CN110983267A - 一种水泥水化产物自支撑纳米薄膜的制备方法 - Google Patents

一种水泥水化产物自支撑纳米薄膜的制备方法 Download PDF

Info

Publication number
CN110983267A
CN110983267A CN201911012370.6A CN201911012370A CN110983267A CN 110983267 A CN110983267 A CN 110983267A CN 201911012370 A CN201911012370 A CN 201911012370A CN 110983267 A CN110983267 A CN 110983267A
Authority
CN
China
Prior art keywords
film
hydration product
cement hydration
sputtering
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911012370.6A
Other languages
English (en)
Other versions
CN110983267B (zh
Inventor
汤盛文
周伟
何真
余文志
阿湖宝
陈敬涛
姬翔
徐晓飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201911012370.6A priority Critical patent/CN110983267B/zh
Publication of CN110983267A publication Critical patent/CN110983267A/zh
Priority to US16/857,156 priority patent/US11254612B2/en
Application granted granted Critical
Publication of CN110983267B publication Critical patent/CN110983267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/34Hydraulic lime cements; Roman cements ; natural cements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/483Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/63Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00008Obtaining or using nanotechnology related materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00318Materials characterised by relatively small dimensions, e.g. small thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于无机材料技术领域,具体涉及一种水泥水化产物自支撑纳米薄膜的制备方法,包含以下步骤:(1)制备水泥水化产物靶材;(2)制备水牺牲层薄膜;(3)采用所述步骤(1)中得到的水泥水化产物靶材对步骤(2)中得到的水牺牲层薄膜表面进行溅射镀膜,得到水泥水化产物薄膜;(4)将所述步骤(3)的水泥水化产物薄膜置于氢氧化钙饱和水溶液中浸泡,使水牺牲层薄膜水解,得到水泥水化产物自支撑纳米薄膜;其中,所述水泥水化产物为C‑S‑H、AFt或AFm。采用本发明的方法制备的水泥水化产物自支撑纳米薄膜均匀单一,尺寸和厚度可控。

Description

一种水泥水化产物自支撑纳米薄膜的制备方法
技术领域
本发明属于无机材料技术领域,具体涉及一种水泥水化产物自支撑纳米薄膜的制备方法。
技术背景
水泥是世界上使用量最大和应用最广泛的建筑材料。在过去十年,全球的水泥年产量均在30亿吨以上,已成为支撑人类社会文明发展的重要材料;未来相当长时期内,水泥仍将作为主要的建筑材料应用于各工程领域中。
水泥水化产物主要为水化硅酸钙(C-S-H)、钙矾石(AFt)和水化硫铝酸钙(AFm)。三者占水化产物的78%-85%,是材料强度的主要来源,也是影响水泥建筑结构耐久性的主要因素,通过对C-S-H、AFt和AFm的研究,对水泥材料的工作机理有一个更精确的把握,为解决混凝土建筑质量和耐久性问题提供理论依据,对整个国民经济影响重大,因此C-S-H、AFt和AFm具有重要的研究价值。
以往的C-S-H、AFt和AFm研究主要集中在宏观或细观尺度,由于水泥基建筑材料的破坏是由微观到宏观的发展过程,所以C-S-H、AFt和AFm材料在微观层面的研究尤为重要。但是由于C-S-H、AFt和AFm结构复杂,目前关于其微观结构研究相对较少,多年来C-S-H的微纳观研究只能局限于第一性原理和分子动力学计算模拟,而关于AFt和AFm的微纳观研究更是寥寥无几。水泥熟料与水反应后,生成的水泥水化产物将逐渐以“薄膜(层)”形式“梯度地”覆盖在未水化水泥颗粒表面。如这些水化硅酸钙根据薄膜(层)梯度密度不同,可简单地划分为低密度水化硅酸钙、高密度水化硅酸钙或者超高密度水化硅酸钙。这些不同形态的水化产物薄膜展现出不同的传输特征和力学特性,对水泥基材料的宏观特性产生深刻的影响。因此,制备和分析微纳观尺度的水泥水化产物C-S-H、AFt和AFm自支撑薄膜显得尤其重要。
微纳米薄膜的制备是研究材料微纳观特性的常见手段,常用的镀膜制备方法包括物理气相沉积法、化学气相沉积法、溶液镀膜法、磁控溅射法和热蒸镀法等。磁控溅射是一种十分有效物理气相沉积方法,该方法利用阴极溅射原理进行镀膜,膜层粒子来源于辉光发电中正离子对阴极靶材的溅射作用。磁控溅射技术被普遍和成功地应用于薄膜沉积和表面覆盖层制备。磁控溅射镀膜的应用范围广泛,可制备成靶材的材料均可被制作成薄膜,包括各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷、聚合物等物质;在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气氛中加入氧、氢或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,可获得均匀的高精度的膜厚,且重复性好;溅射粒子几乎不受重力影响,靶材与衬底位置可自由调整;衬底与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续扩散而得到坚硬且致密的薄膜,同时高能量使衬底在较低的温度下也可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。热蒸镀法也是一种技术成熟的沉积薄膜的方法,原材料在真空腔中被电子束或者电阻丝加热蒸发成气态,气态的源材料会直接粘附在置于原材料上侧的衬底上,而不会与背景气氛碰撞,相对于其他薄膜薄膜制备技术,蒸发沉积一般在高真空条件下进行,薄膜沉积速率比较高,化学纯度比较高,对衬底的辐射损伤较小,同时易于进行薄膜的自动精密监控从而实现制膜过程的全自动化。目前还未见磁控溅射方法和热蒸镀方法用于水泥水化产物自支撑薄膜纳米薄膜制备的相关报道。
发明内容
本发明的目的在于提供一种水泥水化产物自支撑纳米薄膜的制备方法,用以制备组分均匀单一、尺寸可控的C-S-H、AFt和AFm纳米薄膜,可以方便地检测其形貌和结构,测量其微观力学性能。
本发明实现目的所采用的方案是:一种水泥水化产物自支撑纳米薄膜的制备方法,包含以下步骤:
(1)制备水泥水化产物靶材;
(2)制备水牺牲层薄膜;
(3)采用所述步骤(1)中得到的水泥水化产物靶材对步骤(2)中得到的水牺牲层薄膜表面进行溅射镀膜,得到水泥水化产物薄膜;
(4)将所述步骤(3)的水泥水化产物薄膜置于氢氧化钙饱和水溶液中浸泡,使水牺牲层薄膜水解,得到水泥水化产物自支撑纳米薄膜;
其中,所述水泥水化产物为C-S-H、AFt或AFm。
优选地,所述步骤(1)中,水泥水化产物的制备如下:C-S-H以硝酸钙、硅酸钠和氢氧化钠为原材料,利用溶胶凝胶法来制备,或者以生石灰和石英砂为原材料,利用200℃水热反应来制备;采用高温烧结法制备铝酸三钙,AFt采用铝酸三钙水化反应法合成;AFm用铝酸三钙和纯石膏制得。
优选地,所述步骤(1)中,水泥水化产物中:C-S-H化学式为(CaO)x·SiO2·nH2O,其中x取值范围为0.5~3.0;AFt化学式为3CaO·Al2O3·3CaSO4·nH2O,n为30~32;AFm化学式为3CaO·Al2O3·CaSO4·mH2O,m为8、10、12、14和16。
优选地,所述步骤(1)中,将水泥水化产物在50~90℃下干燥除去自由水,冷却后研磨成粉体,按照水泥水化产物与无水乙醇的固液比为(10-13)g:(5-6)ml加入无水乙醇,以200~300MPa的压力压制得到直径50~60mm、厚度4~6mm的水泥水化产物靶材。
另一优选地,所述步骤(1)中,将水泥水化产物在60℃的温度下真空保存25天,按照水泥水化产物中硅酸钙与无水乙醇的固液比为(10-13)g:(5-6)ml加入无水乙醇,以280Mpa的压力压制成直径为60mm、厚度为4-5mm的靶材。
优选地,所述步骤(2)中,水牺牲层薄膜为铝酸锶薄膜、氯化钠薄膜或氯化钾薄膜。
优选地,所述铝酸锶薄膜采用磁控溅射仪进行溅射镀膜制备:利用溶胶凝胶法合成铝酸锶并将其研磨成粉体,按照铝酸锶与无水乙醇的固液比为(25-28)g:(7-8)ml加入无水乙醇,以400~600MPa的压力压制得到直径50~60mm、厚度4~6mm的铝酸锶靶材,并将铝酸锶靶材在700~1300℃下煅烧8~12h;将衬底固定在所述磁控溅射仪的样品台上,将铝酸锶靶材置于磁控靶位,调整衬底与靶材之间的距离为2~10cm;将镀膜室抽真空,控制真空度不大于1×10-3Pa;向镀膜室通入氩气或氪气,控制气体的流量在10~100sccm,控制溅射室气压为0.5~2.5Pa;施加溅射功率启辉,设置溅射输出功率为50~250W,调节反溅功率不超过限值0.2~1W,预溅射5~10min;打开样品台自转系统使衬底匀速转动,开始向衬底表面溅射镀膜,溅射时间为100~400min,以得到80~200nm铝酸锶薄膜。
另一优选地,铝酸锶中滴入6ml无水乙醇,以550Mpa的压力压制成直径为60mm、厚度为5mm的靶材,所述煅烧温度为1200℃,煅烧时间为10h。采用的衬底为玻璃片、硅片、金属或金属氧化物薄片,衬底与靶材间的距离为3cm;气体流量为20sccm;镀膜时,控制镀膜室气压为2.0Pa;溅射输出功率为120W,反溅功率限值为0.4W,预溅射时间为10min;磁控溅射时间为300min。
优选地,所述氯化钠薄膜和氯化钾薄膜通过固体热蒸镀方法制备:将0.5~1gNaCl或者KCl固体放置在钨蒸发舟内,调节蒸镀腔的气压为1~5×10-4Pa,打开样品台自转系统使衬底匀速转动,调节蒸镀功率使得生长速率控制在0.5~1nm/s,衬底的温度维持在室温,利用膜厚仪监控NaCl或者KCl薄膜的厚度,直至得到80~200nm的氯化钠薄膜或氯化钾薄膜。
优选地,所述步骤(3)中,采用磁控溅射仪进行溅射镀膜:将带有所述步骤(2)中水牺牲层薄膜的衬底固定在所述磁控溅射仪的样品台上,将所述步骤(1)中得到的水泥水化产物靶材置于磁控靶位,调整衬底与靶材之间的距离为2~10cm;将所述磁控溅射仪的镀膜室抽真空,控制真空度不大于1×10-3Pa;向镀膜室通入氩气或氪气,并控制气体的流量在10~100sccm,控制溅射室气压为0.5~2.5Pa;施加溅射功率启辉,设置溅射输出功率为50~250W,调节反溅功率不超过限值0.2~1W,预溅射5~10min;打开样品台自转系统使衬底匀速转动,开始向水牺牲层薄膜表面溅射镀膜,溅射时间为200~500min,得到所述水泥水化产物薄膜。
另一优选地,衬底与靶材间的距离为3cm;气体流量为20sccm;镀膜时,控制镀膜室气压为2.0Pa;溅射输出功率为100W,反溅功率限值为0.4W,预溅射时间为8min;磁控溅射时间为480min。
本发明的方法通用性好:本发明使用的磁控溅射仪和热蒸镀仪是技术成熟的薄膜制备设备,同类仪器使用相同参数即可达到与实施例相同的效果,不同型号的设备只需简单调整参数,如功率和时间即可达到与实施例相同的效果。
优选地,所述步骤(4)中还包括以下操作:在所述步骤(3)得到的水泥水化产物薄膜表面涂覆厚度为0.1~1um有机高分子材料层,并将有机高分子材料层粘附于载体,然后将其作为整体置于氢氧化钙饱和水溶液中,浸泡至水牺牲层薄膜水解,所述水泥水化产物薄膜附着在有机高分子材料表面并附着于载体,再在有机溶剂中浸泡至有机高分子材料溶解,水泥水化产物薄膜自铜网分离,得到所述水泥水化产物自支撑纳米薄膜。
浸泡在氢氧化钙饱和水溶液中时,衬底朝下放置,待水牺牲层薄膜水解后,衬底落入溶液,所述水泥水化产物薄膜附着在有机高分子材料表面并附着于载体;浸泡在有机溶剂时,按照从上到下为水泥水化产物薄膜、有机高分子材料和载体的顺序放置,待有机高分子材料溶解后,水泥水化产物自支撑纳米薄膜自铜网分离,但在重力的作用下水泥水化产物自支撑纳米薄膜仍然承载在载体表面,便于操作者获得。
优选地,所述载体为铜网或碳微栅,所述有机高分子材料为PMMA,所述有机溶剂为丙酮。
此操作的优点在于:1)氢氧化钙饱和溶液呈碱性,不会与水泥水化产物薄膜反应,破坏水泥水化产物薄膜;2)氢氧化钙饱和溶液中只含有氢氧根和钙离子,不会污染水泥水化产物薄膜;3)氢氧化钙饱和溶液浓度较低,不会造成水泥水化产物薄膜中钙离子的溶出,导致薄膜的钙硅比改变;4)若直接将水泥水化产物薄膜置于氢氧化钙饱和溶液中,薄膜与水牺牲层及衬底分离后,由于水泥水化产物薄膜厚度小,在溶液中可见度低,难以寻获,通过此步骤将水泥水化产物薄膜粘附在载体上,经过氢氧化钙饱和溶液浸泡脱去水牺牲层和衬底后,将附着有水泥水化产物薄膜的载体置于丙酮溶液,PMMA溶解后,水泥水化产物薄膜承载于载体表面,便于寻获;5)由于丙酮的易挥发性,因此经过该步骤处理,不会污染薄膜。
通过水牺牲层薄膜的水解和有机高分子材料的溶解,控制磁控溅射的沉积速率,可以获得纯净均匀和无杂质的水泥水化产物薄膜;
本发明具有以下优点和有益效果:
1、采用本发明的方法制备的水泥水化产物自支撑纳米薄膜尺寸和厚度可控:调整水牺牲层薄膜的尺寸可以制备所需尺寸的水泥水化产物自支撑纳米薄膜;通过调整溅射参数可以控制水泥水化产物薄膜的制备厚度;
2、本发明的方法制备过程简单、经济性好、采用的仪器设备常见,通用性好;
3、本发明的方法制备的水泥水化产物自支撑纳米薄膜,既能消除衬底对水泥水化产物薄膜的微纳测试的不利影响,又不破坏薄膜的微纳结构,水化产物自支撑纳米薄膜可以方便地用于后续实验,如形貌观测和微观力学性能的测试等。
附图说明
图1为实施例一中制备的钙硅比为1.0水化硅酸钙自支撑纳米薄膜在铜网上的光学图像;
图2为实施例二中制备的钙硅比为1.5水化硅酸钙自支撑纳米薄膜在铜网上的光学图像;
图3为实施例三中制备的钙硅比为2.0水化硅酸钙自支撑纳米薄膜在铜网上的光学图像。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例一:
本实施方式利用磁控溅射法制备钙硅比为1.0水化硅酸钙自支撑纳米薄膜的方法,选用的水牺牲材料是铝酸锶,按以下步骤进行:
(1)合成钙硅比为1.0的水化硅酸钙粉末;
(2)将合成的水化硅酸钙在60℃条件下真空保存25天;
(3)取出13g水化硅酸钙研磨成粉体,滴加2ml无水乙醇并以270MPa的压力压制得到直径60mm和厚度4mm的靶材,抽真空密封保存;
(4)通过溶胶凝胶法制得铝酸锶,研磨成粉体,滴加6ml无水乙醇并以540MPa的压力压制得到直径60mm和厚度4mm的靶材,密封保存。
(5)玻璃片作为衬底放置于磁控溅射仪的镀膜样品台上,将铝酸锶靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm;
(6)将镀膜室抽真空,控制真空度为5×10-4Pa;
(7)向镀膜室通入氩气,控制惰性气体的流量为20sccm,控制镀膜腔室气压为2Pa;
(8)施加溅射功率启辉,设置溅射输出功率为100W,调节反溅功率小于0.4W,预溅射8min;
(9)打开样品台自转系统使衬底匀速转动,开始向衬底表面溅射镀膜,溅射时间共300min,分2次进行,每次镀膜150min,每两次之间休息10min,得到铝酸锶薄膜;
(10)取出铝酸锶靶材,将水化硅酸钙靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm,重复步骤(6)~(8);
(11)打开样品台自转系统使衬底匀速转动,开始向铝酸锶薄膜表面镀膜,溅射时间共480min,分8次进行,每次镀膜60min,每两次之间休息10min,得到带有两层薄膜的衬底;
(12)将带有两层薄膜的衬底放入台式匀胶机,将事先准备好的高温熔化(100℃和2min)的PMMA溶液放入移液枪,设置转速(4000rpm/min)和时间(1min),在薄膜表面涂上一层厚度为200nm的PMMA。
(13)将步骤(12)中有机高分子材料上部粘附透射电镜铜网,并置于饱和氢氧化钙溶液中,浸泡2天,脱去铝酸锶和衬底。
(14)将经过步骤(13)处理的粘附薄膜的铜网置于丙酮溶液中,浸泡12h,脱去PMMA,得到钙硅比为1.0的水化硅酸钙自支撑纳米薄膜。
图1为本实施例制备的钙硅比为1.0水化硅酸钙自支撑纳米薄膜在铜网上的光学图像(放大倍数为20),从图中可以看出:水化硅酸钙自支撑纳米薄膜主要分布在图1的右边,铜网通孔中部的薄膜有破损和塌陷,主要原因是水泥水化产物是脆性材料,能承受的扰度能力较差。此外,由于的光的干涉,塌陷的边缘处出现光干涉圆环。
实施例二:
本实施方式利用磁控溅射法制备钙硅比为1.5的水化硅酸钙自支撑纳米薄膜的方法,选用的水牺牲材料是铝酸锶,按以下步骤进行:
(1)合成钙硅比为1.5的水化硅酸钙粉末;
(2)将合成的水化硅酸钙在50℃条件下真空保存30天;
(3)取出13g水化硅酸钙研磨成粉体,滴加3ml无水乙醇并以290MPa的压力压制得到直径60mm、厚度4mm的靶材,抽真空密封保存;
(4)通过溶胶凝胶法制得铝酸锶,研磨成粉体,滴加6ml无水乙醇并以540MPa的压力压制得到直径60mm、厚度4mm的靶材,密封保存。
(5)玻璃片作为衬底放置于磁控溅射仪的镀膜样品台上,将铝酸锶靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm;
(6)将镀膜室抽真空,控制真空度为1×10-3Pa;
(7)向镀膜室通入氩气,控制惰性气体的流量为20sccm,控制镀膜腔室气压为2Pa;
(8)施加溅射功率启辉,设置溅射输出功率为100W,调节反溅功率小于0.4W,预溅射8min;
(9)打开样品台自转系统使衬底匀速转动,开始向衬底表面溅射镀膜,溅射时间共300min,分2次进行,每次镀膜150min,每两次之间休息10min,得到铝酸锶薄膜;
(10)取出铝酸锶靶材,将水化硅酸钙靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm,重复步骤(6)~(8);
(11)打开样品台自转系统使衬底匀速转动,开始向铝酸锶薄膜表面镀膜,溅射时间共480min,分8次进行,每次镀膜60min,每两次之间休息10min,得到带有两层薄膜的衬底;
(12)将带有两层薄膜的衬底放入台式匀胶机,将事先准备好的高温熔化(100℃和2min)的PMMA溶液放入移液枪,设置转速(4000rpm/min)和时间(1min),在表面涂上一层厚度为200nm的PMMA。
(13)将步骤(12)中有机高分子材料上部粘附透射电镜铜网,并置于饱和氢氧化钙溶液中,浸泡2天,脱去铝酸锶和衬底。
(14)将经过步骤(13)处理的粘附薄膜的铜网置于丙酮溶液中,浸泡12h,脱去PMMA,得到钙硅比为1.5的水化硅酸钙自支撑纳米薄膜。
图2为实施例二中制备的钙硅比为1.5水化硅酸钙自支撑纳米薄膜在铜网上的光学图像(放大倍数为20),从图中可以看出:水化硅酸钙自支撑纳米薄膜主要分布在图2的中部,铜网通孔中部的薄膜仍有破损和塌陷,且塌陷的边缘处出现光干涉彩色圆环。
实施例三:
本实施方式利用磁控溅射法制备钙硅比为2.0水化硅酸钙自支撑纳米薄膜的方法,选用的水牺牲材料是铝酸锶,按以下步骤进行:
1)合成钙硅比为2.0的水化硅酸钙粉末;
(2)将合成的水化硅酸钙在60℃条件下真空保存28天;
(3)取出13g水化硅酸钙研磨成粉体,滴加3.5ml无水乙醇并以300MPa的压力压制得到直径60mm、厚度4.5mm的靶材,抽真空密封保存;
(4)通过溶胶凝胶法制得铝酸锶,研磨成粉体,滴加6ml无水乙醇并以540MPa的压力压制得到直径60mm、厚度4mm的靶材,密封保存。
(5)玻璃片作为衬底放置于磁控溅射仪的镀膜样品台上,将铝酸锶靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm;
(6)将镀膜室抽真空,控制真空度为1×10-3Pa;
(7)向镀膜室通入氩气,控制惰性气体的流量为20sccm,控制镀膜腔室气压为2Pa;
(8)施加溅射功率启辉,设置溅射输出功率为100W,调节反溅功率小于0.4W,预溅射8min;
(9)打开样品台自转系统使衬底匀速转动,开始向衬底表面溅射镀膜,溅射时间共300min,分2次进行,每次镀膜150min,每两次之间休息10min,得到铝酸锶薄膜;
(10)取出铝酸锶靶材,将水化硅酸钙靶材置于磁控靶位,调整衬底与靶材之间的距离为3cm,重复步骤(6)~(8);
(11)打开样品台自转系统使衬底匀速转动,开始向铝酸锶薄膜表面镀膜,溅射时间共480min,分8次进行,每次镀膜60min,每两次之间休息10min,得到带有两层薄膜的衬底;
(12)将带有两层薄膜的衬底放入台式匀胶机,将事先准备好的高温熔化(100℃和2min)的PMMA溶液放入移液枪,设置转速(4000rpm/min)和时间(1min),在表面涂上一层厚度为200nm的PMMA。
(13)将步骤(12)中有机高分子材料上部粘附透射电镜铜网,并置于饱和氢氧化钙溶液中,浸泡2天,脱去铝酸锶和衬底。
(14)将经过步骤(13)处理的粘附薄膜的铜网置于丙酮溶液中,浸泡12h,脱去PMMA,得到钙硅比为2.0的水化硅酸钙自支撑纳米薄膜。
图3为实施例三中制备的钙硅比为2.0水化硅酸钙自支撑纳米薄膜在铜网上的光学图像(放大倍数为20),从图中可以看出:水化硅酸钙自支撑纳米薄膜覆盖了图3的全部铜网,铜网通孔中部的薄膜仍有破损和塌陷,塌陷的边缘处出现光干涉彩色圆环。此外图3中也发现有小部分薄膜出现重叠的情况。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (10)

1.一种水泥水化产物自支撑纳米薄膜的制备方法,其特征在于,包括以下步骤:
(1)制备水泥水化产物靶材;
(2)制备水牺牲层薄膜;
(3)采用所述步骤(1)中得到的水泥水化产物靶材对步骤(2)中得到的水牺牲层薄膜表面进行溅射镀膜,得到水泥水化产物薄膜;
(4)将所述步骤(3)的水泥水化产物薄膜置于氢氧化钙饱和水溶液中浸泡,使水牺牲层薄膜水解,得到水泥水化产物自支撑纳米薄膜;
其中,所述水泥水化产物为C-S-H、AFt或AFm。
2.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(1)中,水泥水化产物的制备如下:C-S-H以硝酸钙、硅酸钠和氢氧化钠为原材料,利用溶胶凝胶法来制备,或者以生石灰和石英砂为原材料,利用200℃水热反应来制备;采用高温烧结法制备铝酸三钙,AFt采用铝酸三钙水化反应法合成;AFm用铝酸三钙和纯石膏制得。
3.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(1)中,水泥水化产物中:C-S-H化学式为(CaO)x·SiO2·nH2O,其中x取值范围为0.5~3.0;AFt化学式为3CaO·Al2O3·3CaSO4·nH2O,其中n为30~32;AFm化学式为3CaO·Al2O3·CaSO4·mH2O,其中m为8、10、12、14和16。
4.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(1)中,将水泥水化产物在50~90℃下干燥除去自由水,冷却后研磨成粉体,按照水泥水化产物与无水乙醇的固液比为(10-13)g:(5-6)ml加入无水乙醇,以200~300MPa的压力压制得到直径50~60mm、厚度4~6mm的水泥水化产物靶材。
5.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(2)中,水牺牲层薄膜为铝酸锶薄膜、氯化钠薄膜或氯化钾薄膜。
6.根据权利要求5所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述铝酸锶薄膜采用磁控溅射仪进行溅射镀膜制备:利用溶胶凝胶法合成铝酸锶并将其研磨成粉体,按照铝酸锶与无水乙醇的固液比为(25-28)g:(7-8)ml加入无水乙醇,以400~600MPa的压力压制得到直径50~60mm、厚度4~6mm的铝酸锶靶材,并将铝酸锶靶材在700~1300℃下煅烧8~12h;将衬底固定在所述磁控溅射仪的样品台上,将铝酸锶靶材置于磁控靶位,调整衬底与靶材之间的距离为2~10cm;将镀膜室抽真空,控制真空度不大于1×10-3Pa;向镀膜室通入氩气或氪气,控制气体的流量在10~100sccm,控制溅射室气压为0.5~2.5Pa;施加溅射功率启辉,设置溅射输出功率为50~250W,调节反溅功率不超过限值0.2~1W,预溅射5~10min;打开样品台自转系统使衬底匀速转动,开始向衬底表面溅射镀膜,溅射时间为100~400min,以得到80~200nm铝酸锶薄膜。
7.根据权利要求5所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述氯化钠薄膜和氯化钾薄膜通过固体热蒸镀方法制备:将0.5~1g NaCl或者KCl固体放置在钨蒸发舟内,调节蒸镀腔的气压为1~5×10-4Pa,打开样品台自转系统使衬底匀速转动,调节蒸镀功率使得生长速率控制在0.5~1nm/s,衬底的温度维持在室温,利用膜厚仪监控NaCl或者KCl薄膜的厚度,直至得到80~200nm的氯化钠薄膜或氯化钾薄膜。
8.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(3)中,采用磁控溅射仪进行溅射镀膜:将带有所述步骤(2)中水牺牲层薄膜的衬底固定在所述磁控溅射仪的样品台上,将所述步骤(1)中得到的水泥水化产物靶材置于磁控靶位,调整衬底与靶材之间的距离为2~10cm;将所述磁控溅射仪的镀膜室抽真空,控制真空度不大于1×10-3Pa;向镀膜室通入氩气或氪气,并控制气体的流量在10~100sccm,控制溅射室气压为0.5~2.5Pa;施加溅射功率启辉,设置溅射输出功率为50~250W,调节反溅功率不超过限值0.2~1W,预溅射5~10min;打开样品台自转系统使衬底匀速转动,开始向水牺牲层薄膜表面溅射镀膜,溅射时间为200~500min,得到所述水泥水化产物薄膜。
9.根据权利要求1所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述步骤(4)中还包括以下操作:在所述步骤(3)得到的水泥水化产物薄膜表面涂覆厚度为0.1~1um有机高分子材料层,并将有机高分子材料层粘附于载体,然后将其作为整体置于氢氧化钙饱和水溶液中,浸泡至水牺牲层薄膜水解,所述水泥水化产物薄膜附着在有机高分子材料表面并附着于载体,再在有机溶剂中浸泡至有机高分子材料溶解,水泥水化产物薄膜自铜网分离,得到所述水泥水化产物自支撑纳米薄膜。
10.根据权利要求9所述的水泥水化产物自支撑纳米薄膜的制备方法,其特征在于:所述载体为铜网或碳微栅,所述有机高分子材料为PMMA,所述有机溶剂为丙酮。
CN201911012370.6A 2019-10-23 2019-10-23 一种水泥水化产物自支撑纳米薄膜的制备方法 Active CN110983267B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911012370.6A CN110983267B (zh) 2019-10-23 2019-10-23 一种水泥水化产物自支撑纳米薄膜的制备方法
US16/857,156 US11254612B2 (en) 2019-10-23 2020-04-23 Method of preparing nano-thin film of cement hydration product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911012370.6A CN110983267B (zh) 2019-10-23 2019-10-23 一种水泥水化产物自支撑纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110983267A true CN110983267A (zh) 2020-04-10
CN110983267B CN110983267B (zh) 2021-01-15

Family

ID=70082420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911012370.6A Active CN110983267B (zh) 2019-10-23 2019-10-23 一种水泥水化产物自支撑纳米薄膜的制备方法

Country Status (2)

Country Link
US (1) US11254612B2 (zh)
CN (1) CN110983267B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487223B (zh) * 2018-12-26 2020-01-07 武汉大学 水化硅酸钙纳米薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350038A (zh) * 2001-11-13 2002-05-22 中国耀华玻璃集团公司 具有远红外反射性能的节能材料及其制备方法
CN103432624A (zh) * 2013-08-13 2013-12-11 清华大学 可注射液态金属骨水泥及其制备方法和专用注射装置
CN203824559U (zh) * 2014-05-19 2014-09-10 金陵科技学院 适用于水泥基材料早龄期变形观测的标靶
CN104800892A (zh) * 2015-04-08 2015-07-29 浙江理工大学 一种耐磨SiC/TiO2/Ti缓冲材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350038A (zh) * 2001-11-13 2002-05-22 中国耀华玻璃集团公司 具有远红外反射性能的节能材料及其制备方法
CN103432624A (zh) * 2013-08-13 2013-12-11 清华大学 可注射液态金属骨水泥及其制备方法和专用注射装置
CN203824559U (zh) * 2014-05-19 2014-09-10 金陵科技学院 适用于水泥基材料早龄期变形观测的标靶
CN104800892A (zh) * 2015-04-08 2015-07-29 浙江理工大学 一种耐磨SiC/TiO2/Ti缓冲材料及其制备方法

Also Published As

Publication number Publication date
US20210122674A1 (en) 2021-04-29
US11254612B2 (en) 2022-02-22
CN110983267B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN105777800B (zh) 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法
CN101746961A (zh) 在平板玻璃上沉积多晶β-Ga2O3薄膜的方法
CN110983267B (zh) 一种水泥水化产物自支撑纳米薄膜的制备方法
CN105887015A (zh) 制备大面积单层二硫化钨和二硫化钼结构的分步气相方法
CN105779956A (zh) 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法
JP3603112B2 (ja) アルミナ結晶質薄膜の低温製法
CN1262692C (zh) 一种硅纳米线及其制备方法
CN105529172B (zh) 一种用于钐钴磁体工件表面防护的方法
CN113529033A (zh) 一种防护涂层的制备方法及制备得到的防护涂层
Zywitzki et al. Effect of plasma activation on the phase transformations of aluminum oxide
CN109487223B (zh) 水化硅酸钙纳米薄膜的制备方法
US7429408B2 (en) Method for preparing calcium aluminate film containing oxygen radical and laminate
Kim et al. Microstructural features affecting optical properties of vacuum kinetic sprayed Al2O3 thin film
CN107298439A (zh) 一种利用飞秒激光制备石墨烯片的方法
Bernhardt et al. Properties of amorphous SiAlON thin films grown by RF magnetron co-sputtering
JP2006205558A (ja) アルミナコーティング構造体およびその製造方法
Tse et al. ZnO thin films produced by filtered cathodic vacuum arc technique
CN104790032A (zh) 激光脉冲溅射沉积制备多晶硅薄膜的方法
Yue et al. Structure of nanometer-size crystalline Ti film
CN113387683A (zh) 一种锂钴锰氧化物靶材及其制备方法
Kim et al. MOCVD growth and annealing of gallium oxide thin film and its structural characterization
CN113235159B (zh) 一种制备单晶镍铁氧体薄膜的方法
Lim et al. Growth of sputtered-aluminum oxide thin films on Si (100) and Si (111) substrates with Al2O3 buffer layer
Wang et al. Effects of substrate temperature on crystallite orientation of HfO2 thin films
RU2428505C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК НА ОСНОВЕ EuS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant