各种过程和技术由包括内部逻辑的控制器(46)执行。在一个示例中,控制器(46)具有与发生器(14)、超声刀(28)、RF电极(30)以及本文所述用于监测和执行此类过程和技术的其他输入和输出通信的一个或多个处理器和/或其他控制器设备。在一示例中,控制器(46)具有被配置成监测经由一个或多个输入和电容式触摸传感器提供的用户输入的处理器。控制器(46)还可包括触摸屏控制器,以控制和管理从电容式触摸屏的触摸数据的采集。
参考图1至图2B,柄部组件(18)还包括操作地连接到夹持臂(26)的触发器(48)。触发器(48)和夹持臂(26)通常被朝向未致动的打开构型偏压。然而,选择性地操纵触发器(48)将夹持臂(26)朝近侧从打开位置朝向闭合位置朝着超声刀(28)枢转。如本示例中所使用的,夹持臂(26)和超声刀(28)通常也分别被称为外科器械(12)的上钳口和下钳口。在打开位置,夹持臂(26)和超声刀(28)被配置成接收组织,而夹持臂(26)被配置成将组织抵靠超声刀(28)夹持,以抓紧、密封和/或切割组织。
超声刀(28)超声振动以密封和/或切割组织,而RF电极(30)向组织提供电力。本示例的RF电极(30)都是电相似的电极,超声刀(28)也作为返回电极电连接。如本文所使用的,术语“电极”因此可相对于RF电路同时应用于RF电极(30)和超声刀(28)。在没有组织的情况下,从RF电极(30)到超声刀(28)的电路是打开的,而在使用中,该电路被RF电极(30)和超声刀(28)之间的组织闭合。可激活RF电极(30)以单独施加RF能量,或与超声刀(28)的超声激活组合施加RF能量。例如,仅激活RF电极(30)以单独施加RF能量可用于点凝结,而不必担心无意地用超声激活的超声刀(28)切割组织。然而,超声能量和RF能量的组合可用于密封和/或切割组织以实现诊断或治疗效果的任何组合,下面将更详细地描述其各种示例。
如上所述,发生器(14)是单个输出发生器,其可以通过单个端口递送功率以同时提供RF和超声能量,使得这些信号可以分别或同时递送到端部执行器(20)以用于切割和/或密封组织。此种单个输出端口发生器(14)具有带有多个抽头的单个输出变压器,以根据在组织上执行的特定处理向端部执行器(20)提供用于RF或用于超声能量的功率。例如,发生器(14)可通过以下方式递送能量:采用较高的电压和较低的电流以驱动超声换能器(24),根据需要采用较低的电压和较高的电流以驱动用于密封组织的RF电极(30),或使用单极或双极电外科电极采用凝固波形进行点凝固。来自发生器(14)的输出波形可以被操纵、切换或滤波,以向外科器械(12)的端部执行器(20)提供期望的频率。
II.刀温度控制
尽管图1的超声刀(28)通常在向组织初始施加超声能量时在初始室温下开始,但是温度随着每次连续使用而趋于升高,特别是当在相对较短的时间内连续使用时。通常,在操作外科系统(10)的任何方法中,诸如本文所述的那些,具体地关于超声能量,超声刀(28)的增加的温度趋向于影响组织的密封和横断。更具体地,相对较高的温度趋于增加在密封时无意间横断组织或甚至在密封之前过快地横断组织的可能性,并且可能无法在操作中解决。尽管此类效果在一些组织治疗中可能是微不足道的,但如下所述对超声能量的一个或多个电参数的调节被配置成限制超声刀(28)的温度,以在将超声能量连续施加到组织时提供更大的一致性。对超声刀(28)的此类温度限制还被配置成保持夹持臂(26)的夹持垫的使用寿命,该使用寿命可能被相对高的温度损坏。
在本示例中,图3示出了一种方法(1110),该方法(1110)至少在一定程度上通过监测由于温度波动引起的超声频率变化来控制使用中的图1外科系统(10)的超声刀(28)的温度,以将温度限制在温度上限。临床医生最初在步骤(1112)中在初始时间To激活超声能量和RF能量,然后将该能量施加到组织,如本文所述。同时,控制器(46)在初始时间To利用第一超声频率测量值询问超声刀(28),并在步骤(1114)中存储第一超声频率测量值。在步骤(1114)中的第一超声频率测量之后,控制器(46)在接下来的时间T1再次向超声刀(28)询问第二超声频率的另一测量值,并且在步骤(1116)中存储第二超声频率测量值。在步骤(1118)中,访问第一超声频率和第二超声频率中的每个,并将其应用于从第一超声频率到第二超声频率的频率参数变化的计算。在一个示例中,可基于在生产期间测量并存储在EEPROM中的基线频率来计算频率参数变化。
控制器(46)将计算出的频率参数变化与超声频率的先前数据进行比较,并且在步骤(1120)中使从步骤(1118)计算出的频率参数变化与当前刀温度相关联。在步骤(1122)中,基于当前刀温度,控制器(46)响应于达到预定频率参数变化阈值来调节超声能量的输出的至少一个电功率参数,从而在步骤(1124)中限制超声刀(28)的当前温度。在一个示例中,在步骤(1126)中,根据所调节的电参数,继续施加RF和超声能量,直到将组织密封,同时防止组织的横断和/或减少对夹持臂(26)的损坏。在另一示例中,根据所调节的电参数,超声能量的输出被终止,而RF能量继续施加,直到组织被密封。一旦组织被密封,RF能量和超声能量就被终止。尽管方法(1110)的以上描述包括与超声能量有关的测量和调节,但应当理解,此类测量和调节并非旨在不必要地仅限于超声能量。
图4示出了以上讨论的方法(1110)(参见图3)的更具体的(1210),其中超声频率测量值的一个示例由图5中的附图标记(1211)表示。本示例的型式(1210)开始于在步骤(1112)中激活超声和RF能量以启动密封,同时在步骤(1114)中测量初始超声频率。控制器(46)然后在步骤(1212)中测量超声刀(28)的第一询问超声频率,随后在步骤(1214)中基于步骤(1114)的初始超声频率和步骤(1212)中的第一询问超声频率来计算频率参数变化。在步骤(1218)中,控制器(46)访问被配置成禁止组织横断的刀温度与频率参数变化的存储的预定数据相关性(1216)。步骤(1218)从而基于预定数据相关性(1216)使步骤(1214)的频率参数变化与当前刀温度实时相关联。
步骤(1220)将来自步骤(1218)的当前刀温度与超声刀(28)的预定温度极限进行比较,以确定当前刀温度是否已经增加到至少预定温度。在当前刀温度未增加到预定刀温度极限的情况下,步骤(1212)至步骤(1220)重复循环,直到当前刀温度至少为预定温度。一旦当前刀温度至少为步骤(1220)中的预定刀温度,则控制器(46)在步骤(1222)中对超声能量设定预定频率参数变化阈值。在本示例中,超声频率(1211)随温度的升高而降低,如图5所示,其标识了示例性的预定频率参数变化阈值(1223),并且可通过随时间或超声频率的斜率而变化的至少两个超声频率测量值(1211)之间的差异来监测。响应于该设定,步骤(1224)调节超声能量的至少一个功率参数,以将超声能量限制为预定的频率参数变化阈值(1223),并继而限制当前刀温度,以在步骤(1226)中防止组织的横断。
控制器(46)然后在步骤(1228)中测量第二询问超声频率,随后在步骤(1230)中确定组织是否被密封。在组织被密封的情况下,如上所述,控制器(46)在步骤(1128)中终止超声能量和RF能量。然而,在尚未密封组织的情况下,控制器(46)在步骤(1232)中确定第二询问超声频率是否被限制于预定频率参数变化阈值(1223)。如果第二询问超声频率被限制于预定频率参数变化阈值(1223),则重复步骤(1228)和步骤(1230)。如果第二询问超声频率超过预定频率参数变化阈值(1223),则对每个步骤(1224)和步骤(1226)进行进一步调节和限制,然后重复步骤(1228)和步骤(1230)。基于步骤(1232)的这些重复循环继续进行,直到在步骤(1230)中组织被密封,随后在步骤(1128)中RF能量和超声能量终止。
此外,在一个或多个示例中,基于频率测量值(1211)和/或频率斜率的传递函数也可被配置成控制超声能量的输出,以便控制刀温度。在任何情况下,刀温度控制还可被配置成通过进一步控制经由RF电极(30)施加到组织的RF能量在从超声刀(28)到夹持臂(26)的组织上发生相对均匀的温度变化来减小和/或最小化超声刀(28)和夹持臂(26)之间的温差。
III.示例性组合
以下实施例涉及本文的教导内容可被组合或应用的各种非穷尽性方式。应当理解,以下实施例并非旨在限制可在本专利申请或本专利申请的后续提交文件中的任何时间提供的任何权利要求的覆盖范围。不旨在进行免责声明。提供以下实施例仅仅是出于例示性目的。预期本文的各种教导内容可按多种其它方式进行布置和应用。还设想到,一些变型可省略在以下实施例中所提及的某些特征。因此,下文提及的方面或特征中的任一者均不应被视为决定性的,除非另外例如由发明人或关注发明人的继承者在稍后日期明确指明如此。如果本专利申请或与本专利申请相关的后续提交文件中提出的任何权利要求包括下文提及的那些特征之外的附加特征,则这些附加特征不应被假定为因与专利性相关的任何原因而被添加。
实施例1
一种限制外科器械的超声刀温度的方法,该外科器械具有被配置成将超声能量施加到组织的超声刀,该方法包括:(a)朝着温度上限升高超声刀的温度;(b)响应于在超声刀中达到预定频率参数变化阈值来调节超声能量的至少一个功率参数;以及(c)将超声刀的温度限制到温度上限。
实施例2
根据实施例1所述的方法,还包括:(a)测量超声刀的第一超声频率;(b)在测量第一超声频率之后测量超声刀的第二超声频率;以及(c)计算超声刀的所测量的第一超声频率和第二超声频率之间的频率参数变化。
实施例3
根据实施例2所述的方法,其中,超声刀的第一超声频率为超声刀的初始超声频率。
实施例4
根据实施例1至3中任一项或多项所述的方法,还包括使超声刀的频率参数变化与超声刀的温度相关联。
实施例5
根据实施例4所述的方法,其中,使频率参数变化相关联还包括:基于存储在外科器械的控制器上的刀温度与频率参数的多个预定数据相关性,使超声刀的频率参数变化与超声刀的温度相关联。
实施例6
根据实施例1至5中任一项或多项所述的方法,还包括确定超声刀的温度已升高至温度上限。
实施例7
根据实施例1至6中任一项或多项所述的方法,其中,限制超声刀的温度还包括限制超声刀的温度从而防止组织的横断。
实施例8
根据实施例1至7中任一项或多项所述的方法,还包括测量超声刀的第三超声频率。
实施例9
根据实施例8所述的方法,还包括确定与超声刀接合的组织未被密封。
实施例10
根据实施例9所述的方法,还包括:(a)确定超声刀的第三超声频率达到预定频率参数变化阈值;以及(b)响应于在超声刀中达到预定频率参数变化阈值来进一步调节超声能量的至少一个功率参数。
实施例11
根据实施例9所述的方法,还包括:(a)确定超声刀的第三超声频率小于预定频率参数变化阈值;以及(b)重新测量超声刀的第三超声频率。
实施例12
根据实施例8中任一项所述的方法,还包括确定与超声刀接合的组织被密封。
实施例13
根据实施例12所述的方法,还包括基于确定与超声刀接合的组织被密封来终止超声能量。
实施例14
根据实施例1至13中任一项或多项所述的方法,其中,限制超声刀的温度还包括防止对被配置成抵靠超声刀压缩组织的夹持臂的损坏。
实施例15
根据实施例1至14中任一项或多项所述的方法,还包括设定预定频率参数变化阈值。
实施例16
一种确定外科器械的超声刀温度的方法,该外科器械具有被配置成由超声能量驱动的超声刀,该方法包括:(a)测量超声刀的第一超声频率;(b)在测量第一超声频率之后测量超声刀的第二超声频率;(c)计算超声刀的所测量的第一超声频率和第二超声频率之间的频率参数变化;以及(d)使超声刀的频率参数变化与超声刀的温度相关联,从而确定超声刀的温度。
实施例17
根据实施例16所述的方法,其中,使频率参数变化相关联还包括:基于存储在外科器械的控制器上的刀温度与频率参数的多个预定数据相关性,使超声刀的频率参数变化与超声刀的温度相关联。
实施例18
一种超声外科器械,包括:(a)端部执行器,该端部执行器被配置成从第一构型致动到第二构型,包括:(i)超声刀,该超声刀被配置成选择性地将超声能量施加到组织,以及(ii)钳口,该钳口相对于超声刀可移动地定位并且被配置成在打开位置和闭合位置之间移动,其中处于打开位置的钳口和超声刀被配置成接收组织,并且其中处于闭合位置的钳口和超声刀被配置成夹持组织;(b)轴组件,该轴组件从端部执行器朝近侧突出;(c)主体,该主题从轴组件朝近侧突出,其中主体包括操作地连接到超声刀的能量输入部;以及(d)控制器,该控制器操作地连接到所述超声刀并且被配置成测量超声刀的超声频率,其中控制器具有存储器,该存储器包含多个预定数据相关性,多个预定数据相关性使超声刀的测量的超声频率的变化与超声刀的刀温度相关联,其中控制器被配置成使预定的数据相关性与超声刀的刀温度相关联。
实施例19
根据实施例18所述的超声外科器械,其中,控制器还被配置成将刀温度限制到温度上限。
实施例20
根据实施例18所述的超声外科器械,其中,存储器还包含预定频率参数阈值,并且其中控制器被配置成调节超声能量的至少一个功率参数并且将超声刀的测量的超声频率限制到预定频率参数阈值,用于将刀的温度限制到温度上限。
IV.杂项
应当理解,本文所述的教导内容、表达、实施方案、示例等中的任何一者或多者可与本文所述的其它教导内容、表达、实施方案、示例等中的任何一者或多者进行组合。因此,上述教导内容、表达、实施方案、示例等不应视为彼此孤立。参考本文的教导内容,本文的教导内容可进行组合的各种合适方式对于本领域的普通技术人员而言将显而易见。此类修改和变型旨在包括在任何权利要求书的范围内。
本文所述的教导内容、表达、实施方案、示例等中的任何一者或多者可与以下申请所述的教导内容、表达、实施方案、示例等中的任何一者或多者相结合:名称为“Combination Ultrasonic and Electrosurgical Instrument with Clamp ArmPosition Input and Method for Identifying Tissue State”的与本申请同日提交的美国专利申请[代理人参考号END8146USNP];名称为“Combination Ultrasonic andElectrosurgical Instrument with Adjustable Energy Modalities and Method forSealing Tissue and Inhibiting Tissue Resection”的与本申请同日提交的美国专利申请[代理人参考号END8146USNP1];名称为“Combination Ultrasonic andElectrosurgical Instrument with Adjustable Clamp Force and Related Methods)”的与本申请同日提交的美国专利申请[代理人参考号END8146USNP2];名称为“CombinationUltrasonic and Electrosurgical Instrument and Method for Sealing Tissue withVarious Termination Parameters”的与本申请同日提交的美国专利申请[代理人参考号END8146USNP4];以及/或者名称为“Combination Ultrasonic and ElectrosurgicalInstrument and Method for Sealing Tissue in Successive Phases”的与本申请同日提交的美国专利申请[代理人参考号END8146USNP5]。这些申请中的每个的公开内容均以引用方式并入本文。
另外,本文所述的教导内容、表达、实施方案、示例等中的任何一者或多者可与以下申请所述的教导内容、表达、实施方案、示例等中的任何一者或多者相结合:名称为“Combination Ultrasonic and Electrosurgical Instrument Having ElectricalCircuits With Shared Return Path”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP];名称为“Combination Ultrasonic and Electrosurgical InstrumentHaving Slip Ring Electrical Contact Assembly”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP1];名称为“Combination Ultrasonic and ElectrosurgicalInstrument Having Electrically Insulating Features”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP2];名称为“Combination Ultrasonic andElectrosurgical Instrument Having Curved Ultrasonic Blade”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP3];名称为“Combination Ultrasonic andElectrosurgical Instrument Having Clamp Arm Electrode”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP4];名称为“Combination Ultrasonic andElectrosurgical Instrument Having Ultrasonic Waveguide With Distal OvermoldMember”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP5];名称为“Combination Ultrasonic and Electrosurgical System Having Generator FilterCircuitry”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP6];以及/或者名称为“Combination Ultrasonic and Electrosurgical System Having EEPROM andASIC Components”的与本申请同日提交的美国专利申请[代理人参考号END8245USNP7]。这些申请中的每个的公开内容均以引用方式并入本文。
应当理解,据称以引用方式并入本文的任何专利、专利公布或其它公开材料,无论是全文或部分,仅在所并入的材料与本公开中所述的现有定义、陈述或者其它公开材料不冲突的范围内并入本文。因此,并且在必要的程度下,本文明确列出的公开内容代替以引用方式并入本文的任何冲突材料。据称以引用方式并入本文但与本文列出的现有定义、陈述或其它公开材料相冲突的任何材料或其部分,将仅在所并入的材料与现有的公开材料之间不产生冲突的程度下并入。
上述装置的型式可应用于由医疗专业人员进行的传统医学治疗和手术、以及机器人辅助的医学治疗和手术中。仅以举例的方式,本文的各种教导内容可易于并入机器人外科系统,诸如加利福尼亚州森尼维尔市的视觉外科公司(Intuitive Surgical,Inc.Sunnyvale,California)的系统。相似地,本领域的普通技术人员将认识到,本文中的各种教导内容可易于结合以下美国专利中的任何一个的各种教导内容:1998年8月11日公布的名称为“Articulated Surgical Instrument For PerformingMinimally Invasive Surgery With Enhanced Dexterity and Sensitivity”的美国专利5,792,135,其公开内容以引用方式并入本文;1998年10月6日发布的名称为“RemoteCenter Positioning Device with Flexible Drive”的美国专利5,817,084,其公开内容以引用方式并入本文;1999年3月2日公布的名称为“Automated Endoscope System forOptimal Positioning”的美国专利5,878,193,其公开内容以引用方式并入本文;2001年5月15日公布的名称为“Robotic Arm DLUS for Performing Surgical Tasks”的美国专利6,231,565,其公开内容以引用方式并入本文;2004年8月31日发布的名称为“RoboticSurgical Tool with Ultrasound Cauterizing and Cutting Instrument”的美国专利6,783,524,其公开内容以引用方式并入本文;2002年4月2日公布的名称为“Alignment ofMaster and Slave in a Minimally Invasive Surgical Apparatus”的美国专利6,364,888,其公开内容以引用方式并入本文;2009年4月28日公布的名称为“MechanicalActuator Interface System for Robotic Surgical Tools”的美国专利7,524,320,其公开内容以引用方式并入本文;2010年4月6日公布的名称为“Platform Link WristMechanism”的美国专利7,691,098,其公开内容以引用方式并入本文;2010年10月5日公布的名称为“Repositioning and Reorientation of Master/Slave Relationship inMinimally Invasive Telesurgery”的美国专利7,806,891,其公开内容以引用方式并入本文;2014年9月30日公布的名称为“Automated End Effector Component ReloadingSystem for Use with a Robotic System”的美国专利8,844,789,其公开内容以引用方式并入本文;2014年9月2日公布的名称为“Robotically-Controlled SurgicalInstruments”的美国专利8,820,605,其公开内容以引用方式并入本文;2013年12月31日公布的名称为“Shiftable Drive Interface for Robotically-Controlled SurgicalTool”的美国专利8,616,431,其公开内容以引用方式并入本文;2013年11月5日公布的名称为“Surgical Stapling Instruments with Cam-Driven Staple DeploymentArrangements”的美国专利8,573,461,其公开内容以引用方式并入本文;2013年12月10日公布的名称为“Robotically-Controlled Motorized Surgical End Effector Systemwith Rotary Actuated Closure Systems Having Variable Actuation Speeds”的美国专利8,602,288,其公开内容以引用方式并入本文;2016年4月5日公布的名称为“Robotically-Controlled Surgical Instrument with Selectively ArticulatableEnd Effector”的美国专利申请9,301,759,其公开内容以引用方式并入本文;2014年7月22日公布的名称为“Robotically-Controlled Surgical End Effector System”的美国专利8,783,541,其公开内容以引用方式并入本文;2013年7月9日公布的名称为“DriveInterface for Operably Coupling a Manipulatable Surgical Tool to a Robot”的美国专利8,479,969,其公开内容以引用方式并入本文;2014年8月12日公布的名称为“Robotically-Controlled Cable-Based Surgical End Effectors”的美国专利公布8,800,838,其公开内容以引用方式并入本文;以及/或者2013年11月5日公布的名称为“Robotically-Controlled Surgical End Effector System with Rotary ActuatedClosure Systems”的美国专利8,573,465,其公开内容以引用方式并入本文。
上文所述的型式的装置可被设计为单次使用后丢弃,或者它们可被设计为可多次使用。在任一种情况下或两种情况下,可对这些型式进行修复以在至少一次使用之后重复使用。修复可包括以下步骤的任意组合:拆卸装置,然后清洁或替换特定零件以及随后进行重新组装。具体地,可拆卸一些型式的装置,并且可以任何组合来选择性地替换或移除装置的任意数量的特定零件或部分。在清洁和/或更换特定部件时,装置的一些型式可在修复设施处重新组装或者在即将进行手术之前由临床医生重新组装以供随后使用。本领域的技术人员将会了解,装置的修复可利用多种技术进行拆卸、清洁/更换、以及重新组装。此类技术的使用以及所得的修复装置均在本申请的范围内。
仅以举例的方式,本文描述的型式可在手术之前和/或之后消毒。在一种消毒技术中,将所述装置放置在闭合且密封的容器诸如塑料袋或TYVEK袋中。然后可将容器和装置放置在可穿透容器的辐射场中,诸如γ辐射、x射线、或高能电子。辐射可杀死装置上和容器中的细菌。随后可将经消毒的装置储存在无菌容器中,以供以后使用。还可使用本领域已知的任何其它技术对装置进行消毒,所述技术包括但不限于β辐射或γ辐射、环氧乙烷或蒸汽。
已经示出和阐述了本发明的各种实施方案,可在不脱离本发明的范围的情况下由本领域的普通技术人员进行适当修改来实现本文所述的方法和系统的进一步改进。已经提及了若干此类可能的修改,并且其它修改对于本领域的技术人员而言将显而易见。例如,上文所讨论的实施例、实施方案、几何形状、材料、尺寸、比率、步骤等均是例示性的而非必需的。因此,本发明的范围应理解为不限于说明书和附图中示出和描述的结构和操作细节。
Claims (20)
1.一种限制外科器械的超声刀温度的方法,所述外科器械具有被配置成将超声能量施加到组织的超声刀,所述方法包括:
(a)朝着温度上限升高所述超声刀的所述温度;
(b)响应于在所述超声刀中达到预定频率参数变化阈值来调节所述超声能量的至少一个功率参数;以及
(c)将所述超声刀的所述温度限制到所述温度上限。
2.根据权利要求1所述的方法,还包括:
(a)测量所述超声刀的第一超声频率;
(b)在测量所述第一超声频率之后测量所述超声刀的第二超声频率;以及
(c)计算所述超声刀的所测量的所述第一超声频率和所述第二超声频率之间的频率参数变化。
3.根据权利要求2所述的方法,其中,所述超声刀的所述第一超声频率为所述超声刀的初始超声频率。
4.根据权利要求2所述的方法,还包括使所述超声刀的所述频率参数变化与所述超声刀的所述温度相关联。
5.根据权利要求4所述的方法,其中,使所述频率参数变化相关联还包括:基于存储在所述外科器械的控制器上的刀温度与频率参数的多个预定数据相关性,使所述超声刀的所述频率参数变化与所述超声刀的所述温度相关联。
6.根据权利要求4所述的方法,还包括确定所述超声刀的所述温度已升高至所述温度上限。
7.根据权利要求6所述的方法,其中,限制所述超声刀的所述温度还包括限制所述超声刀的所述温度从而防止组织的横断。
8.根据权利要求6所述的方法,还包括测量所述超声刀的第三超声频率。
9.根据权利要求8所述的方法,还包括确定与所述超声刀接合的组织未被密封。
10.根据权利要求9所述的方法,还包括:
(a)确定所述超声刀的所述第三超声频率达到所述预定频率参数变化阈值;以及
(b)响应于在所述超声刀中达到预定频率参数变化阈值来进一步调节所述超声能量的所述至少一个功率参数。
11.根据权利要求9所述的方法,还包括:
(a)确定所述超声刀的所述第三超声频率小于所述预定频率参数变化阈值;以及
(b)重新测量所述超声刀的所述第三超声频率。
12.根据权利要求8所述的方法,还包括确定与所述超声刀接合的组织被密封。
13.根据权利要求12所述的方法,还包括基于确定与所述超声刀接合的所述组织被密封来终止所述超声能量。
14.根据权利要求1所述的方法,其中,限制所述超声刀的所述温度还包括防止对被配置成抵靠所述超声刀压缩组织的夹持臂的损坏。
15.根据权利要求1所述的方法,还包括设置所述预定频率参数变化阈值。
16.一种确定外科器械的超声刀温度的方法,所述外科器械具有被配置成由超声能量驱动的超声刀,所述方法包括:
(a)测量所述超声刀的第一超声频率;
(b)在测量所述第一超声频率之后测量所述超声刀的第二超声频率;
(c)计算所述超声刀的所测量的所述第一超声频率和所述第二超声频率之间的频率参数变化;以及
(d)使所述超声刀的所述频率参数变化与所述超声刀的所述温度相关联,从而确定所述超声刀的温度。
17.根据权利要求16所述的方法,其中,使所述频率参数变化相关联还包括:基于存储在所述外科器械的控制器上的刀温度与频率参数的多个预定数据相关性,将所述超声刀的所述频率参数变化与所述超声刀的所述温度相关联。
18.一种超声外科器械,包括:
(a)端部执行器,所述端部执行器被配置成从第一构型致动到第二构型,包括:
(i)超声刀,所述超声刀被配置成选择性地将超声能量施加到组织,和
(ii)钳口,所述钳口相对于所述超声刀可移动地定位并且被配置成在打开位置和闭合位置之间移动,其中处于所述打开位置的所述钳口和所述超声刀被配置成接收组织,并且其中处于所述闭合位置的所述钳口和所述超声刀被配置成夹持所述组织;
(b)轴组件,所述轴组件从所述端部执行器朝近侧突出;
(c)主体,所述主体从所述轴组件朝近侧突出,其中所述主体包括操作地连接到所述超声刀的能量输入部;和
(d)控制器,所述控制器操作地连接到所述超声刀并且被配置成测量所述超声刀的超声频率,其中所述控制器具有存储器,所述存储器包含多个预定数据相关性,所述多个预定数据相关性使所述超声刀的所测量的超声频率的变化与所述超声刀的刀温度相关联,其中所述控制器被配置成使所述预定的数据相关性与所述超声刀的所述刀温度相关联。
19.根据权利要求18所述的超声外科器械,其中,所述控制器还被配置成将所述刀温度限制到温度上限。
20.根据权利要求18所述的超声外科器械,其中,所述存储器还包含预定频率参数阈值,并且其中所述控制器被配置成调节所述超声能量的至少一个功率参数并且将所述超声刀的所测量的超声频率限制到所述预定频率参数阈值,用于将所述刀的所述温度限制到温度上限。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762509336P | 2017-05-22 | 2017-05-22 | |
US62/509,336 | 2017-05-22 | ||
US15/967,775 | 2018-05-01 | ||
US15/967,775 US11229474B2 (en) | 2017-05-22 | 2018-05-01 | Combination ultrasonic and electrosurgical instrument with adjustable energy modalities and method for limiting blade temperature |
PCT/US2018/033306 WO2018217550A1 (en) | 2017-05-22 | 2018-05-18 | Combination ultrasonic and electrosurgical instrument with adjustable energy modalities and method for limiting blade temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111031944A true CN111031944A (zh) | 2020-04-17 |
CN111031944B CN111031944B (zh) | 2023-11-17 |
Family
ID=64269673
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880033823.0A Active CN110662498B (zh) | 2017-05-22 | 2018-05-18 | 具有夹持臂位置输入的组合超声和电外科器械以及用于识别组织状态的方法 |
CN201880034247.1A Active CN110662503B (zh) | 2017-05-22 | 2018-05-18 | 用于在连续相中密封组织的组合式超声和电外科器械以及方法 |
CN201880033825.XA Active CN110662499B (zh) | 2017-05-22 | 2018-05-18 | 具有各种终止参数的组合超声和电外科器械以及用于密封组织的方法 |
CN201880034190.5A Active CN110662500B (zh) | 2017-05-22 | 2018-05-18 | 带有可调节的能量模式的组合超声和电外科器械 |
CN201880034192.4A Active CN110662501B (zh) | 2017-05-22 | 2018-05-18 | 组合式超声和电外科器械以及基于生产夹紧力的超声密封过程及相关方法 |
CN201880034248.6A Active CN111031944B (zh) | 2017-05-22 | 2018-05-18 | 超声外科器械 |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880033823.0A Active CN110662498B (zh) | 2017-05-22 | 2018-05-18 | 具有夹持臂位置输入的组合超声和电外科器械以及用于识别组织状态的方法 |
CN201880034247.1A Active CN110662503B (zh) | 2017-05-22 | 2018-05-18 | 用于在连续相中密封组织的组合式超声和电外科器械以及方法 |
CN201880033825.XA Active CN110662499B (zh) | 2017-05-22 | 2018-05-18 | 具有各种终止参数的组合超声和电外科器械以及用于密封组织的方法 |
CN201880034190.5A Active CN110662500B (zh) | 2017-05-22 | 2018-05-18 | 带有可调节的能量模式的组合超声和电外科器械 |
CN201880034192.4A Active CN110662501B (zh) | 2017-05-22 | 2018-05-18 | 组合式超声和电外科器械以及基于生产夹紧力的超声密封过程及相关方法 |
Country Status (7)
Country | Link |
---|---|
US (9) | US11266455B2 (zh) |
EP (6) | EP3634267B1 (zh) |
JP (8) | JP7159217B2 (zh) |
CN (6) | CN110662498B (zh) |
BR (6) | BR112019023459B1 (zh) |
MX (7) | MX2019013903A (zh) |
WO (6) | WO2018217547A1 (zh) |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11051866B2 (en) | 2017-05-22 | 2021-07-06 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument having ultrasonic waveguide with distal overmold member |
US11266455B2 (en) | 2017-05-22 | 2022-03-08 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument with a production clamp force based ultrasonic seal process and related methods |
US11534226B2 (en) * | 2017-09-22 | 2022-12-27 | Covidien Lp | Systems and methods for minimizing arcing of bipolar forceps |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
CN109646109B (zh) * | 2019-02-19 | 2021-04-13 | 深圳市世格赛思医疗科技有限公司 | 一种超声刀组织自适应切割止血控制方法及装置 |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
CN109998617A (zh) | 2019-04-29 | 2019-07-12 | 上海博洽医疗器械有限公司 | 多用途的腔镜外科器械 |
CN118648968A (zh) | 2019-05-09 | 2024-09-17 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | 外科发生器和方法 |
US12023085B2 (en) | 2019-08-29 | 2024-07-02 | Covidien Lp | Ultrasonic systems and methods with tissue resistance sensing |
GB2594438A (en) * | 2019-12-05 | 2021-11-03 | Creo Medical Ltd | Electrosurgical instrument, generator and apparatus |
US20210228262A1 (en) * | 2020-01-29 | 2021-07-29 | Covidien Lp | System and methods for identifying vessels within tissue |
US20210346083A1 (en) * | 2020-05-07 | 2021-11-11 | Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America | Electro-surgical device with stable jaw temperature |
CN112006719A (zh) * | 2020-08-31 | 2020-12-01 | 厚凯(北京)医疗科技有限公司 | 一种高频电刀 |
US11617599B2 (en) * | 2020-10-15 | 2023-04-04 | Covidien Lp | Ultrasonic surgical instrument |
US11998228B2 (en) | 2020-10-22 | 2024-06-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a carrier kart and reusable stage |
US12035935B2 (en) | 2020-10-22 | 2024-07-16 | Cilag Gmbh International | Surgical instrument and carrier kart supporting ultrasonic transducer |
US12016587B2 (en) * | 2020-10-22 | 2024-06-25 | Cilag Gmbh International | Carrier kart and jaw closure of an ultrasonic surgical instrument |
US11931059B2 (en) | 2020-10-22 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with a carrier kart and various communication cable arrangements |
US12096971B2 (en) * | 2020-12-29 | 2024-09-24 | Cilag Gmbh International | Electrosurgical instrument with electrical resistance monitor at rotary coupling |
US12011217B2 (en) | 2020-12-29 | 2024-06-18 | Cilag Gmbh International | Electrosurgical instrument with modular component contact monitoring |
US11992257B2 (en) | 2020-12-29 | 2024-05-28 | Cilag Gmbh International | Energized surgical instrument system with multi-generator output monitoring |
CN112716594B (zh) * | 2020-12-31 | 2022-08-12 | 杭州堃博生物科技有限公司 | 射频操作对象数据异常的保护方法、射频主机和存储介质 |
US20220265338A1 (en) * | 2021-02-22 | 2022-08-25 | Olympus Medical Systems Corp. | Apparatus and method for electrosurgery |
US20220265303A1 (en) * | 2021-02-25 | 2022-08-25 | Olympus Medical Systems Corp. | Medical device and method for controlling the same including discriminating end-of-cut conditions based on temperature |
WO2022187229A1 (en) * | 2021-03-02 | 2022-09-09 | Covidien Lp | Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality |
US20220409232A1 (en) * | 2021-06-24 | 2022-12-29 | Covidien Lp | Energy based surgical instruments and systems |
CN117715600A (zh) * | 2021-07-26 | 2024-03-15 | 奥林巴斯医疗株式会社 | 能量处置系统 |
CN114191041B (zh) * | 2021-12-09 | 2024-04-02 | 上海益超医疗器械有限公司 | 向外科器械输出驱动信号的方法、设备、装置及电子设备 |
CN114027937A (zh) * | 2021-12-24 | 2022-02-11 | 上海益超医疗器械有限公司 | 向外科器械输出驱动信号的设备 |
CN114831725B (zh) * | 2022-05-05 | 2024-01-26 | 以诺康医疗科技(苏州)有限公司 | 一种电外科发生器、电外科系统及其控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090036913A1 (en) * | 2007-07-31 | 2009-02-05 | Eitan Wiener | Surgical instruments |
CN102448395A (zh) * | 2009-04-17 | 2012-05-09 | 领域外科股份有限公司 | 感应加热的手术工具 |
CN104363844A (zh) * | 2012-04-09 | 2015-02-18 | 伊西康内外科公司 | 用于超声外科器械的切割和凝固组织的技术 |
CN204542303U (zh) * | 2015-01-28 | 2015-08-12 | 吴江麦道纺织有限公司 | 降低组织热损伤的超声外科器械 |
US20150257780A1 (en) * | 2007-07-31 | 2015-09-17 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
CN105902298A (zh) * | 2015-02-24 | 2016-08-31 | 柯惠有限合伙公司 | 具有冷却系统的超声手术器械 |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5322055B1 (en) | 1993-01-27 | 1997-10-14 | Ultracision Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
US5873873A (en) | 1997-10-10 | 1999-02-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp mechanism |
US6309400B2 (en) | 1998-06-29 | 2001-10-30 | Ethicon Endo-Surgery, Inc. | Curved ultrasonic blade having a trapezoidal cross section |
CA2276316C (en) | 1998-06-29 | 2008-02-12 | Ethicon Endo-Surgery, Inc. | Method of balancing asymmetric ultrasonic surgical blades |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6325811B1 (en) | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
JP4037582B2 (ja) * | 1999-12-02 | 2008-01-23 | オリンパス株式会社 | 電気手術装置及び電気手術装置の出力制御方法 |
US6423082B1 (en) | 2000-03-31 | 2002-07-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical blade with improved cutting and coagulation features |
US6500176B1 (en) | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
AU2002322374B2 (en) | 2001-06-29 | 2006-10-26 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7311709B2 (en) | 2001-10-22 | 2007-12-25 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7125409B2 (en) | 2001-10-22 | 2006-10-24 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
ATE540606T1 (de) | 2002-01-22 | 2012-01-15 | Surgrx Inc | Elektrochirurgisches instrument und anwendungsverfahren |
US7169146B2 (en) | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
WO2005052959A2 (en) | 2003-11-19 | 2005-06-09 | Surgrx, Inc. | Polymer compositions exhibiting a ptc property and method of fabrication |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7220951B2 (en) | 2004-04-19 | 2007-05-22 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US9675375B2 (en) * | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US8366727B2 (en) | 2006-06-01 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Tissue pad ultrasonic surgical instrument |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8058771B2 (en) * | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
EP3524189B1 (en) * | 2009-07-15 | 2020-12-09 | Ethicon LLC | Ultrasonic surgical instrument having clamp with electrodes |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9017326B2 (en) * | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8939974B2 (en) | 2009-10-09 | 2015-01-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9089327B2 (en) | 2010-09-24 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multi-phase trigger bias |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
US9545253B2 (en) | 2010-09-24 | 2017-01-17 | Ethicon Endo-Surgery, Llc | Surgical instrument with contained dual helix actuator assembly |
US9402682B2 (en) | 2010-09-24 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Articulation joint features for articulating surgical device |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9161803B2 (en) * | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US10729458B2 (en) * | 2011-03-30 | 2020-08-04 | Covidien Lp | Ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9226766B2 (en) * | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9788851B2 (en) * | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
US9681884B2 (en) * | 2012-05-31 | 2017-06-20 | Ethicon Endo-Surgery, Llc | Surgical instrument with stress sensor |
US20140135804A1 (en) * | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9572622B2 (en) | 2012-12-10 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical features for targeted hemostasis |
US9949785B2 (en) | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
US9750521B2 (en) | 2014-07-22 | 2017-09-05 | Ethicon Llc | Ultrasonic blade overmold |
US10194972B2 (en) | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10813684B2 (en) | 2015-03-30 | 2020-10-27 | Ethicon Llc | Control of cutting and sealing based on tissue mapped by segmented electrode |
US10617463B2 (en) | 2015-04-23 | 2020-04-14 | Covidien Lp | Systems and methods for controlling power in an electrosurgical generator |
US10034684B2 (en) * | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11266455B2 (en) | 2017-05-22 | 2022-03-08 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument with a production clamp force based ultrasonic seal process and related methods |
US11051866B2 (en) | 2017-05-22 | 2021-07-06 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument having ultrasonic waveguide with distal overmold member |
-
2018
- 2018-05-01 US US15/967,770 patent/US11266455B2/en active Active
- 2018-05-01 US US15/967,775 patent/US11229474B2/en active Active
- 2018-05-01 US US15/967,758 patent/US11229473B2/en active Active
- 2018-05-01 US US15/967,784 patent/US11259856B2/en active Active
- 2018-05-01 US US15/967,777 patent/US11229475B2/en active Active
- 2018-05-01 US US15/967,763 patent/US11278340B2/en active Active
- 2018-05-18 EP EP18729278.4A patent/EP3634267B1/en active Active
- 2018-05-18 CN CN201880033823.0A patent/CN110662498B/zh active Active
- 2018-05-18 CN CN201880034247.1A patent/CN110662503B/zh active Active
- 2018-05-18 MX MX2019013903A patent/MX2019013903A/es unknown
- 2018-05-18 CN CN201880033825.XA patent/CN110662499B/zh active Active
- 2018-05-18 CN CN201880034190.5A patent/CN110662500B/zh active Active
- 2018-05-18 BR BR112019023459-4A patent/BR112019023459B1/pt active IP Right Grant
- 2018-05-18 CN CN201880034192.4A patent/CN110662501B/zh active Active
- 2018-05-18 WO PCT/US2018/033301 patent/WO2018217547A1/en active Application Filing
- 2018-05-18 WO PCT/US2018/033309 patent/WO2018217551A1/en active Application Filing
- 2018-05-18 JP JP2019564427A patent/JP7159217B2/ja active Active
- 2018-05-18 MX MX2019013895A patent/MX2019013895A/es unknown
- 2018-05-18 WO PCT/US2018/033303 patent/WO2018217548A2/en active Application Filing
- 2018-05-18 WO PCT/US2018/033306 patent/WO2018217550A1/en active Application Filing
- 2018-05-18 BR BR112019023456-0A patent/BR112019023456B1/pt active IP Right Grant
- 2018-05-18 JP JP2019564405A patent/JP7463107B2/ja active Active
- 2018-05-18 JP JP2019564428A patent/JP2020520722A/ja active Pending
- 2018-05-18 BR BR112019024303-8A patent/BR112019024303B1/pt active IP Right Grant
- 2018-05-18 JP JP2019564410A patent/JP7278966B2/ja active Active
- 2018-05-18 BR BR112019024297-0A patent/BR112019024297B1/pt active IP Right Grant
- 2018-05-18 JP JP2019564437A patent/JP2020520725A/ja active Pending
- 2018-05-18 CN CN201880034248.6A patent/CN111031944B/zh active Active
- 2018-05-18 BR BR112019023653-8A patent/BR112019023653B1/pt active IP Right Grant
- 2018-05-18 MX MX2019013888A patent/MX2019013888A/es unknown
- 2018-05-18 BR BR112019024345-3A patent/BR112019024345B1/pt active IP Right Grant
- 2018-05-18 WO PCT/US2018/033305 patent/WO2018217549A1/en active Application Filing
- 2018-05-18 EP EP18731584.1A patent/EP3629953B1/en active Active
- 2018-05-18 JP JP2019564438A patent/JP7254717B2/ja active Active
- 2018-05-18 MX MX2019013902A patent/MX2019013902A/es unknown
- 2018-05-18 MX MX2019013877A patent/MX2019013877A/es unknown
- 2018-05-18 EP EP18731586.6A patent/EP3634270B1/en active Active
- 2018-05-18 MX MX2019013876A patent/MX2019013876A/es unknown
- 2018-05-18 WO PCT/US2018/033311 patent/WO2018217552A1/en active Application Filing
- 2018-05-18 EP EP18731585.8A patent/EP3634269B1/en active Active
- 2018-05-18 EP EP18731583.3A patent/EP3634268B1/en active Active
- 2018-05-18 EP EP18769823.8A patent/EP3629954B1/en active Active
-
2019
- 2019-11-21 MX MX2023012942A patent/MX2023012942A/es unknown
-
2022
- 2022-01-10 US US17/572,003 patent/US11737804B2/en active Active
- 2022-01-10 US US17/572,006 patent/US20220202466A1/en active Pending
-
2023
- 2023-01-06 JP JP2023001046A patent/JP7508604B2/ja active Active
- 2023-01-12 JP JP2023002955A patent/JP7500787B2/ja active Active
- 2023-07-11 US US18/350,329 patent/US20230346447A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090036913A1 (en) * | 2007-07-31 | 2009-02-05 | Eitan Wiener | Surgical instruments |
US20150257780A1 (en) * | 2007-07-31 | 2015-09-17 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
CN102448395A (zh) * | 2009-04-17 | 2012-05-09 | 领域外科股份有限公司 | 感应加热的手术工具 |
CN104363844A (zh) * | 2012-04-09 | 2015-02-18 | 伊西康内外科公司 | 用于超声外科器械的切割和凝固组织的技术 |
CN204542303U (zh) * | 2015-01-28 | 2015-08-12 | 吴江麦道纺织有限公司 | 降低组织热损伤的超声外科器械 |
CN105902298A (zh) * | 2015-02-24 | 2016-08-31 | 柯惠有限合伙公司 | 具有冷却系统的超声手术器械 |
Non-Patent Citations (1)
Title |
---|
CHRISTIAN KOCH 等: "Determination of temperature elevation in tissue during the application of the harmonic scalpel", ULTRASOUND IN MEDICINE & BIOLOGY, vol. 29, no. 2, pages 301 - 309 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111031944B (zh) | 超声外科器械 | |
US11134975B2 (en) | Apparatus and method to control operation of surgical instrument based on audible feedback |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |