CN110998917A - 用于制备用于全固态电池的电极的方法 - Google Patents

用于制备用于全固态电池的电极的方法 Download PDF

Info

Publication number
CN110998917A
CN110998917A CN201780093650.7A CN201780093650A CN110998917A CN 110998917 A CN110998917 A CN 110998917A CN 201780093650 A CN201780093650 A CN 201780093650A CN 110998917 A CN110998917 A CN 110998917A
Authority
CN
China
Prior art keywords
sintering
sulfur
less
component
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780093650.7A
Other languages
English (en)
Inventor
加藤祐树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Europe NV SA
Original Assignee
Toyota Motor Europe NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Europe NV SA filed Critical Toyota Motor Europe NV SA
Publication of CN110998917A publication Critical patent/CN110998917A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing titanium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种用于制备作为用于全固态电池的包含钛和硫的电极的烧结组分的方法(100),该方法包括:混合粉末(102),以获得包含钛和硫的粉末混合物;压制(106)含有粉末混合物的组分;在包括在200Pa与0.2MPa之间的硫分压下对组分进行烧结(108),以获得包含钛和硫的中间烧结组分;以及在等于或小于150Pa的硫分压下,在包括在200℃与400℃之间的温度平台下对中间烧结组分进行烧结(114),以获得包含钛和硫的烧结组分;在使用CuKα线进行的X射线衍射测量中,固体电解质在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。

Description

用于制备用于全固态电池的电极的方法
技术领域
本公开内容涉及全固态电池,并且更具体地涉及包括包含硫的固体电解质和/或电极的固态电池。
背景技术
全固态电池提供了拥有具有高能量密度的电池组的可能性。
研究了用于全固态电池的固体电解质和/或电极的不同材料。特别感兴趣的是包含钛和硫并且在使用CuKα线进行的X射线衍射测量中在以下位置处表现出峰值的材料:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。这些材料通常表现出良好的锂离子电导率但是表现出低的电子电导率。
然而,对于作为固体电解质和/或电极的应用仍然需要增加这种材料的电子电导率。
发明内容
因此,根据本公开内容的实施方式,提供了一种用于制备作为用于全固态电池的包含钛和硫的固体电解质和/或电极的烧结组分的方法。该方法包括:
-混合粉末,以获得包含钛和硫的粉末混合物;
-压制含有粉末混合物的组分;以及
-在包括在200Pa与0.2MPa之间的硫分压下对组分进行烧结,以获得包含钛和硫的中间烧结组分;
-在等于或小于150Pa的硫分压下,在包括在200℃与400℃之间的温度平台下对中间烧结组分进行烧结,以获得包含钛和硫的烧结组分;
其中,在使用CuKα线进行的X射线衍射测量中,烧结组分在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
根据本公开内容的实施方式,提供了一种用于制备作为用于全固态电池的包含钛和硫的固体电解质和/或电极的烧结组分的方法。该方法包括:
-混合粉末,以获得包含钛和硫的粉末混合物;
-压制含有粉末混合物的组分;以及
-在包括在200Pa与0.2MPa之间的硫分压下对组分进行烧结(108),以获得包括钛和硫的中间烧结组分;
-在温度梯度下对中间烧结组分进行烧结,以获得烧结组分,所述中间烧结组分的最高温度包括在200℃与400℃之间;
其中,在使用CuKα线进行的X射线衍射测量中,烧结组分在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
在使用CuKα线进行的X射线衍射测量中在以下位置处表现出峰值的烧结组分,即固体电解质和/或电极,通常表现出良好的锂离子电导率但是表现出低的电子电导率:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
通过提供这样的方法,由于在包括在200Pa(帕斯卡)与0.2MPa之间的硫分压下对组分进行烧结,因此可以获得如下中间烧结组分:其中硫的蒸发在烧结期间受到限制并且其中中间烧结组分的堆积密度增加。实际上,硫的蒸发在烧结期间受到限制,并且中间烧结组分的堆积密度增加。因此,降低了中间烧结组分的孔隙度。
由于在等于或小于150Pa的硫分压下在包括在200℃与400℃之间的温度平台下对中间烧结组分进行烧结,或者替选地,由于在温度梯度下对中间烧结组分进行烧结,中间烧结组分的最高温度包括在200℃与400℃之间,因此获得了通过固体电解质和/或电极的电子电导率的增加。
通过在等于或小于150Pa的硫分压下在包括在200℃与400℃之间的温度平台下对中间烧结组分进行烧结,或者通过在温度梯度下对中间烧结组分进行烧结,中间烧结组分的最高温度包括在200℃与400℃之间,因此存在于中间烧结组分中的一部分硫蒸发,并且因此一部分钛从Ti4+还原至Ti3+或更低,即Ti2+或甚至Ti+。由于钛的还原,因此增加了烧结组分的电子电导率。
在一些实施方式中,等于或小于150Pa的硫分压是通过使用惰性气体或氮气冲洗中间烧结组分获得的。
在一些实施方式中,等于或小于150Pa的硫分压是通过连续抽空存在于包含中间烧结组分的密闭容器中的气体获得的。
在一些实施方式中,在烧结期间在温度梯度下将中间烧结组分密封在密闭容器中。
在一些实施方式中,烧结组分包含XTi2(PS4)3,X为锂(Li)、钠(Na)或银(Ag)。
在一些实施方式中,该方法包括使粉末混合物非晶化以获得非晶态的粉末混合物的步骤。
在一些实施方式中,在包括在200Pa与0.2MPa之间的硫分压下进行烧结包括等于或小于500℃,优选地等于或小于400℃的烧结平台温度。
粉末混合物是非晶态的,粉末混合物更具反应性,并且可以在等于或小于500℃的温度下获得粉末混合物的烧结。
在一些实施方式中,在包括在200Pa与0.2MPa之间的硫分压下进行烧结包括等于或小于20小时,优选地等于或小于10小时的烧结平台时间。
粉末混合物是非晶态的,粉末混合物更具反应性,并且可以利用等于或小于20小时,优选地等于或小于10小时的烧结平台时间来获得粉末混合物的烧结。
在一些实施方式中,包括在200Pa与0.2MPa之间的硫分压是通过蒸发固体硫获得的。
在一些实施方式中,在等于或小于100Pa,优选地等于或小于50Pa的压力下在氩气下将组分放置在容器中并且密封。
在一些实施方式中,包括在200Pa与0.2MPa之间的硫分压是从含硫气体获得的。
含硫气体可以是诸如硫化氢、硫化碳或硫化磷的气体。
在一些实施方式中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制组分。
在一些实施方式中,在两个烧结步骤之间,研磨和压制中间烧结组分。
在一些实施方式中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制所研磨和压制的中间烧结组分。
除非其中另有矛盾,否则旨在将上面描述的元素和说明书内的元素进行组合。
应当理解,前面的一般描述和下面的详细描述两者都仅是示例性和说明性的,并且不限制要求保护的本公开内容。
并入本说明书中并构成本说明书的一部分的附图示出了本公开内容的实施方式,并且与描述一起用于解释其原理。
附图说明
图1示出了根据本公开内容的实施方式的方法的流程图;
图2示出了根据本公开内容的样品的X射线衍射光谱;
图3示出了比较样品的X射线衍射光谱;
图4和图5示出了根据频率的电导率的实部。
具体实施方式
现在将详细地参考本公开内容的示例性实施方式,其示例在附图中示出。在整个附图中,将尽可能使用相同的附图标记指代相同或相似的部件。
图1示出了根据本公开内容的实施方式的方法的流程图的表示。
样品1是根据本公开内容的样品,并且样品2是比较样品。
样品1和样品2均为LiTi2(PS4)3固体电解质或电极。
每个实验都是在氩气下、或在真空下或在硫气氛下进行的,以不与空气接触。
将参照图1采用样品1来描述用于制备用于全固态电池的包含钛和硫的固体电解质和/或电极的方法100。
在步骤102中,将0.0396g(克)的Li2S、0.5745g的P2S5和0.3859g的TiS2混合在一起,以获得粉末混合物。Li2S(99%、硫化锂、Sigma-
Figure BDA0002379860560000051
)、P2S5(98%、五硫化二磷、Sigma-
Figure BDA0002379860560000052
)和TiS2(99.9%、二硫化钛、Sigma-
Figure BDA0002379860560000053
)是具有等于或大于99质量%的纯度的粉末。
在作为非强制性步骤的步骤104中,使粉末混合物在行星式研磨设备(Fritsch、P7)中非晶化。将粉末混合物在氩气下置于具有直径为10mm(毫米)的18个锆球的45mL(毫升)容量的锆罐中。使粉末混合物以370rpm(转每分钟)非晶化达40小时,以获得非晶态的粉末混合物。
在步骤106中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制非晶态的粉末混合物。
例如,在200MPa下压制100mg的非晶态的粉末混合物,以形成组分。
在步骤108中,在包括在150Pa与0.2MPa之间的硫分压下对组分进行烧结,以获得包含钛和硫的中间烧结组分。
例如,在非常低的压力(例如30Pa)下在氩气下将100mg组分与来自Sigma-
Figure BDA0002379860560000054
的5mg硫片(99.99%)放入玻璃管中,并且密封该玻璃管。在400℃(摄氏度)的平台温度下对组分进行烧结达8小时的平台温度时间,以获得包含钛和硫的中间烧结组分。在加热时,在密封的玻璃管中固体硫片允许包括在200Pa与0.2MPa之间的硫分压。
替选地,在密闭的容器例如密封的玻璃管中或具有气体冲洗(gas flush)的开口容器中可以从含硫气体例如硫化氢(H2S)、二硫化碳(CS2)或硫化磷(PxSy,例如P4S3、P2S3或P2S5)获得包括在150Pa与0.2MPa之间的硫分压。
然后,在等于或小于150Pa的硫分压下,在包括在200℃与400℃之间的温度平台下对中间烧结组分进行烧结(步骤114),以获得包含钛和硫的烧结组分。
例如,可以在氩气气氛下在开口容器中对中间烧结组分进行烧结,即,在300℃的温度平台下使用氩气对中间烧结组分冲洗达8小时的温度平台时间。可以使用其他气体,例如氮气、氦气、氖气和氙气。
在两个烧结步骤108、114之间,可以研磨(步骤110)和压制(步骤112)中间烧结组分。这些步骤110、112是可选的。
在步骤106和112中使用的压力可以不同。在步骤106和112中使用的压力可以相等。然而,在两个步骤106和112中的压力都等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa。
例如,在步骤106中的压力可以等于200MPa,并且在步骤112中的压力可以等于100MPa。
除了在小于150Pa的硫分压下执行所述组分和中间烧结组分的烧结之外,用于制备样品2的方法与用于制备样品1的方法类似。
例如通过在非常低的压力(例如30Pa)下在氩气下将样品2的组分和中间烧结组分密封在玻璃管中,在或小于150Pa的硫分压下,将所述组分和中间烧结组分两者在400℃下烧结达8小时。因此,样品2的烧结组分已经在小于150MPa的硫分压下在400℃下烧结达16小时。
图2和图3分别示出了样品1和样品2的X射线衍射光谱。如在图3和图4上可以看到的,在使用CuKα线进行的X射线衍射测量中,样品1和样品2两者在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
样品1和样品2分别夹在两个SUS集电器(不锈钢、SUS301)之间。使用由泰邦生物(Biologic)制造的阻抗增益相位分析仪来测量样品1和样品2两者的阻抗。使用由泰邦生物(Biologic)制造的VMP3作为频率响应分析仪(FRA)来测量。测量以其中交流电压为10mV(毫伏)并且频率范围在1Hz(赫兹)至1MHz之间的高频范围开始。
样品1的电子电导率等于6.1·10-5S/cm(西门子每厘米),而样品2的离子电导率等于4.6·10-10S/cm。
因此,在包括在200Pa与0.2MPa之间的硫分压下烧结,然后进行使硫能够蒸发的烧结,显著提高了烧结组分的电子电导率。
图4和图5分别示出了样品1和样品2的根据频率(以Hz为单位)的电导率(以S/cm为单位)的实部。
样品2显示出明显的温度依赖性,而直到等于-60℃的温度样品1显示出非常小的温度依赖性。由于离子电导率强烈依赖于温度,因此样品1的根据频率的电导率的实部的准非依赖性显示出样品1的烧结组分表现出电子电导率,电导率是离子电导率和电子电导率的总和。
尽管样品1是通过执行所有步骤102至114获得的,但是在执行或不执行步骤104和/或在执行或不执行步骤110和112的情况下,都可以获得类似的结果。
替选地,可以通过连续抽空存在于包含中间烧结组分的密封容器中的气体来获得等于或小于150Pa的硫分压。
替选地,可以在温度梯度下对中间烧结组分进行烧结(步骤114)以获得烧结组分,中间烧结组分的最高温度包括在200℃与400℃之间。
例如,可以在非常低的压力例如30Pa下在氩气下利用温度梯度将中间烧结组分密封在玻璃管中达8小时的烧结时间,中间烧结组分的一侧为300℃,并且中间烧结组分的另一侧为100℃。
当粉末混合物未被非晶化时,即,当不执行步骤104时,在步骤106中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制粉末混合物。
例如,在200MPa下压制100mg粉末混合物,以形成组分。
在步骤108中,在包括在200Pa与0.2MPa之间的硫分压下对组分进行烧结,以获得包含硫的中间烧结组分。
例如,在非常低的压力(例如30Pa)下在氩气下将100mg组分与来自Sigma-
Figure BDA0002379860560000071
的5mg硫片(99.99%)放入玻璃管中,并且密封该玻璃管。在500℃(摄氏度)以上的平台温度例如750℃下对组分进行烧结达10小时的平台温度时间,以获得包含钛和硫的中间烧结组分。
替选地,在密闭的容器例如密封的玻璃管中或具有气体冲洗的开口容器中可以从含硫气体例如硫化氢(H2S)、二硫化碳(CS2)或硫化磷(PxSy,例如P4S3、P2S3或P2S5)获得包括在200Pa与0.2MPa之间的硫分压。
用于中间烧结组分的烧结114的条件与上面相同。
在包括权利要求书的整个描述中,除非另外说明,否则术语“包括”应当被理解为与“包括至少一个”同义。另外,除非另外说明,否则在包括权利要求书的描述中阐述的任何范围应当被理解为包括其端值。对于所描述的元素的特定值应当被理解为在本领域技术人员已知的可接受的制造或工业公差内,并且对术语“基本上”和/或“大约”和/或“通常”的任何使用应当被理解为:均在可接受的公差范围内。
尽管本文已经参考特定实施方式描述了本公开内容,但是应当理解,这些实施方式仅仅是本公开内容的原理和应用的说明。
旨在将说明书和示例仅视为示例性的,其中本公开内容的真实范围由所附权利要求指示。

Claims (15)

1.一种用于制备作为用于全固态电池的包含钛和硫的固体电解质和/或电极的烧结组分的方法(100),所述方法包括:
-混合粉末(102),以获得包含钛和硫的粉末混合物;
-压制(106)含有所述粉末混合物的组分;以及
-在包括在200Pa与0.2MPa之间的硫分压下对所述组分进行烧结(108),以获得包含钛和硫的中间烧结组分;
-在等于或小于150Pa的硫分压下,在包括在200℃与400℃之间的温度平台下对所述中间烧结组分进行烧结(114),以获得包含钛和硫的烧结组分;
其中,在使用CuKα线进行的X射线衍射测量中,所述烧结组分在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
2.根据权利要求1所述的方法(100),其中,等于或小于150Pa的硫分压是通过使用惰性气体或氮气冲洗所述中间烧结组分获得的。
3.根据权利要求1或2所述的方法(100),其中,等于或小于150Pa的硫分压是通过连续抽空存在于包含所述中间烧结组分的密闭容器中的气体获得的。
4.一种用于制备作为用于全固态电池的包含钛和硫的固体电解质和/或电极的烧结组分的方法(100),所述方法包括:
-混合粉末(102),以获得包含钛和硫的粉末混合物;
-压制(106)含有所述粉末混合物的组分;以及
-在包括在200Pa与0.2MPa之间的硫分压下对所述组分进行烧结(108),以获得包含钛和硫的中间烧结组分;
-在温度梯度下对所述中间烧结组分进行烧结(114),以获得烧结组分,所述中间烧结组分的最高温度包括在200℃与400℃之间;
其中,在使用CuKα线进行的X射线衍射测量中,所述烧结组分在以下位置处表现出峰值:2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)以及26.66°(±0.50°)。
5.根据权利要求4所述的方法(100),其中,在烧结期间在所述温度梯度下将所述中间烧结组分密封在密闭容器中。
6.根据权利要求1至5中任一项所述的方法(100),其中,所述烧结组分包含XTi2(PS4)3,X为锂(Li)、钠(Na)或银(Ag)。
7.根据权利要求1至6中任一项所述的方法(100),所述方法包括使所述粉末混合物非晶化以获得非晶态的粉末混合物的步骤(104)。
8.根据权利要求7所述的方法(100),其中,在包括在200Pa与0.2MPa之间的硫分压下进行烧结(108)包括等于或小于500℃,优选地等于或小于400℃的烧结平台温度。
9.根据权利要求7或8所述的方法(100),其中,在包括在200Pa与0.2MPa之间的硫分压下进行烧结(108)包括等于或小于20小时,优选地等于或小于10小时的烧结平台时间。
10.根据权利要求1至9中任一项所述的方法(100),其中,在包括在200Pa与0.2MPa之间的所述硫分压是通过蒸发固体硫获得的。
11.根据权利要求10所述的方法(100),其中,在等于或小于100Pa,优选地等于或小于50Pa的压力下在氩气下将所述组分放置在容器中并且密封。
12.根据权利要求1至11中任一项所述的方法(100),其中,在包括在200Pa与0.2MPa之间的硫分压是从含硫气体获得的。
13.根据权利要求1至12中任一项所述的方法(100),其中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制(106)所述组分。
14.根据权利要求1至13中任一项所述的方法(100),其中,在两个烧结步骤(108,114)之间,研磨(110)和压制(112)所述中间烧结组分。
15.根据权利要求14所述的方法(100),其中,在等于或大于25MPa,优选地等于或大于50MPa,更优选地等于或大于75MPa,并且等于或小于500MPa,优选地等于或小于400MPa,更优选地等于或小于300MPa的压力下压制(112)所研磨和压制的中间烧结组分。
CN201780093650.7A 2017-08-04 2017-08-04 用于制备用于全固态电池的电极的方法 Pending CN110998917A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/069858 WO2019025014A1 (en) 2017-08-04 2017-08-04 PROCESS FOR PRODUCING ELECTRODES FOR FULLY SOLID BATTERIES

Publications (1)

Publication Number Publication Date
CN110998917A true CN110998917A (zh) 2020-04-10

Family

ID=59523150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780093650.7A Pending CN110998917A (zh) 2017-08-04 2017-08-04 用于制备用于全固态电池的电极的方法

Country Status (5)

Country Link
US (1) US12113165B2 (zh)
EP (1) EP3662523B1 (zh)
JP (1) JP6961794B2 (zh)
CN (1) CN110998917A (zh)
WO (1) WO2019025014A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401017A (zh) * 2013-08-02 2013-11-20 北京理工大学 一种Li2S-P2S5-TiS2系非晶态电解质材料

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242456A (ja) 1988-03-23 1989-09-27 Hitachi Ltd 希土類オキシ硫化物焼結体の製法
JP2576064B2 (ja) * 1988-06-16 1997-01-29 日本合成ゴム株式会社 正極活物質構造体
JP2596638B2 (ja) * 1990-11-27 1997-04-02 防衛庁技術研究本部長 硫化物セラミックスの製造方法
JPH1197058A (ja) 1997-09-24 1999-04-09 Tokyo Electric Power Co Inc:The ナトリウム−硫黄単電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US20110240108A1 (en) * 2010-04-02 2011-10-06 Matt Law Method To Synthesize Colloidal Iron Pyrite (FeS2) Nanocrystals And Fabricate Iron Pyrite Thin Film Solar Cells
JP4948659B1 (ja) * 2011-04-12 2012-06-06 三井金属鉱業株式会社 リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
JP5617794B2 (ja) * 2011-08-08 2014-11-05 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法、および、硫化物固体電解質材料
JP5701741B2 (ja) * 2011-12-28 2015-04-15 三井金属鉱業株式会社 硫化物系固体電解質
US9819019B2 (en) * 2013-12-13 2017-11-14 Samsung Electronics Co., Ltd. All solid secondary battery and method of preparing all solid secondary battery
WO2016104702A1 (ja) * 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
KR101684130B1 (ko) * 2015-06-16 2016-12-07 현대자동차주식회사 리튬 이온 전도성 황화물의 제조방법, 이에 의하여 제조된 리튬 이온 전도성 황화물, 및 이를 포함하는 고체전해질, 전고체 배터리
JP6079838B2 (ja) * 2015-08-19 2017-02-15 株式会社リコー 画像処理装置、プログラム、画像処理方法および撮像システム
CN105514491B (zh) * 2015-12-29 2018-06-26 湖州创亚动力电池材料有限公司 一种全固态无机固体锂离子电解质的制备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401017A (zh) * 2013-08-02 2013-11-20 北京理工大学 一种Li2S-P2S5-TiS2系非晶态电解质材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUM RYONG SHIN等: ""All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte"", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
YOUNGSIK KIM等: ""Lithium Intercalation into ATi2(PS4)3 (A = Li, Na, Ag)"", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Also Published As

Publication number Publication date
US20200243900A1 (en) 2020-07-30
WO2019025014A1 (en) 2019-02-07
US12113165B2 (en) 2024-10-08
JP6961794B2 (ja) 2021-11-05
EP3662523A1 (en) 2020-06-10
EP3662523B1 (en) 2022-03-23
JP2020529386A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
Xu et al. Tailored Li 2 S–P 2 S 5 glass-ceramic electrolyte by MoS 2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries
Hou et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@ C nanohybrid as an advanced anode material for sodium-ion full batteries
Wang et al. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries
Wang et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte
Guan et al. Heterojunction TiO 2@ TiOF 2 nanosheets as superior anode materials for sodium-ion batteries
Yu et al. Ambient-Temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode.
Abbas et al. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries
Walle et al. Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithium–sulfur battery cathodes
Tang et al. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes
Wu et al. Air-stable means more: designing air-defendable lithium metals for safe and stable batteries
Wang et al. Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density
Yan et al. Entrapment of polysulfides by Al2O3 modified separator for high energy Li–S redox flow batteries
Rosenman et al. Facile synthesis and very stable cycling of polyvinylidene dichloride derived carbon: Sulfur composite cathode
Lee et al. Enhanced cathode/sulfide electrolyte interface stability using an Li 2 ZRo 3 coating for all-solid-state batteries
Lyu et al. Building Stable Solid‐State Potassium Metal Batteries
US20200036038A1 (en) Solid-State Electrolytes Based on Lithium Halides for All-Solid-State Lithium-ion Battery Operating at Elevated Temperatures
Fang et al. Supercritical CO 2-assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries
Zhang et al. Bilayer Dense‐Porous Li7La3Zr2O12 Membranes for High‐Performance Li‐Garnet Solid‐State Batteries
Yan et al. A TiS 2/Celgard separator as an efficient polysulfide shuttling inhibitor for high-performance lithium–sulfur batteries
Hu et al. Li-storage performance of binder-free and flexible iron fluoride@ graphene cathodes
Chien et al. Cellulose separators with integrated carbon nanotube interlayers for lithium-sulfur batteries: An investigation into the complex interplay between cell components
CA3176634A1 (en) Nitrogen and fluorine doped graphene and use thereof
Heo et al. 10 μm-thick MoO3-coated TiO2 nanotubes as a volume expansion regulated binder-free anode for lithium ion batteries
Gutiérrez-Pardo et al. Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?
Zeng et al. A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200410