CN111024789A - 一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法 - Google Patents

一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法 Download PDF

Info

Publication number
CN111024789A
CN111024789A CN202010020634.9A CN202010020634A CN111024789A CN 111024789 A CN111024789 A CN 111024789A CN 202010020634 A CN202010020634 A CN 202010020634A CN 111024789 A CN111024789 A CN 111024789A
Authority
CN
China
Prior art keywords
pedot
pss
mwcnt
electrochemical sensor
dichlorophen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010020634.9A
Other languages
English (en)
Other versions
CN111024789B (zh
Inventor
段学民
田青芸
卢丽敏
徐景坤
蒋丰兴
周卫强
胥荃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Science and Technology Normal University
Original Assignee
Jiangxi Science and Technology Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Science and Technology Normal University filed Critical Jiangxi Science and Technology Normal University
Priority to CN202010020634.9A priority Critical patent/CN111024789B/zh
Publication of CN111024789A publication Critical patent/CN111024789A/zh
Application granted granted Critical
Publication of CN111024789B publication Critical patent/CN111024789B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种高灵敏度检测2,4‑二氯酚的电化学传感器及其制备方法,属于电化学传感器领域。上述所述电化学传感器的电极表面涂有聚乙撑二氧噻吩‑聚(苯乙烯磺酸盐)(PEDOT:PSS)与多壁碳纳米管(MWCNT)复合气凝胶。本发明的2,4‑二氯酚电化学传感器,不仅能够成功检测2,4‑二氯酚,而且还具有灵敏度高、检测快速、稳定性好等特点,可用于2,4‑二氯酚浓度以及真样中2,4‑二氯酚的含量测定;本发明电化学传感器的制备方法,其制备成本低廉、工艺简单、操作简易。

Description

一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法
技术领域
本发明涉及电化学传感器技术领域,尤其涉及一种高灵敏度检测2,4- 二氯酚的电化学传感器及检测方法。
背景技术
近年来,酚类物质被广泛的应用在众多领域,2,4-二氯酚常被用作农药、石化产品、药品、除草剂等,造成严重的环境残留。2,4-二氯酚具有高毒性、致癌性和生物蓄积性,已被许多国家列为环境和人类健康的重大潜在威胁。因此,实现对2,4-二氯酚的灵敏检测对环境安全和公众健康有重要意义。传统检测2,4-二氯酚的方法为高效液相色谱法(HPLC)和气相色谱法(GC),所使用的仪器复杂且笨重,运行成本比较高,样品制备过程复杂。
电化学传感器可实现经济、实用、高效、特异、灵敏、精确、快速、简便的检测与分析。目前已经有关对2,4-二氯酚的电化学检测的研究, Zhang等(Jin Zhanga,JianpingLei,Huangxian Jua,Chaoying Wang, Analytica Chimica Acta 786(2013)16-21)构建盐酸血红素修饰分子印迹电极,成功用于2,4-二氯酚的电化学检测,该传感器的线性响应范围为 5.0-100μM,检测限为1.6μM;Dong等(Dong Sheying,Suo Gaochao,Li Nan,ChenZhen,Peng Lei,Fu Yile,Yang Qin,Huang Tinglin,Sensors and Actuators B 222(2016)972-979)利用1,3,5-苯三甲酸铜(Cu3(BTC)2)的金属有机框架材料修饰碳糊电极,实现对2,4-二氯酚的有效检测。线性范围为0.04μM-1μM,检测限为9nM。然而,这些所报道的电极制备方法较为复杂,并且在检测2,4-二氯酚的灵敏度或线性范围方面有所欠缺。
因此,提供一种省时高效、价格低廉的、制备简单、尤其检测灵敏度高的2,4-二氯酚浓度电化学传感器是非常有价值的。
发明内容
本发明要解决的技术问题是提供一种检测灵敏度高、实用高效准确且价格低廉的、尤其是能够进行2,4-二氯酚高灵敏度检测的电化学传感器及检测方法。
为解决上述技术问题,本发明提供技术方案如下:
一方面,本发明提供一种高灵敏度检测2,4-二氯酚的电化学传感器,所述电化学传感器的电极修饰材料为将多壁碳纳米管(MWCNT)分散液注射于PEDOT:PSS水凝胶前驱体后,经冷冻干燥法制备得到的 PEDOT:PSS/MWCNT气凝胶。
进一步的,所述PEDOT:PSS/MWCNT气凝胶制备方法包括:
1)将PEDOT:PSS分散液和H2SO4水溶液混合,超声5-10分钟;
2)将上述混合溶液采用水热法,于聚四氟乙烯不锈钢高压釜中90℃加热3h,即得到所述PEDOT:PSS水凝胶前驱体;
3)将MWCNT分散液注射于凝胶状的PEDOT:PSS水凝胶前驱体中,静置5-10分钟;
4)将得到的PEDOT:PSS/MWCNT水凝胶前驱体于冷冻干燥机中干燥 24h,得到所述PEDOT:PSS/MWCNT气凝胶复合材料。
进一步的,所述步骤1)中,PEDOT:PSS分散液为固含量为1.3%, PEDOT:PSS质量比为1:2.5的分散液,用量为4mL。
进一步的,硫酸水溶液浓度为0.5mol/L,用量为1mL。
进一步的,所述步骤3)中,与每4mL PEDOT:PSS分散液形成水凝胶前驱体,MWCNT浓度为1mg/mL,用量为0.5-4mL。
进一步的,所述2,4-二氯酚的检测线性范围为0.008μM-15μM;最低检测限为0.003μM。
另一方面,本发明还提供一种上述高灵敏度检测2,4-二氯酚的电化学传感器的制备方法,将PEDOT:PSS/MWCNT气凝胶复合材料分散在水中,制备成浓度为1-2mg/L的分散液;然后,取5-10μL上述 PEDOT:PSS/MWCNT分散液滴涂到打磨干净的玻碳电极表面,60℃干燥,制得PEDOT:PSS/MWCNT气凝胶复合电极。
再一方面,本发明还提供一种上述高灵敏度检测2,4-二氯酚的电化学传感器用于检测2,4-二氯酚的使用方法,将待检测样品预处理后所得溶液通过标准加入法与0.2M的磷酸盐缓冲液等体积混合,利用所述电化学传感器对其2,4-二氯酚进行检测分析。
通过将不同浓度的2,4-二氯酚溶液分别加入pH为5.5的磷酸盐缓冲液中,利用PEDOT:PSS/MWCNT气凝胶电极结合差分脉冲伏安法对2,4- 二氯酚进行测定,得到线性关系。
优选地,所述电化学传感器还包括用于检测2,4-二氯酚的电解质溶液,所述电解质溶液为pH 5.5磷酸二氢钠-磷酸氢二钠缓冲溶液。
与现有技术相比,本发明的有益效果为:
1)本发明的2,4-二氯酚电化学传感器,不仅能够成功检测2,4-二氯酚,而且还具有灵敏度高、稳定性高、检测线性范围宽等特点,所制备的 PEDOT:PSS/MWCNT气凝胶修饰电极可用于2,4-二氯酚浓度以及真样中2,4-二氯酚的含量测定;
2)本发明电化学传感器的制备方法,其制备成本低廉、工艺简单、操作简易;检测线性范围为0.008μM-15μM;最低检测限可达0.003μM。
附图说明
图1为本发明实施例1制备的PEDOT:PSS/MWCNT气凝胶材料制备流程图;
图2为本发明实施例1制备的PEDOT:PSS/MWCNT气凝胶材料扫描电镜(SEM)图;
图3为本发明实施例1制备的PEDOT:PSS/MWCNT气凝胶材料透射电子显微镜(TEM)图;
图4为本发明实施例1制备的PEDOT:PSS/MWCNT气凝胶材料修饰的玻碳电极检测2,4-二氯酚的线性图;
图5为本发明实施例1制备的PEDOT:PSS/MWCNT气凝胶材料修饰的玻碳电极检测2,4-二氯酚的氧化峰电流与2,4-二氯酚浓度线性关系图;
图6为本发明实施例2制备的PEDOT:PSS/MWCNT气凝胶材料修饰的玻碳电极(c)与对比例1制备的MWCNT修饰的玻碳电极(a)和 PEDOT:PSS气凝胶修饰的玻碳电极(b)在铁氰化钾溶液中的循环伏安法电化学响应图。
具体实施方式
为使本发明的实施例需要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例和附图进行详细描述。但本发明绝非限于这些例子。以下所述仅为本发明较好的实施例,仅仅用以解释本发明,并不能因此而理解为本发明专利范围的限制。应当指出的是,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。因此,本发明专利的保护范围应以所附权利要求为准。
实施例1
一种高灵敏度检测2,4-二氯酚的电化学传感器及其制备方法:
PEDOT:PSS/MWCNT气凝胶制备方法包括如下步骤:1)将4mL PEDOT:PSS分散液和1mL H2SO4水溶液(1mg/L)混合,超声5-10分钟; 2)将上述混合溶液采用水热法,于聚四氟乙烯不锈钢高压釜中90℃加热 3h,得到所述PEDOT:PSS水凝胶前驱体;3)将3mL MWCNT分散液注射于凝胶状的PEDOT:PSS水凝胶前驱体中,静置5-10分钟;4)将得到的PEDOT:PSS/MWCNT水凝胶前驱体于冷冻干燥机中干燥24h,得到所述PEDOT:PSS/MWCNT气凝胶复合材料。
取5μL上述PEDOT:PSS/MWCNT气凝胶复合材料(1mg/L)滴涂到打磨干净的玻碳电极表面,60℃干燥,制得PEDOT:PSS/MWCNT气凝胶复合电极。
本发明制备的PEDOT:PSS/MWCNT气凝胶合成体系如图1所示,由 PEDOT:PSS水分散液经水热法制备得到PEDOT:PSS水凝胶前驱体,通过向PEDOT:PSS水凝胶前驱体中注射MWCNT悬浮液与冷冻干燥,得到MWCNT均匀依附分散于PEDOT:PSS气凝胶的复合材料。
本发明制备的PEDOT:PSS/MWCNT气凝胶修饰电极的扫描电子显微镜(SEM)图如图2所示,气凝胶表面显示均匀分散的二维管状结构 MWCNT,表明复合材料的成功制备。
本发明制备的PEDOT:PSS/MWCNT气凝胶的透射电子显微镜(TEM) 图如图3所示,表明在PEDOT:PSS气凝胶中分散有MWCNT。
2,4-二氯酚的电化学测定:不同浓度的2,4-二氯酚溶液分别加入pH为 5.5的磷酸盐缓冲液中,利用PEDOT:PSS/MWCNT气凝胶电极结合差分脉冲伏安法对2,4-二氯酚进行测定,如图4与图5所示,该复合材料修饰电极对2,4-二氯酚具有良好的线形关系(R2=0.996),且具有较宽的线性范围 (0.008μM-15μM)和较高的灵敏度和低检测限(0.003μM),充分表明该新型传感电极能够成功检测未知浓度的2,4-二氯酚。
真样中2,4-二氯酚浓度的检测分析:自来水通过标准加入法与0.2M 的磷酸盐缓冲液等体积混合,然后加入0.1μM、1μM、10μM浓度的2,4- 二氯酚,利用PEDOT:PSS/MWCNT气凝胶修饰电极对其进行检测分析,结果表明0.096μM、0.989μM、10.213μM的2,4-二氯酚存在于检测溶液中,其回收率在96.0%到102.13%之间,表明构建的传感器用于2,4-二氯酚实际样品的检测分析是可行的。
对比例1
PEDOT:PSS气凝胶制备方法包括如下步骤:1)将4mL PEDOT:PSS 分散液和1mLH2SO4水溶液(0.5mol/L)混合,超声5-10分钟;2)将上述混合溶液采用水热法,于聚四氟乙烯不锈钢高压釜中90℃加热3h,得到所述PEDOT:PSS水凝胶前驱体;3)将得到的PEDOT:PSS水凝胶前驱体于冷冻干燥机中干燥24h,得到PEDOT:PSS气凝胶材料。
取5μL PEDOT:PSS气凝胶材料(1mg/L)与MWCNT悬浮液(1mg/L),分别滴涂到打磨干净的玻碳电极表面,60℃干燥,制得PEDOT:PSS气凝胶修饰电极与MWCNT修饰电极。与PEDOT:PSS/MWCNT气凝胶修饰电极在铁氰化钾中的电化学行为进行研究如下。
铁氰化钾中的电化学行为分析:在含有5mM铁氰化钾(K3Fe(CN)6) 与亚铁氰化钾(K4Fe(CN)6)的0.1M氯化钾(KCl)溶液中,实施例1制得的PEDOT:PSS/MWCNT气凝胶修饰电极与对比例1制得的 PEDOT:PSS气凝胶修饰电极和MWCNT修饰电极结合循环伏安法对其电化学行为进行比较。如图6所示,在所有的CV曲线中,都观察到了一对可逆氧化还原峰,对应于[Fe(CN)6]3-/4-离子的氧化还原。其中, PEDOT:PSS/MWCNT气凝胶修饰电极相较于MWCNT修饰电极有更高的氧化还原峰电流。PEDOT:PSS/MWCNT气凝胶修饰电极相较于 PEDOT:PSS气凝胶修饰电极有更小的峰间距。上述结果表明经 PEDOT:PSS/MWCNT气凝胶复合材料具有更优的电化学可逆性与更快的电子转移效率,结合了单一材料的优点,PEDOT:PSS/MWCNT气凝胶修饰电极电化学性能得到提升。
本发明在制备PEDOT:PSS/MWCNT气凝胶复合材料修饰电极时,并不局限于实施例1中原材料的取量,使用3-5mL PEDOT:PSS分散液和 0.5-4mL的MWCNT混合制备PEDOT:PSS/MWCNT气凝胶复合材料修饰电极时,均具有较高的检测灵敏度,本发明不再一一列举。
综上可知,本发明的2,4-二氯酚电化学传感器,制备成本低廉、工艺简单、操作简易,且可用于2,4-二氯酚浓度以及真样中2,4-二氯酚的含量测定。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,所述电化学传感器的电极修饰材料为将多壁碳纳米管(MWCNT)分散液注射于PEDOT∶PSS水凝胶前驱体后,经冷冻干燥法制备得到的PEDOT∶PSS/MWCNT气凝胶。
2.根据权利要求1所述的高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,所述PEDOT∶PSS/MWCNT气凝胶制备方法包括:
1)将PEDOT∶PSS分散液和H2SO4水溶液混合,超声5-10分钟;
2)将上述混合溶液采用水热法,于聚四氟乙烯不锈钢高压釜中90℃加热3h,即得到所述PEDOT∶PSS水凝胶前驱体;
3)将MWCNT分散液注射于凝胶状的PEDOT∶PSS水凝胶前驱体中,静置5-10分钟;
4)将得到的PEDOT∶PSS/MWCNT水凝胶前驱体于冷冻干燥机中干燥24h,得到所述PEDOT∶PSS/MWCNT气凝胶复合材料。
3.根据权利要求2所述的高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,所述步骤1)中,PEDOT∶PSS分散液为固含量为1.3%,PEDOT∶PSS质量比为1∶2.5的分散液,用量为4mL。
4.根据权利要求3所述的高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,硫酸水溶液浓度为0.5mol/L,用量为1mL。
5.根据权利要求2所述的高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,所述步骤3)中,与每4mL PEDOT∶PSS分散液形成水凝胶前驱体,MWCNT浓度为1mg/mL,用量为0.5-4mL。
6.根据权利要求1-5任一所述的高灵敏度检测2,4-二氯酚的电化学传感器,其特征在于,所述电化学传感器的2,4-二氯酚的检测线性范围为0.008μM-15μM;最低检测限为0.003μM 。
7.一种权利要求1-6任一所述的高灵敏度检测2,4-二氯酚的电化学传感器的制备方法,其特征在于,将PEDOT∶PSS/MWCNT气凝胶复合材料分散在水中,制备成浓度为1-2mg/L的分散液;然后,取5-10μL上述PEDOT∶PSS/MWCNT分散液滴涂到打磨干净的玻碳电极表面,60℃干燥,制得PEDOT∶PSS/MWCNT气凝胶复合电极。
8.一种权利要求1-6任一所述的高灵敏度检测2,4-二氯酚的电化学传感器的检测方法,其特征在于,将待检测样品预处理后所得溶液通过标准加入法与0.2M的磷酸盐缓冲液等体积混合,利用所述电化学传感器对其2,4-二-氯酚进行检测分析。
CN202010020634.9A 2020-01-13 2020-01-13 一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法 Expired - Fee Related CN111024789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010020634.9A CN111024789B (zh) 2020-01-13 2020-01-13 一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010020634.9A CN111024789B (zh) 2020-01-13 2020-01-13 一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法

Publications (2)

Publication Number Publication Date
CN111024789A true CN111024789A (zh) 2020-04-17
CN111024789B CN111024789B (zh) 2022-06-03

Family

ID=70202689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010020634.9A Expired - Fee Related CN111024789B (zh) 2020-01-13 2020-01-13 一种高灵敏度检测2,4-二氯酚的电化学传感器及其检测方法

Country Status (1)

Country Link
CN (1) CN111024789B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529100A (zh) * 2013-10-10 2014-01-22 江西科技师范大学 高水稳定性导电聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸复合材料电极的制备方法
CN104076074A (zh) * 2014-07-23 2014-10-01 江西农业大学 快速选择性检测厚朴酚电化学传感器的制备方法
CN104977337A (zh) * 2014-04-09 2015-10-14 南京理工大学 对过氧化氢和多酚类化合物高灵敏度检测的生物传感器、制备及应用
CN106442666A (zh) * 2016-08-11 2017-02-22 青岛科技大学 离子液体功能化氮化碳纳米片修饰电极及其制备和检测氯酚的应用
CN108026571A (zh) * 2015-07-08 2018-05-11 爱丁堡大学董事会 生物传感器
CN109870493A (zh) * 2019-03-20 2019-06-11 江西科技师范大学 一种柔性薄膜型检测叔丁基对苯二酚的电化学传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529100A (zh) * 2013-10-10 2014-01-22 江西科技师范大学 高水稳定性导电聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸复合材料电极的制备方法
CN104977337A (zh) * 2014-04-09 2015-10-14 南京理工大学 对过氧化氢和多酚类化合物高灵敏度检测的生物传感器、制备及应用
CN104076074A (zh) * 2014-07-23 2014-10-01 江西农业大学 快速选择性检测厚朴酚电化学传感器的制备方法
CN108026571A (zh) * 2015-07-08 2018-05-11 爱丁堡大学董事会 生物传感器
CN106442666A (zh) * 2016-08-11 2017-02-22 青岛科技大学 离子液体功能化氮化碳纳米片修饰电极及其制备和检测氯酚的应用
CN109870493A (zh) * 2019-03-20 2019-06-11 江西科技师范大学 一种柔性薄膜型检测叔丁基对苯二酚的电化学传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKHILA K. JAYARAM 等: "3D Hybrid Scaffolds Based on PEDOT_PSS_MWCNT Composites", 《FRONTIERS IN CHEMISTRY》 *
NEGUSSIE NEGASH 等: "Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode", 《INTERNATIONAL SCHOLARLY RESEARCH NOTICES》 *
SHEYING DONG 等: "A simple strategy to fabricate high sensitive 2,4-dichlorophenolelectrochemical sensor based on metal organic framework Cu3(BTC)2", 《SENSORS AND ACTUATORS B》 *
XIJING SUN 等: "Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials", 《SCIENCE CHINA MATERIALS》 *

Also Published As

Publication number Publication date
CN111024789B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
Raril et al. A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode
Zhang et al. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of L-tryptophan
Dai et al. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd (II) and Pb (II)
Feng et al. New voltammetric method for determination of tyrosine in foodstuffs using an oxygen-functionalized multi-walled carbon nanotubes modified acetylene black paste electrode
Zhao et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode
Pan et al. Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon
Buledi et al. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor
Pan et al. A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)− nitrogen-doped graphene nanoribbons− ionic liquid composite film
Kilele et al. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@ CoFe2O4NPs@ MWCNTs nanocomposite
Fang et al. Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate
Zhang et al. Electrochemical behavior of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode
Lin et al. Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes
Saghatforoush et al. Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids
Liu et al. Simultaneous determination of adenine and guanine utilizing PbO2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode
Dalkiran et al. Poly (safranine T)-deep eutectic solvent/copper oxide nanoparticle-carbon nanotube nanocomposite modified electrode and its application to the simultaneous determination of hydroquinone and catechol
Li et al. Determination of carbendazim with multiwalled carbon nanotubes-polymeric methyl red film modified electrode
Li et al. Electrocatalytic oxidation and the simultaneous determination of guanine and adenine on (2, 6-pyridinedicarboxylic acid)/graphene composite film modified electrode
Zheng et al. Selective and simultaneous determination of hydroquinone and catechol by using a nitrogen-doped bagasse activated carbon modified electrode
Valenga et al. Development and validation of voltammetric method for determination of amoxicillin in river water
Ensafi et al. Simultaneous detection of hydroxylamine and phenol using p-aminophenol-modified carbon nanotube paste electrode
Song et al. Electrochemical sensor based on platinum nanoparticles modified graphite-like carbon nitride for detection of phenol
Javar et al. Development of an electrochemical sensor based on Ce3+ and CuO for the determination of amaranth in soft drinks
Li et al. Direct electrochemical detection of Cu (Ⅱ) ions in juice and tea beverage samples using MWCNTs-BMIMPF6-Nafion modified GCE electrodes
Atta et al. An innovative design of hydrazine hydrate electrochemical sensor based on decoration of crown ether/Nafion/carbon nanotubes composite with gold nanoparticles
Sun et al. Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220603