CN110993483A - 一种双极ic硅晶片的氧含量选择方法 - Google Patents

一种双极ic硅晶片的氧含量选择方法 Download PDF

Info

Publication number
CN110993483A
CN110993483A CN201911130583.9A CN201911130583A CN110993483A CN 110993483 A CN110993483 A CN 110993483A CN 201911130583 A CN201911130583 A CN 201911130583A CN 110993483 A CN110993483 A CN 110993483A
Authority
CN
China
Prior art keywords
silicon wafer
oxygen content
bipolar
oxygen
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911130583.9A
Other languages
English (en)
Inventor
潘国刚
陈昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yingrui Semiconductor Co ltd
Original Assignee
Jiangsu Yingrui Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yingrui Semiconductor Co ltd filed Critical Jiangsu Yingrui Semiconductor Co ltd
Priority to CN201911130583.9A priority Critical patent/CN110993483A/zh
Publication of CN110993483A publication Critical patent/CN110993483A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明提供了一种双极IC硅晶片的氧含量选择方法,对硅晶片通过高温氧化及腐蚀后通过显微镜观察其表面断面层错缺陷的多少,以确定硅晶片的氧含量的选择。通过大量的产品验证,双极IC硅晶片的氧含量选择在1.23×1018atoms/cm3‑1.57×1018atoms/cm3的范围才能保障后续工艺过程中不会因氧造成的缺陷对产品产生不利影响。

Description

一种双极IC硅晶片的氧含量选择方法
技术领域
本发明适用于双极IC制造领域,特别适用于双极IC硅晶片的氧含量选择方法。
背景技术
目前,95%以上的半导体器件及集成电路使用硅晶片作为衬底材料,硅晶片的质量与半导体器件的性能和良率密切相关。主流的硅晶片生产技术是直拉生长法,由于工艺和材料的关系,生产过程中除了有意掺入的硼、磷、锑等杂质外,还会引入其他杂质。其中以氧和碳最为主要,对硅晶片的机械和电学性能的影响最为严重。
氧在硅晶片中的行为极为复杂,氧的存在会对硅晶片的机械性能带来影响。在后续高温过程中,氧的扩散沉淀还会带来大量的二次缺陷,这些缺陷主要体现为层错。因氧沉淀诱生的缺陷可以吸除有害金属杂质和缺陷,产生有利的作用。同时,大量的氧沉淀也可能穿越硅晶片表面,导致器件失效。
目前材料研究上对硅晶片中的氧来源及后续温度处理下的氧行为研究较多,IC生产厂家对硅晶片的氧含量也有采购标准,但即使符合符合采购标准,不同的产品在生产中仍会发生因氧导致的失效。
发明内容
本发明的目的是通过分析高温过程对硅晶片中因氧造成的缺陷的影响,明确双极IC所采用的硅晶片氧含量的范围。
本发明提供了一种双极IC硅晶片氧含量选择方法,其特征在于,步骤包括
(1)将IC硅晶片在高纯度氧气环境下进行高温氧化;
(2)将IC硅晶片放入Cr2O2(亚铬酸根离子)与HF(氢氟酸)的混合水溶液中腐蚀;
(3)将IC硅晶片用去离子水冲洗后用氮气吹干;
(4)将IC硅晶片放置在显微镜观察。
作为本发明的一种双极IC硅晶片氧含量选择方法的一种优选的方案,所述高温氧化的温度为1240-1260℃。
作为本发明的一种双极IC硅晶片氧含量选择方法的一种优选的方案,所述高温氧化的时间为145-155分钟。
作为本发明的一种双极IC硅晶片氧含量选择方法的一种优选的方案,所述Cr2O2(亚铬酸根离子)与HF(氢氟酸)的混合水溶液的配比为5份(质量)Cr2O2、10份(体积)HF、28份(体积)H2O。
作为本发明的一种双极IC硅晶片氧含量选择方法的一种优选的方案,IC硅晶片在Cr2O2(亚铬酸根离子)与HF(氢氟酸)混合水溶液中腐蚀时间为2-4分钟。
作为本发明的一种双极IC硅晶片氧含量选择方法的一种优选的方案,硅晶片的氧含量的范围为1.23×1018atoms/cm3~1.57×1018atoms/cm3
将不同氧含量的硅晶片放置在1250℃的氧气环境下氧化150 min。再将氧化后的硅晶片放置在Cr2O2:HF:H2O=500g:1000ml:2800ml的腐蚀液中腐蚀3分钟。氧化腐蚀后,氧含量为1.18×1018atoms/cm3的硅晶片整个断面层错缺陷很少,如图1所示;随着硅晶片中氧含量的增加,断面层错密度逐渐增大。在氧含量为1.67×1018 atoms/cm3的硅晶片中,整个断面层错缺陷非常密集,如图2所示。这一结果表明,经过高温工艺后,氧沉淀的作用得到了加强,导致相同视场下缺陷的数量大大提高。
通过大量的产品验证,双极IC硅晶片的氧含量选择在1.23×1018atoms/cm3-1.57×1018atoms/cm3的范围才能保障后续工艺过程中不会因氧造成的缺陷对产品产生不利影响。
附图说明
图1 氧含量为1.18×1018 atoms/cm3硅晶片氧化腐蚀后表面缺陷。
图2 氧含量为1.67×1018 atoms/cm3硅晶片氧化腐蚀后表面缺陷。
图3 氧含量为1.47×1018 atoms/cm3硅晶片氧化腐蚀后表面缺陷。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1:
采用氧含量在1.77×1018-1.87×1018 atoms/cm3之间的硅晶片进行生产加工,结果造成了大量的产品失效,将失效硅晶片放置在1250℃的氧气环境下氧化150 分钟后取出放置在500gCr2O2、100mlHF、2800mlH2O配制得到的腐蚀液中腐蚀3分钟。经腐蚀后发现内部缺陷数量很多,部分缺陷已位于表面器件区域,造成器件漏电及产品失效。
实施例2:
将氧含量为1.47×1018 atoms/cm3硅晶片放置在1250℃的氧气环境下氧化150 分钟后取出放置在500g Cr2O2、100ml HF、2800ml H2O配制得到的腐蚀液中腐蚀3分钟,如图3所示,其表面断面层错缺陷适中。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (6)

1.一种双极IC硅晶片氧含量选择方法,其特征在于,步骤包括
(1)将IC硅晶片在高纯度氧气环境下进行高温氧化;
(2)将IC硅晶片放入Cr2O2(亚铬酸根离子)与HF(氢氟酸)的混合水溶液中腐蚀;
(3)将IC硅晶片用去离子水冲洗后用氮气吹干;
(4)将IC硅晶体片置在显微镜观察。
2.根据权利要求1所述的一种双极IC硅晶片氧含量选择方法,其特征在于,所述高温氧化的温度为1240-1260℃。
3.根据权利要求2所述的一种双极IC硅晶片氧含量选择方法,其特征在于,所述高温氧化的时间为145-155分钟。
4.根据权利要求3所述的一种双极IC硅晶片氧含量选择方法,其特征在于,所述Cr2O2(亚铬酸根离子)与HF(氢氟酸)的混合水溶液的配比为5份(质量)Cr2O2、10份(体积)HF、28份(体积)H2O。
5.根据权利要求4所述的一种双极IC硅晶片氧含量选择方法,其特征在于,IC硅晶体在Cr2O2(亚铬酸根离子)与HF(氢氟酸)混合水溶液中腐蚀时间为2-4分钟。
6.根据权利要求5所述的一种双极IC硅晶片氧含量选择方法,其特征在于,硅晶体的氧含量的范围为1.23×1018atoms/cm3~1.57×1018atoms/cm3
CN201911130583.9A 2019-11-19 2019-11-19 一种双极ic硅晶片的氧含量选择方法 Pending CN110993483A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911130583.9A CN110993483A (zh) 2019-11-19 2019-11-19 一种双极ic硅晶片的氧含量选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911130583.9A CN110993483A (zh) 2019-11-19 2019-11-19 一种双极ic硅晶片的氧含量选择方法

Publications (1)

Publication Number Publication Date
CN110993483A true CN110993483A (zh) 2020-04-10

Family

ID=70084791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911130583.9A Pending CN110993483A (zh) 2019-11-19 2019-11-19 一种双极ic硅晶片的氧含量选择方法

Country Status (1)

Country Link
CN (1) CN110993483A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272997A (ja) * 1999-03-26 2000-10-03 Sumitomo Metal Ind Ltd シリコン単結晶の育成方法およびそれを用いたシリコンウェーハ並びにその窒素ドープ量の推定方法
CN104966683A (zh) * 2015-07-16 2015-10-07 麦斯克电子材料有限公司 一种采用断面切割腐蚀技术检测硅晶片体内微缺陷的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272997A (ja) * 1999-03-26 2000-10-03 Sumitomo Metal Ind Ltd シリコン単結晶の育成方法およびそれを用いたシリコンウェーハ並びにその窒素ドープ量の推定方法
CN104966683A (zh) * 2015-07-16 2015-10-07 麦斯克电子材料有限公司 一种采用断面切割腐蚀技术检测硅晶片体内微缺陷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘国刚: "硅单晶片中的氧及对后续缺陷的影响", 《微电子学》 *

Similar Documents

Publication Publication Date Title
KR100832944B1 (ko) 어닐 웨이퍼의 제조방법 및 어닐 웨이퍼
JPH0997789A (ja) 半導体装置の製造方法
JP2007281119A (ja) 熱処理評価用ウェーハ、熱処理評価方法、および半導体ウェーハの製造方法
CN115132604B (zh) 硅化物工艺监测方法
TW436934B (en) Semiconductor substrate processing method
US7517706B2 (en) Method for evaluating quality of semiconductor substrate and method for manufacturing semiconductor substrate
US6387716B1 (en) Semiconductor processing methods and semiconductor defect detection methods
CN110993483A (zh) 一种双极ic硅晶片的氧含量选择方法
JP2010177238A (ja) エピタキシャルウエーハの製造方法及び半導体装置の製造方法
JP2776583B2 (ja) 半導体基板の処理液及び処理方法
CN106033733A (zh) 半导体晶片的金属污染即时监控方法
CN107706267A (zh) 一种硅片表面钝化方法
US20080299682A1 (en) Method for removing poly silicon
JP4753656B2 (ja) シリコンウエーハ表面へのボロン汚染抑制方法
JP2005216993A (ja) シリコンウエーハの評価方法
CN117059483B (zh) 碳化硅器件表面碳保护膜的去除及检测方法
TWI222139B (en) Process for producing silicon single crystal layer and silicon single crystal layer
JP4305800B2 (ja) シリコンウエハ表面の窒化物評価方法
CN112233967B (zh) 一种改善背面金属与衬底Si脱落异常的加工方法
JP2010166046A (ja) ゲルマニウム系結晶エレメントにおいて発生した転位を明らかにする方法
JP5729098B2 (ja) シリコン単結晶ウェーハの評価方法
CN112992670B (zh) 一种用于降低硅基背封抛光片应力的方法
KR102368657B1 (ko) 실리콘 웨이퍼의 결함 측정 방법 및 웨이퍼
CN107170665B (zh) 一种在氧化硅湿法刻蚀中降低硅损伤的方法
CN117191932A (zh) 一种硅片表面金属回收率的测试方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200410