CN111000824A - 一种具有增强的光声/光热双功能纳米探针 - Google Patents

一种具有增强的光声/光热双功能纳米探针 Download PDF

Info

Publication number
CN111000824A
CN111000824A CN201911310173.2A CN201911310173A CN111000824A CN 111000824 A CN111000824 A CN 111000824A CN 201911310173 A CN201911310173 A CN 201911310173A CN 111000824 A CN111000824 A CN 111000824A
Authority
CN
China
Prior art keywords
solution
bipyramid
concentration
gold
polydopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911310173.2A
Other languages
English (en)
Inventor
曾乐勇
吴頔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei University
Hebei University
Original Assignee
Heibei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei University filed Critical Heibei University
Priority to CN201911310173.2A priority Critical patent/CN111000824A/zh
Publication of CN111000824A publication Critical patent/CN111000824A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

本发明公开了一种具有增强的光声/光热双功能纳米探针,所述探针为聚多巴胺包裹的金纳米双锥,制备方法是:a)在CTAB和CTAC混合溶液中,加入氯金酸和硝酸银,调pH至4‑6;加抗坏血酸溶液和邻苯二酚,25‑40℃静置1‑10h;离心水洗后重新分散于水中,得金纳米双锥;b)取金纳米双锥溶液,调节pH至8‑11,然后加入盐酸多巴胺,室温搅拌反应1‑4h,然后离心水洗,重新分散在水中,即得聚多巴胺包裹的金纳米双锥溶液。本发明的纳米探针,由于聚多巴胺的包覆,提高了金纳米双锥的稳定性,并提高了其光声/光热性能。在肿瘤的诊疗中,使用低浓度纳米探针,同时施加低剂量的光照,可以得到高分辨的光声成像诊断和高效的光热治疗,具有安全、高效的特点。

Description

一种具有增强的光声/光热双功能纳米探针
技术领域
本发明涉及纳米探针,具体的说是一种具有增强的光声/光热双功能纳米探针。
背景技术
分子影像和分子探针技术的发展和进步,在肿瘤等重大疾病的精准诊疗和预后评估中具有重要的应用。特别是光响应纳米探针,具有无X线辐射、分辨率高、组织穿透性强、创伤小等优点,在肿瘤可视化诊疗中显示出潜在的应用前景。目前,用于肿瘤光声成像以及光治疗的纳米探针材料主要包括不同形状的金纳米材料(纳米棒、纳米星和纳米锥等)、碳基/铜基等无机纳米材料以及有机材料等。由于材料的光转换效率局限,通常需要提高光辐照通量以及光辐照时间才能发挥其优异的光成像和光治疗性能。然而,过高能量的激发光不但会引起组织非特异性“热损伤”,而且还会引发其它并发症导致治疗失效,对光响应纳米探针在肿瘤可视化诊疗中的应用带来严峻挑战。因此,构建具有高光转换效率的多功能光响应纳米探针,实现在低通量光辐照条件下对肿瘤的安全、高效诊断和可视化治疗十分必要。
发明内容
本发明的目的是提供一种具有增强的光声/光热双功能纳米探针,以解决由于材料的光转换效率局限而导致的过高光辐照通量引发的“热损伤”或其它并发症。
本发明的目的是这样实现的:
一种具有增强的光声/光热双功能纳米探针,所述探针为聚多巴胺包裹的金纳米双锥。
所述的具有增强的光声/光热双功能纳米探针,所述聚多巴胺包裹的金纳米双锥按照以下步骤制备:
a)制备金纳米双锥:
在100mL的CTAB和CTAC混合溶液中,加入10mL氯金酸溶液和2mL硝酸银溶液,室温条件下持续搅拌条件下加入盐酸调节pH至4-6;然后加入5mL抗坏血酸溶液和5mL邻苯二酚溶液,在25-40℃条件下静置1-10h;然后离心,所得沉淀物水洗后重新分散于50mL水中,得深紫色的金纳米双锥溶液;
其中,CTAB的浓度为10-100mM,CTAC的浓度为30-120mM,氯金酸的浓度为5-50mM,硝酸银的浓度为2-20mM;抗坏血酸的浓度为1-10mM,邻苯二酚的浓度为20-200mM;
b)制备聚多巴胺包裹的金纳米双锥:
取步骤a)制备的金纳米双锥溶液10mL,加入氨水调节pH至8-11,然后加入1mL盐酸多巴胺溶液,在室温条件下持续搅拌反应1-4h,然后将所得产物离心、水洗后,重新分散在10mL水中,即得到灰黑色的聚多巴胺包裹的金纳米双锥溶液;
其中,盐酸多巴胺的浓度为10-100mM。
进一步的,本发明步骤a)中,CTAB的浓度优选为50mM;CTAC的浓度优选为80mM;氯金酸的浓度优选为20mM;硝酸银的浓度优选为8mM;pH值优选为5;抗坏血酸的浓度优选为7.5mM;邻苯二酚的浓度优选为120 mM;静置温度优选为32℃;静置时间优选为6小时。
进一步的,本发明的步骤b)中,溶液pH值优选为9;盐酸多巴胺的浓度优选为45mM;反应时间优选为2.5小时。
本发明的基于聚多巴胺包裹的金纳米双锥的纳米探针(AuNBPs@PDA),由于聚多巴胺的包覆,提高了金纳米双锥的稳定性,并提高了其光声/光热性能。在肿瘤的诊疗中,使用低浓度纳米探针,同时施加低剂量的光照,可以得到高分辨的光声成像诊断和高效的光热治疗,具有安全、高效的特点。
附图说明
图1是实施例1制备的AuNBPs@PDA的透射电镜图。
图2是实施例1制备的金纳米双锥和AuNBPs@PDA的紫外-可见吸收光谱。
图3是实施例2制备的金纳米双锥和AuNBPs@PDA溶液在808纳米激光照射下的升温曲线。
图4是实施例3制备的金纳米双锥和AuNBPs@PDA溶液的光声成像性能。
具体实施方式
实施例1
配制浓度分别为50mM和80 mM的CTAB和CTAC混合溶液100mL,加入10mL浓度为20mM的氯金酸和浓度8mM的硝酸银,加入盐酸使其pH值为5,然后加入5mL浓度为7.5mM的抗坏血酸和5mL浓度为120mM的邻苯二酚。在32摄氏度的水浴装置中静置6小时,将产物离心、水洗,重新分散在50mL水中,得到金纳米双锥溶液。
取上述制备的金纳米双锥溶液10mL,加入氨水使其pH值为9,然后加入1mL浓度为45mM的盐酸多巴胺溶液,在室温条件下持续搅拌2.5小时,将所得产物离心、水洗,重新分散在10mL水中,即得到灰黑色的AuNBPs@PDA溶液。
利用透射电子显微镜和紫外-可见吸收光谱对其形貌和光吸收性质进行表征,如图1和图2,从图1中可以看出,金纳米双锥的纵向尺寸为80-100纳米,表面被聚多巴胺均匀包裹,聚多巴胺的厚度约为10纳米;从图2中可以看出,金纳米双锥的纵向吸收峰位于745纳米左右,AuNBPs@PDA的纵向吸收峰位于790纳米左右。
实施例2
配制浓度分别为20mM和120 mM的CTAB和CTAC混合溶液100mL,加入10mL浓度为50mM的氯金酸和浓度10mM的硝酸银,加入盐酸使其pH值为4,然后加入5mL浓度为9mM的抗坏血酸和5mL浓度为120mM的邻苯二酚。在38摄氏度的水浴装置中静置9小时,将产物离心、水洗,重新分散在50mL水中,得到金纳米双锥溶液。
取上述制备的金纳米双锥溶液10mL,加入氨水使其pH值为10,然后加入1mL浓度为80mM的盐酸多巴胺溶液,在室温条件下持续搅拌4小时,将所得产物离心、水洗,重新分散在10mL水中,即得到灰黑色的AuNBPs@PDA溶液。
将制备的金纳米双锥和AuNBPs@PDA配制成不同浓度,然后利用1W/cm2的808纳米激光照射10分钟,记录溶液的温度变化,如图3,从图3中可以看出,当808纳米激光功率和照射时间相同,两种材料的浓度相同时,AuNBPs@PDA比金纳米双锥的温度高约11摄氏度,表明AuNBPs@PDA具有增强的光热性能。
实施例3
配制浓度分别为50mM和100 mM的CTAB和CTAC混合溶液100mL,加入10mL浓度为15mM的氯金酸和浓度5mM的硝酸银,加入盐酸使其pH值为5,然后加入5mL浓度为6mM的抗坏血酸和5mL浓度为100mM的邻苯二酚。在35摄氏度的水浴装置中静置6小时,将产物离心、水洗,重新分散在50mL水中,得到金纳米双锥溶液。
取上述制备的金纳米双锥溶液10mL,加入氨水使其pH值为9,然后加入1mL浓度为60mM的盐酸多巴胺溶液,在室温条件下持续搅拌4小时,将所得产物离心、水洗,重新分散在10mL水中,即得到灰黑色的AuNBPs@PDA溶液。
将制备的金纳米双锥和AuNBPs@PDA配制成不同浓度,比较不同浓度的光声信号变化,如图4,从图4中可以看出,当两种材料的浓度相同时,AuNBPs@PDA比金纳米双锥的光声信号更强,表明AuNBPs@PDA具有增强的光声成像性能。
实施例4
配制浓度分别为80mM和50 mM的CTAB和CTAC混合溶液100mL,加入10mL浓度为10mM的氯金酸和浓度20mM的硝酸银,加入盐酸使其pH值为6,然后加入5mL浓度为3 mM的抗坏血酸和5mL浓度为150mM的邻苯二酚。在27摄氏度的水浴装置中静置4小时,将产物离心、水洗,重新分散在50mL水中,得到金纳米双锥溶液。
取上述制备的金纳米双锥溶液10mL,加入氨水使其pH值为10,然后加入1mL浓度为20 mM的盐酸多巴胺溶液,在室温条件下持续搅拌2小时,将所得产物离心、水洗,重新分散在10mL水中,即得到灰黑色的AuNBPs@PDA溶液。

Claims (2)

1.一种具有增强的光声/光热双功能纳米探针,其特征是,所述探针为聚多巴胺包裹的金纳米双锥。
2.根据权利要求1所述的具有增强的光声/光热双功能纳米探针,其特征是,所述聚多巴胺包裹的金纳米双锥按照以下步骤制备:
a)制备金纳米双锥:
在100mL的CTAB和CTAC混合溶液中,加入10mL氯金酸溶液和2mL硝酸银溶液,室温条件下持续搅拌条件下加入盐酸调节pH至4-6;然后加入5mL抗坏血酸溶液和5mL邻苯二酚溶液,在25-40℃条件下静置1-10h;然后离心,所得沉淀物水洗后重新分散于50mL水中,得深紫色的金纳米双锥溶液;
其中,CTAB的浓度为10-100mM,CTAC的浓度为30-120mM,氯金酸的浓度为5-50mM,硝酸银的浓度为2-20mM;抗坏血酸的浓度为1-10mM,邻苯二酚的浓度为20-200mM;
b)制备聚多巴胺包裹的金纳米双锥:
取步骤a)制备的金纳米双锥溶液10mL,加入氨水调节pH至8-11,然后加入1mL盐酸多巴胺溶液,在室温条件下持续搅拌反应1-4h,然后将所得产物离心、水洗后,重新分散在10mL水中,即得到灰黑色的聚多巴胺包裹的金纳米双锥溶液;
其中,盐酸多巴胺的浓度为10-100mM。
CN201911310173.2A 2019-12-18 2019-12-18 一种具有增强的光声/光热双功能纳米探针 Pending CN111000824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911310173.2A CN111000824A (zh) 2019-12-18 2019-12-18 一种具有增强的光声/光热双功能纳米探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911310173.2A CN111000824A (zh) 2019-12-18 2019-12-18 一种具有增强的光声/光热双功能纳米探针

Publications (1)

Publication Number Publication Date
CN111000824A true CN111000824A (zh) 2020-04-14

Family

ID=70115950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911310173.2A Pending CN111000824A (zh) 2019-12-18 2019-12-18 一种具有增强的光声/光热双功能纳米探针

Country Status (1)

Country Link
CN (1) CN111000824A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046059A (zh) * 2021-03-22 2021-06-29 中国科学院大学温州研究院(温州生物材料与工程研究所) 具有光热/光动力治疗性能的纳米金锥复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105031647A (zh) * 2015-07-07 2015-11-11 东华大学 一种聚多巴胺包裹的聚乙烯亚胺稳定的金纳米星光热治疗剂的制备方法
CN105665744A (zh) * 2016-03-22 2016-06-15 安徽师范大学 一种金纳米双锥的制备方法
CN106692995A (zh) * 2016-12-13 2017-05-24 复旦大学 聚多巴胺包覆的金纳米棒材料及其制备方法和应用
KR102032277B1 (ko) * 2018-04-09 2019-10-16 서강대학교산학협력단 화학 및 광열 치료를 위한 금 나노 점 함유 중공 실리카 나노입자 및 그 제조 방법
CN110478482A (zh) * 2018-05-15 2019-11-22 南京邮电大学 一种york-shell结构金纳米棒@聚多巴胺多模影像纳米探针的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105031647A (zh) * 2015-07-07 2015-11-11 东华大学 一种聚多巴胺包裹的聚乙烯亚胺稳定的金纳米星光热治疗剂的制备方法
CN105665744A (zh) * 2016-03-22 2016-06-15 安徽师范大学 一种金纳米双锥的制备方法
CN106692995A (zh) * 2016-12-13 2017-05-24 复旦大学 聚多巴胺包覆的金纳米棒材料及其制备方法和应用
KR102032277B1 (ko) * 2018-04-09 2019-10-16 서강대학교산학협력단 화학 및 광열 치료를 위한 금 나노 점 함유 중공 실리카 나노입자 및 그 제조 방법
CN110478482A (zh) * 2018-05-15 2019-11-22 南京邮电大学 一种york-shell结构金纳米棒@聚多巴胺多模影像纳米探针的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴頔等: ""金纳米星/双锥的可控制备、光热转换及体外光热治疗"", 《发光学报》 *
房林: "基于金纳米棒的复合材料在癌症治疗中的应用", 《中国博士学位论文数据库(电子期刊) 医药卫生科技辑》 *
金征宇等: "《基因与纳米探针-医学分子成像理论与实践 上》", 30 November 2017, 天津科学技术出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046059A (zh) * 2021-03-22 2021-06-29 中国科学院大学温州研究院(温州生物材料与工程研究所) 具有光热/光动力治疗性能的纳米金锥复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Jia et al. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer
Hai et al. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging
Ge et al. Recent advances on black phosphorus for biomedicine and biosensing
Ding et al. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications
Hou et al. Hydrogenated titanium oxide decorated upconversion nanoparticles: facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy
Duran et al. Nanobiotechnology of carbon dots: a review
Vankayala et al. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light
Wang et al. Mini review of TiO2‐based multifunctional nanocomposites for near‐infrared light–responsive phototherapy
EP3037195A1 (en) Gold nanoflower structure and gold nanoflower/quantum dot composite probe for living cell immunofluorescent labeling and photothermal therapy
Atchudan et al. Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging
Wu et al. Carbon dot composites for bioapplications: a review
Wang et al. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications
Behboudi et al. Carbon quantum dots in nanobiotechnology
CN110464843B (zh) 用于肿瘤早期诊断及治疗的复合纳米材料及制备方法
Yang et al. Synthesis of multifunctional Ag@ Au@ phenol formaldehyde resin particles loaded with folic acids for photothermal therapy
Güleryüz et al. Near infrared light activated upconversion nanoparticles (UCNP) based photodynamic therapy of prostate cancers: An in vitro study
Yazdani et al. Sonochemical preparation and photocatalytic application of Ag-ZnS-MWCNTs composite for the degradation of Rhodamine B under visible light: experimental design and kinetics modeling
CN111000824A (zh) 一种具有增强的光声/光热双功能纳米探针
Li et al. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy
CN104308184A (zh) 一种可见光制备Au-Ag核壳纳米粒子的方法
CN106563472A (zh) 金‑氯氧铋纳米复合材料及其制备方法
CN103691968B (zh) 一种具有立方结构的金聚集体纳米材料及其合成方法
Feng et al. A smart off–on copper sulfide photoacoustic imaging agent based on amorphous–crystalline transition for cancer imaging
Li et al. Biomimetic Synthesis of Ag2Se Quantum Dots with Enhanced Photothermal Properties and as “Gatekeepers” to Cap Mesoporous Silica Nanoparticles for Chemo–Photothermal Therapy
Qi et al. Facile fabrication of highly fluorescent N-doped carbon quantum dots using an ultrasonic-assisted hydrothermal method: Optical properties and cell imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200414

RJ01 Rejection of invention patent application after publication