CN111019356B - 压力敏感型多孔导电橡胶及其制备方法 - Google Patents

压力敏感型多孔导电橡胶及其制备方法 Download PDF

Info

Publication number
CN111019356B
CN111019356B CN201911328130.7A CN201911328130A CN111019356B CN 111019356 B CN111019356 B CN 111019356B CN 201911328130 A CN201911328130 A CN 201911328130A CN 111019356 B CN111019356 B CN 111019356B
Authority
CN
China
Prior art keywords
pressure
weight
parts
conductive rubber
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911328130.7A
Other languages
English (en)
Other versions
CN111019356A (zh
Inventor
赵妍
李秉洋
王鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center
China Academy of Space Technology CAST
Original Assignee
Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center, China Academy of Space Technology CAST filed Critical Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center
Priority to CN201911328130.7A priority Critical patent/CN111019356B/zh
Publication of CN111019356A publication Critical patent/CN111019356A/zh
Application granted granted Critical
Publication of CN111019356B publication Critical patent/CN111019356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0042Use of organic additives containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种压力敏感型多孔导电橡胶的制备方法,包括如下步骤:在真空搅拌机内加入半成品胶A组分100重量份,然后分批加入抑制剂0.001~0.0015重量份、硫化剂B组分10重量份、交联剂3~8重量份、纳米填料、白炭黑25~40重量份、结构控制剂2.5~5重量份、导电填料100~180重量份,在真空环境下搅拌2h以上,使得各个组分均匀混合;然后将催化剂0.007~0.01重量份、增塑剂8~12重量份分批加入胶料内,在真空搅拌机内混合30min以上;然后进行预硫化、超临界发泡、硫化。本发明解决了现有技术中压力敏感导电橡胶材料泡孔尺寸和分布不均,导热性、稳定性、力学性能、恢复性均有待提高等问题。

Description

压力敏感型多孔导电橡胶及其制备方法
技术领域
本发明涉及高分子材料技术领域,特别涉及一种压力敏感型多孔导电橡胶及其制备方法。
背景技术
导电橡胶是一种固化或干燥后具有一定导电性能的胶黏剂,它通常以基体树脂和导电填料即导电粒子为主要组成成分,通过基体树脂的粘接作用把导电粒子结合在一起,形成导电通路,实现被粘材料的导电连接。导电橡胶属于复合型导电高分子材料的一种,高分子材料本身不具有导电性,但在加工成型时通过加入导电填料,如炭黑、金属粉末箔等,利用分散复合、层基复合、表面复合等方法,使制品具有导电性。
导电橡胶不仅具有橡胶的高弹性、易加工成型、重量轻、体积小等特点,还有与金属相似的导电性能,以及高分子材料的许多优异特性。随着电子工业材料的迅猛发展,导电高分子材料应用日益广泛,是抗静电产品和抗电磁屏蔽装置的良好功能复合材料。除此之外,目前利用导电橡胶的力敏或温敏效应开发出了各种电子键用材料、触感元件、温敏和力敏传感器材料。使导电橡胶的应用范围不断扩大。
压力敏感导电橡胶是一种特殊的导电橡胶,同样是在绝缘的高分子材料中加入导电材料形成的。这种复合材料不仅具有与人的皮肤类似的柔软粘弹性,而且材料的导电性是随着外力的变化而变化的,具有一定的压力敏感特性,也就是说这种压力敏感导电橡胶的电阻值与外力之间存在一定的函数关系。可根据电阻阻值的变化来检测外加的触觉力信息。这样就可满足具有类似于人体皮肤那样弹性的触觉敏感功能材料的需求。已有日本东京电气通信大学Sh imojo,M等人利用缝合了导线的压力敏感导电橡胶制备新型的一维触觉传感器;日本的科学家Yoj i Yamada等在硅橡胶内埋入柔性光纤研究多维触觉传感器及其结构,利用硅橡胶变形产生的压力作用于传感器单元上,达到测量多维力的目的;合肥智能机械研究所提出一种基于导电橡胶的三维力触觉传感器,利用导电橡胶做覆层材料,内部布有触觉传感阵列。目前所研究的多维触觉传感器仍存在着诸多的问题,如造价昂贵、信号处理复杂、柔性差、不适合大面积测量、制作工艺要求高等诸多问题,研究者仍在积极寻找新材料,新原理,设计传感器,力图设计出高性能,高柔性,高可靠性的传感器,使触觉传感器尽快走入实用阶段
压力敏感导电橡胶作为一种新型的高分子导电复合材料,以其优良的特性和潜在的应用价值正受到广泛的关注和研究,已有中国专利申请号为201610351838.4、发明名称为“具有压敏特性的多孔导电高分子材料的制备方法及其应用”,具体公开了一种具有压敏特性的多孔导电高分子复合材料的制备方法,包括如下步骤:a)制备悬浮液;b)单向冷冻c)低温低压干燥。本发明制备的具有压敏特性的多孔导电高分子复合材料具有优异的稳定性和回复性,可用于制备轻质高分子基应变传感器。但现有技术中制备的压力敏感导电橡胶材料仍然存在泡孔尺寸不均、分布不均;工艺复杂的问题;以及导热性、稳定性、力学性能、恢复性等均有待进一步提高;并且高填料率得到了高导电率但却具有低阻尼性的问题有待解决。
发明内容
本发明的目的在于提供一种压力敏感型多孔导电橡胶及其制备方法,解决现有技术中压力敏感导电橡胶材料泡孔尺寸和分布不均,导热性、稳定性、力学性能、恢复性均有待提高,以及现有制备工艺复杂等问题。
本发明的技术方案如下:一种压力敏感型多孔导电橡胶的制备方法,包括如下步骤:
(1)在真空搅拌机内加入半成品胶A组分100重量份,然后分批加入抑制剂0.001~0.0015重量份、硫化剂B组分10重量份、交联剂3~8重量份、纳米填料、白炭黑25~40重量份、结构控制剂2.5~5重量份、导电填料100~180重量份,在真空环境下搅拌2h以上,使得各个组分均匀混合;然后将催化剂0.007~0.01重量份、增塑剂8~12重量份分批加入胶料内,在真空搅拌机内混合30min以上;
(2)将步骤(1)混合均匀后的胶料进行预硫化;
(3)将步骤(2)的样品放入高压反应釜中进行超临界发泡;
(4)将步骤(3)获得的样品进行硫化,去除小分子。
优选的,所述步骤(2)中的预硫化为:将胶料放入垫有PET膜的模具内,放入平板硫化机中,控制温度为110~130℃、压力为10~20MPa,持续10~15min。
优选的,所述步骤(3)超临界发泡为:升温至所需温度160℃,待温度稳定后,充入低压CO2将容器中的空气置换干净,随后增压至预设压力值,饱和溶胀0.5~2h后瞬间泄压,取出样品,在室温条件下静置20min。
优选的,所述步骤(4)中的硫化为:将步骤(3)的发泡样品放入平板硫化机中,将温度控制在165~170℃、压力为10~20MPa,持续5~15min。
优选的,所述半成品胶A组分为乙烯基聚二甲基硅氧烷;所述硫化剂B组分为甲基含氢硅氧烷。
优选的,所述抑制剂为炔醇、所述交联剂为甲基硅烷、所述白炭黑为气相白炭黑、所述结构控制剂为羟基硅油、所述导电填料为碳纳米管或银包玻璃纤维或银包铜颗粒、所述催化剂为铂金催化剂、增塑剂为1,2-丙二醇。
本发明的另一个技术方案如下:一种压力敏感型多孔导电橡胶,由上述制备方法制得。
本发明还提供一个技术方案:压力敏感型多孔导电橡胶的应用,用于制备柔性压力传感器、压敏元件及压力测试用设备。
本发明提供的压力敏感型多孔导电橡胶的制备方法,将各组分材料分批加入到真空搅拌机内混合,特定条件处理后混合均匀,经预硫化和硫化后得到压力敏感型多孔导电橡胶材料。本发明方法工艺流程简单、易操作,原料成本低、易获得,本方法制得的压力敏感型多孔导电橡胶材料具有可压缩性以及良好的回弹性;材料孔径分布以及孔尺寸具有可调性;质量轻;压力传感灵敏度高,响应时间短,可达10ms。
附图说明
图1为本发明实施例1和2的SEM图;
图2为本发明实施例1和2的压缩性能测试图;
图3为本发明实施例1的负压阻性测试图;
图4为本发明。
具体实施方式
下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。以下实施例中对所有原料的来源并没有特殊的限制,所用的原料均为市售。
本发明提供一种压力敏感型多孔导电橡胶的制备方法,包括如下步骤:
(1)在真空搅拌机内加入半成品胶A组分100重量份,然后分批加入抑制剂0.001~0.0015重量份、硫化剂B组分10重量份、交联剂3~8重量份、纳米填料、白炭黑25~40重量份、结构控制剂2.5~5重量份、导电填料100~180重量份,在真空环境下搅拌2h以上,使得各个组分均匀混合;然后将催化剂0.007~0.01重量份、增塑剂8~12重量份分批加入胶料内,在真空搅拌机内混合30min以上,提高胶料的可塑性;
(2)将步骤(1)混合均匀后的胶料进行预硫化:将胶料放入垫有PET膜的模具内,放入平板硫化机中,控制温度为110~130℃、压力为10~20MPa,持续10~15min;
(3)将步骤(2)的样品放入高压反应釜中进行超临界发泡:升温至所需温度160℃,待温度稳定后,充入低压CO2将容器中的空气置换干净,随后增压至预设压力值,饱和溶胀0.5~2h后瞬间泄压,取出样品,在室温条件下静置20min,使得胶料形成均匀致密的孔洞,并促进结构控制剂与导电填料之间发生更有效的作用,保证导电性能的稳定性;
(4)将步骤(3)获得的样品进行硫化:将步骤(3)的发泡样品放入平板硫化机中,将温度控制在165~170℃、压力为10~20MPa,持续5~15min,除去橡胶内的其他未反应完的小分子物质,以保证导电橡胶的力学稳定性以及使用寿命。
实施例1
本实施例提供一种压力敏感型多孔导电橡胶的制备方法,包括如下步骤:
(1)基胶与填料混合:
按下表1的组分和用量,在真空搅拌机内加入半成品胶A组分,然后分批加入抑制剂、硫化机B组分、交联剂、纳米填料、白炭黑和结构控制剂、导电填料,在真空环境下搅拌2h以上,使得各个组分均匀混合;将催化剂、增塑剂分批加入胶料内,在真空搅拌机内混合30min以上,提高胶料的可塑性。
表1:本实施例1的组分列表
Figure BDA0002328903780000051
Figure BDA0002328903780000061
(2)预硫化:
将混合均匀的胶料放入垫有PET膜的模具内,放入平板硫化机,控制温度、压力及时间(120℃,10MPa,15min)进行预硫化。
(3)超临界发泡:
将样品放入高压反应釜中,升温至所需温度(160℃),待温度稳定后,充入低压CO2将容器中的空气置换干净。随后增压至预设压力值,饱和溶胀0.5~2h后瞬间泄压。取出样品,在室温条件下静置20min。
(4)硫化:
将发泡样品在平板硫化机中(170℃,20MPa),硫化8min。
实施例2
本实施例提供一种压力敏感型多孔导电橡胶的制备方法,包括如下步骤:
(1)基胶与填料混合:
按下表2的组分及用量,在真空搅拌机内加入半成品胶A组分,然后分批加入抑制剂、硫化机B组分、交联剂、纳米填料、白炭黑和结构控制剂、导电填料,在真空环境下搅拌2h以上,使得各个组分均匀混合。将催化剂、增塑剂分批加入胶料内,在真空搅拌机内混合30min以上,提高胶料的可塑性。
表2:本实施例2的组分列表
Figure BDA0002328903780000071
(2)预硫化:
将混合均匀的胶料放入垫有PET膜的模具内,放入平板硫化机,控制温度、压力及时间(120℃,10MPa,10min)进行预硫化。
(3)超临界发泡:
将样品放入高压反应釜中,升温至所需温度(160℃),待温度稳定后,充入低压CO2将容器中的空气置换干净。随后增压至预设压力值,饱和溶胀0.5~2h后瞬间泄压。取出样品,在室温条件下静置20min。
(4)硫化:
将发泡样品在平板硫化机中(170℃,20MPa),硫化8min。
对本发明实施例1和实施例2制得的样品进行下述测试:
(1)微观形貌:
硅橡胶泡沫样品首先在液氮中冷冻淬断,并将断面喷金,采用日本日立公司SU8010型高分辨场发射扫描电镜对多孔硅橡胶材料进行表征。参见图1,示出了实施例1及实施例2的SEM图,图中可见实施例1样品的泡孔尺寸较实施例2样品的泡孔尺寸小。实施例1中控制预硫化时间较实施例2长,使得实施例1样品基胶强度增大,泡孔成核和泡孔生长都受到限制;实施例2预硫化时间较短,其基胶强度相对实施例1的样品较弱,难以固定泡孔结构,泡孔容易合并或塌陷。从而通过控制预硫化时间来调节材料孔径分布以及孔尺寸。
(2)力学性能:
测试设备为电子万用试验机(美特斯/CMT6103),力学性能中的拉伸强度和断裂伸长率的根据GB/T528-2009将导电橡胶制成哑铃状,试样狭窄平行部位长约35mm,宽6mm,试样总长115mm,厚度为2mm。测试多孔硅橡胶材料的压缩变形,样品为圆柱形,高约为12mm,直径28mm。测试结果如图2和下表3所示:
表3:实施例1和实施例2的拉伸性能和断裂伸长率
样品 拉伸性能 断裂伸长率
实施例1 3.6 370%
实施例2 2.5 210%
由表1和图2可知,本发明实施例1和实施例2的样品拉伸性能、断裂伸长率均明显高于现有技术的产品,其中实施例1的拉伸性能、断裂伸长率以及压缩性能还要高于实施例2,这也是通过预硫化时间控制的长短不同而使得实施例1的基体强度提高,进而拉伸强度和断裂伸长率逐渐增加,可见本发明中预硫化过程是影响泡沫拉伸性能的重要因素,通过调整预硫化条件来调节聚合物基体强度及多孔泡沫的拉伸强度。在相同应力作用下,实施例2的孔径、变形量大于实施例1,实施例1的压缩能力高于实施例2.
(3)负压阻性与压敏性:
将直径28mm长度12mm的圆柱形样品,两端用银胶粘合铜片放置于电子万用试验机(美特斯/CMT6103)试样台上,将数字万用表(DMM4050)与铜片连接测试电阻。压头加载压力,压缩到一定应变后再解除压力,如此循环,记录时间-电阻曲线。
图3示出了对实施例1样品测试负压阻性的结果,对实施例1样品施加压力,其体积电阻率大幅下降,随着施加压力的增大,其导电率明显提高。可见,本发明的多孔导电橡胶,在一定压力下,其孔结构被压缩,导电颗粒间距离迅速减小,形成了三维的导电通路,其导电性能提高,明显优于现有技术材料。
图4示出了对实施例1样品测试压敏性能的结果,可知,本发明多孔导电橡胶具有良好的稳定性以及回复性,在经过40次循环之后为初始值的98.4%,说明材料精确度高,且使用寿命长。
通过上述实施例可知,本发明方法制得的压力敏感型多孔导电橡胶,具有可压缩性以及良好的回弹性;材料孔径分布以及孔尺寸具有可调性;质量轻;压力传感灵敏度高,响应时间短,可达10ms。可应用于制备柔性压力传感器、压敏元件,以及应用于压力测试场所。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种压力敏感型多孔导电橡胶的制备方法,其特征在于,包括如下步骤:
(1)在真空搅拌机内加入半成品胶A组分100重量份,然后分批加入抑制剂0.001~0.0015重量份、硫化剂B组分10重量份、交联剂3~8重量份、纳米填料、白炭黑25~40重量份、结构控制剂2.5~5重量份、导电填料100~180重量份,在真空环境下搅拌2h以上,使得各个组分均匀混合;然后将催化剂0.007~0.01重量份、增塑剂8~12重量份分批加入胶料内,在真空搅拌机内混合30min以上;
(2)将步骤(1)混合均匀后的胶料进行预硫化;
(3)将步骤(2)的样品放入高压反应釜中进行超临界发泡;
(4)将步骤(3)获得的样品进行硫化,去除小分子,其中
所述步骤(2)中的预硫化为:将胶料放入垫有PET膜的模具内,放入平板硫化机中,控制温度为110~130℃、压力为10~20MPa,持续15min,并且
其 中,所述步骤(3)超临界发泡为:升温至所需温度160℃,待温度稳定后,充入低压CO2将容器中的空气置换干净,随后增压至预设压力值,饱和溶胀0.5~2h后瞬间泄压,取出样品,在室温条件下静置20min,
所述步骤(4)中的硫化为:将步骤(3)的发泡样品放入平板硫化机中,将温度控制在165~170℃、压力为10~20MPa,持续5~15min,并且
所述半成品胶A组分为乙烯基聚二甲基硅氧烷;所述硫化剂B组分为甲基含氢硅氧烷。
2.根据权利要求1所述的制备方法,其特征在于,所述抑制剂为炔醇、所述交联剂为甲基硅烷、所述白炭黑为气相白炭黑、所述结构控制剂为羟基硅油、所述导电填料为碳纳米管或银包玻璃纤维或银包铜颗粒、所述催化剂为铂金催化剂、增塑剂为1,2-丙二醇。
3.一种压力敏感型多孔导电橡胶,其特征在于,根据权利要求1或2所述的制备方法制得。
4.权利要求3所述的压力敏感型多孔导电橡胶的应用,其特征在于,用于制备柔性压力传感器、压敏元件及压力测试用设备。
CN201911328130.7A 2019-12-20 2019-12-20 压力敏感型多孔导电橡胶及其制备方法 Active CN111019356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911328130.7A CN111019356B (zh) 2019-12-20 2019-12-20 压力敏感型多孔导电橡胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911328130.7A CN111019356B (zh) 2019-12-20 2019-12-20 压力敏感型多孔导电橡胶及其制备方法

Publications (2)

Publication Number Publication Date
CN111019356A CN111019356A (zh) 2020-04-17
CN111019356B true CN111019356B (zh) 2021-11-23

Family

ID=70212258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911328130.7A Active CN111019356B (zh) 2019-12-20 2019-12-20 压力敏感型多孔导电橡胶及其制备方法

Country Status (1)

Country Link
CN (1) CN111019356B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337354A (zh) * 2022-01-05 2022-04-12 四川大学 超临界二氧化碳发泡法制备柔性多孔结构纳米摩擦发电机
CN114437401B (zh) * 2022-01-24 2023-04-14 中国工程物理研究院总体工程研究所 一种基于苯基硅生胶的柔性压敏复合材料及其制备方法
CN115926465A (zh) * 2022-12-07 2023-04-07 中国科学院宁波材料技术与工程研究所 三维微孔可控调节柔性复合材料、柔性应力传感器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703881B2 (en) * 2012-01-04 2014-04-22 Momentive Performance Materials Inc. Curable compositions of ionic silicones
CN104151833A (zh) * 2013-10-29 2014-11-19 泰山医学院 一种石墨烯/硅橡胶压敏导电复合材料的制备方法
CN107541177A (zh) * 2017-09-07 2018-01-05 深圳市康利邦科技有限公司 硅烷功石墨烯的制备方法、抗静电有机硅压敏胶及其制备方法
CN108384244B (zh) * 2018-03-21 2020-08-14 四川大学 具有梯度泡孔结构的硅橡胶复合材料及其制备方法
CN109679352A (zh) * 2018-12-28 2019-04-26 深圳德邦界面材料有限公司 一种导电泡棉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments;Xu Liu,等;《Materials Horizons》;20170501;第4卷(第3期);第477-486页 *

Also Published As

Publication number Publication date
CN111019356A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN111019356B (zh) 压力敏感型多孔导电橡胶及其制备方法
Lee et al. Ultra-robust wide-range pressure sensor with fast response based on polyurethane foam doubly coated with conformal silicone rubber and CNT/TPU nanocomposites islands
Cai et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor
Lu et al. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors
Zhai et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors
Yu et al. Carbon Dots‐Based Ultrastretchable and Conductive Hydrogels for High‐Performance Tactile Sensors and Self‐Powered Electronic Skin
An et al. Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor
CN110907501A (zh) 一种应变不敏感的柔性可拉伸温度/湿度传感器及其制备方法
WO2015095379A1 (en) Surface area-based pressure sensing
Yuan et al. A flexible viscoelastic coupling cable with self-adapted electrical properties and anti-impact performance toward shapeable electronic devices
Zhang et al. Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel
CN110699949B (zh) 一种具有压力/摩擦力传感功能的柔性自粘布、柔性力学传感器及其制备方法
Chen et al. Piezoresistive anisotropy in conductive silicon rubber/multi-walled carbon nanotube/nickel particle composites via alignment of nickel particles
CN110423371A (zh) 一种可降解的多功能柔性传感材料及其制备方法和由其制成的传感器
CN115612167A (zh) 一种用于pdms基柔性压力传感器的复合材料
Ma et al. 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure
Yu et al. High electrical self-healing flexible strain sensor based on MWCNT-polydimethylsiloxane elastomer with high gauge factor and wide measurement range
Sun et al. Silver nanowire/polyacrylamide/gelatin flexible stress, strain and temperature sensor
CN111073302A (zh) 一种适用于3d打印全柔性拉伸传感器的制备方法
Li et al. Facile fabrication of flexible TPU‐based microcellular nanocomposite piezoresistive sensors with tunable piezoresistivity via modulating cell structure
Huang et al. Extremely soft, stretchable, and self-adhesive silicone conductive elastomer composites enabled by a molecular lubricating effect
CN106497067A (zh) 一种高导电率、高机械强度复合材料
Liu et al. High strength and conductive hydrogel with fully interpenetrated structure from alginate and acrylamide
Suo et al. Preparation, microstructure, and piezoresistive behavior of conductive nanocomposite foams based on poly (1-butene) and carbon black
Naderizadeh et al. Piezoresistive elastomer composites used for pressure sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant