CN110979304A - 车辆在变附着工况下力矩分配方法 - Google Patents

车辆在变附着工况下力矩分配方法 Download PDF

Info

Publication number
CN110979304A
CN110979304A CN201911344972.1A CN201911344972A CN110979304A CN 110979304 A CN110979304 A CN 110979304A CN 201911344972 A CN201911344972 A CN 201911344972A CN 110979304 A CN110979304 A CN 110979304A
Authority
CN
China
Prior art keywords
vehicle
yaw
centroid
torque
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911344972.1A
Other languages
English (en)
Other versions
CN110979304B (zh
Inventor
郭烈
冯金盾
岳明
陈俊杰
赵剑
齐国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201911344972.1A priority Critical patent/CN110979304B/zh
Publication of CN110979304A publication Critical patent/CN110979304A/zh
Application granted granted Critical
Publication of CN110979304B publication Critical patent/CN110979304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1315Location of the centre of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

车辆在变附着工况下力矩分配方法,属于新能源汽车车辆稳定性控制领域,为解决优化车辆力矩分配的问题,要点是步骤三:以测量得到的实际横摆角速度和质心侧偏角与期望的横摆角速度和质心侧偏角作为运动跟踪控制器的输入,根据横摆角速度偏差和质心侧偏角偏差,决策出用于修正车辆失稳的附加横摆力矩;步骤四:根据驾驶员意图确定车辆行驶的驱动力矩;步骤五:在变附着工况下对力矩分配,效果是提高车辆行驶的稳定性。

Description

车辆在变附着工况下力矩分配方法
技术领域
本发明属于新能源汽车车辆稳定性控制领域,特别是针对汽车处于极限工况下实现车辆稳定性的直接横摆力矩控制器的设计方法。
背景技术
随着全球汽车保有量的迅速增加,频发的交通事故造成大量的人身伤亡和财产损失。所以汽车安全性问题一直是国内外各大汽车企业及科研院所研究的重点,致力于提高汽车的主动安全性。在高速大转向、高速移线、侧向风干扰等极限工况,汽车轮胎极易工作于非线性区域,车辆质心侧偏角迅速增大,横摆角速度响应呈现非线性变化,导致车辆偏离预定的行驶轨迹甚至失控,最终导致交通事故的发生。
汽车主动安全系统通过环境感知技术获取车辆周围信息环境以及通过传感器技术或软测量技术采集车辆状态信息,并将获得的车辆自身及周围的信息实时反馈给驾驶员,提高驾驶员行车时对危险的预判能力和争取更多避免交通事故的操纵反应时间,为汽车驾驶员创造安全的驾驶环境;此外,当车辆进入危险驾驶状态时主动安全系统提前采取干预措施,抵抗外界的干扰,提高行驶轨迹跟踪能力,保持车辆稳定行驶。直接横摆力矩控制作为一种主动安全控制技术,被应用到新能源汽车上。直接横摆力矩控制主要包括:车辆状态信息精确获取模块,车辆失稳判断模块,横摆力矩决策及分配模块。车辆状态信息精确获取模块是通过传感器或软测量的方法精确获取车辆状态信息。车辆失稳判断模块是根据车辆状态信息获取模块获得的车辆重要状态信息进行判断车辆是否失稳。横摆力矩决策及分配模块是根据横摆力矩控制器模块判断的失稳情况,是否进行主动控制,当提示车辆失稳,横摆力矩控制器起作用,产生用于修正车辆失稳的横摆力矩,然后进行力矩分配。失稳判断模块中如何精准确定失稳触发和结束判定时间以及如何提高误报和漏报率是进行极限工况下车辆失稳判据的技术难点。横摆力矩控制器设计中如何提高极限工况下控制器的鲁棒性、准确性以及如何实现车辆最优力矩分配是横摆力矩控制器设计的技术难点。
发明内容
为解决车辆力矩分配的问题,本发明提出一种车辆在变附着工况下力矩分配方法,包括如下步骤:
步骤一:对车辆关键参数进行采集,并输入到车辆参考模型中得到期望的横摆角速度和质心侧偏角;
步骤二:判断车辆稳定性,失稳情况下执行步骤三;
步骤三:以测量得到的实际横摆角速度和质心侧偏角与期望的横摆角速度和质心侧偏角作为运动跟踪控制器的输入,根据横摆角速度偏差和质心侧偏角偏差,决策出用于修正车辆失稳的附加横摆力矩;
步骤四:根据驾驶员意图确定车辆行驶的驱动力矩;
步骤五:在变附着工况下对力矩分配。
在一种方案中,步骤一的车辆参考模型的是基于侧向和横摆两个方向的车辆二自由度车辆模型:
Figure BDA0002333079880000021
车辆在稳态条件下
Figure BDA0002333079880000022
带入上式得:
Figure BDA0002333079880000023
根据所述车辆参考模型得到期望横摆角速度和期望质心侧偏角的方法是:
(1)期望横摆角速度
Figure BDA0002333079880000024
期望横摆角速度受路面附着条件的限制:
Figure BDA0002333079880000025
综上期望横摆角速度满足以下关系:
γd=min(|γd|,γmax)sign(γd) (8)
(2)期望质心侧偏角
Figure BDA0002333079880000031
受路面附着条件的限制,满足以下条件:
βmax=arctan(0.02μg) (10)
综上期望质心侧偏角满足以下关系:
βd=min(|βd|,βmax)sign(βd) (11)
m:整车质量,vx:纵向车速,β:质心侧偏角,γ:横摆角速度,kf:前轴侧偏刚度,kr:后轴侧偏刚度,a:前轴至质心的距离,b:后轴至质心的距离,L:轴距,δ:前轮转角,βd:期望质心侧偏角,βmax:最大质心侧偏角γd:期望横摆角速度,γmax:最大横摆角速度,K:稳定性因数,μ:路面附着系数,g:重力加速度,Iz:绕z轴转动惯量。
在一种方案中,步骤二采用模型-相平面的方法对横摆角速度和质心侧偏角进行联合失稳判断,横摆角速度采用模型法进行判断,质心侧偏角采用相平面法进行判断。
在一种优选方案中,对于步骤三,决策出用于修正车辆失稳的附加横摆力矩方法,具体涉及一种行驶车辆决策附加横摆力矩的方法,包括如下步骤:
S3.1.选取滑模面;
S3.2.确定滑模结构趋近律;
S3.3.确定附加横摆力矩。
进一步的,滑模面表示为:
s=ξ(γ-γd)+(1-ξ)(β-βd) (12)
s:滑模面,ξ:加权系数,γ:横摆角速度,γd:期望横摆角速度,β:质心侧偏角,βd:期望质心侧偏角;
滑模结构趋近律表示为:
Figure BDA0002333079880000041
附加横摆力矩表示为:
Figure BDA0002333079880000042
ΔM:附加横摆力矩,Iz:绕z轴转动惯量,ks:滑模面切换系数,a:前轴至质心的距离,Fyf:前轴轮胎侧偏力,b:后轴至质心的距离,Fyr:后轴轮胎侧偏力。
进一步的,加权系数ξ的确定规则:
当实际质心侧偏角|β|<β1,β1是质心侧偏角下限值,车辆发生小程度的失稳,需对横摆角速度进行控制,加权系数为1;
当实际质心侧偏角处于β1<|β|<β2,β2是质心侧偏角上限值,车辆发生中度失稳,需要对横摆角速度和质心侧偏角进行联合控制,加权系数为0~1;
当实际质心侧偏角|β|>β2,车辆发生严重失稳,行驶轨迹发生严重偏离,需对质心侧偏角进行控制,加权系数为0。
进一步的,模糊规则为:(1)若|β|为小,则ξ为小;(2)若|β|为大,则ξ为大,加权系数ξ的确定方法如下:以实际的质心侧偏角的绝对值|β|作为模糊控制器输入量,以加权系数ξ作为模糊控制的输出量,根据模糊规则对加权系数进行调整;输入量|β|的论域选择为[0,1],输出量ξ的论域选择为[0,1],输入量|β|的模糊语言为S,B,分别表示为小,大,输出量ξ的模糊语言为S,B分别表示为小,大,给定输入量|β|隶属度函数,及输入量|β|与输出量ξ的关系曲线,确定加权系数ξ。
进一步的,根据车辆行驶工况不同,车辆发生失稳程度不同,实际质心侧偏角的绝对值|β|不同,得到不同加权系数ξ,确定的滑模面因加权系数ξ能够因车辆不同行驶工况下车辆发生失稳程度不同而变化,得到反映不同失稳程度的滑模面,决策出修正不同失稳程度的附加横摆力矩。
在一种方案中,步骤四驱动力矩决策采用PI控制算法,实现汽车的实际车速与驾驶员预期的目标车速的偏差的控制,决策出维持达到目标车速所需的总驱动力矩,其计算公式为:
Treq=Kspeed[kp(u-ud)+ki∫(u-ud)dt] (15)
式中:u:汽车实际车速,ud:驾驶员预期目标车速,Kspeed:速度系数,kp:比例系数,ki:积分系数,Treq:总驱动力矩。
在一种方案中,步骤五力矩分配器以四个轮胎的附着利用率之和最小为目标函数:
Figure BDA0002333079880000051
Fxi:各轮胎纵向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fzi:各轮胎垂向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fyi:各轮胎侧向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,d:轮距,Tmax:电机输出最大转矩,R:车轮半径,μ:路面附着系数。
进一步的,路面识别估计器对路面进行实时估计:基于Burckhardt模型提供的标准路面μ-s曲线,采用模糊控制的算法进行实现路面识别,以车轮滑移率和车轮利用附着系数为输入量,路面权重系数ξ为输出量,输入量的论域选择为[0,1],输出量的论域选择为[0,1],滑移率的模糊语言为S,M,B,利用附着系数的模糊语言为RS1,RS2,RS3,RS4,RS5,RS6,RS7,RS8,RS9,输出量ξ的模糊语言为DS,MS,S,VS,确定输入量和输出量隶属度函数;根据模糊控制器,确定路面的权重系数,并根据以下公式确定估计路面的峰值附着系数作为路面附着系数:
Figure BDA0002333079880000061
k1、k2、k3、k4、k5、k6、k7、k8、k9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的相似权重,μ1、μ2、μ3、μ4、μ5、μ6、μ7、μ8、μ9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的附着系数,μopt:估计路面峰值附着系数。
有益效果:本发明通过在车辆失稳的时候,决策出用于修正车辆失稳的附加横摆力矩,根据驾驶员意图确定车辆行驶的驱动力矩,能在变附着工况下对力矩分配,使得力矩分配考虑路况和稳定性,分配方案更适合实际。
附图说明
图1质心侧偏角隶属度函数;
图2输入量与输出量关系;
图3滑移率隶属度函数;
图4利用附着系数隶属函数(滑移率为S);
图5利用附着系数隶属度函数(滑移率为M);
图6利用附着系数隶属度函数(滑移率为B);
图7路面权重系数隶属度函数;
图8是本发明的失稳判断模块示意图;
图9是本发明的横摆力矩决策示意图;
图10是本发明的力矩分配模块示意图;
图11是本发明的直接横摆力矩控制器流程图。
具体实施方式
下面结合附图对本发明作进一步地说明,本实施例提供了一种车辆在变附着下,能提高行驶稳定的横摆力矩确定方法,并进一步使用该方法得到一种力矩分配方法,在一种方案中,车辆在变附着工况下力矩分配方法,包括如下步骤:
步骤一:根据车载传感器对车辆关键参数进行采集包括横摆角速度、质心侧偏角、方向盘转角、车速。将采集的车辆关键参数输入到车辆参考模型中得到期望的横摆角速度和质心侧偏角。
步骤二:判断失稳,优选的,根据步骤一测量得到的横摆角速度和质心侧偏角进行联合判断失稳。
步骤三:以车载传感器测量得到的实际横摆角速度和质心侧偏角与期望的横摆角速度和质心侧偏角作为运动跟踪控制器的输入,根据横摆角速度偏差和质心侧偏角偏差,决策出用于修正车辆失稳的附加横摆力矩。
步骤四:根据驾驶员意图确定车辆行驶的驱动力矩。
步骤五:考虑路面变附着多变,引入路面识别,实现变附着工况下对力矩的最优分配。
步骤六:重复以上步骤,根据运动跟踪控制器决策出的横摆力矩和驱动力矩决策模块决策处的驱动力矩在力矩分配器进行最优分配,实现变附着工况下的车辆的稳定性控制。
优选的,所述步骤一具体为:
参考模型:建立基于侧向和横摆两个方向的车辆二自由度车辆模型:
Figure BDA0002333079880000071
Figure BDA0002333079880000072
车辆在稳态条件下
Figure BDA0002333079880000073
带入上式得:
Figure BDA0002333079880000074
Figure BDA0002333079880000075
根据公式3和4得到期望横摆角速度和期望质心侧偏角:
(3)期望横摆角速度
Figure BDA0002333079880000081
Figure BDA0002333079880000082
期望横摆角速度受路面附着条件的限制:
Figure BDA0002333079880000083
综上期望横摆角速度满足以下关系:
γd=min(|γd|,γmax)sign(γd) (8)
(4)期望质心侧偏角
Figure BDA0002333079880000084
受路面附着条件的限制,满足以下条件:
βmax=arctan(0.02μg) (10)
综上期望质心侧偏角满足以下关系:
βd=min(|βd|,βmax)sign(βd) (11)
m:整车质量,vx:纵向车速,β:质心侧偏角,γ:横摆角速度,kf:前轴侧偏刚度,kr:后轴侧偏刚度,a:前轴至质心的距离,b:后轴至质心的距离,L:轴距,δ:前轮转角,βd:期望质心侧偏角,βmax:最大质心侧偏角γd:期望横摆角速度,γmax:最大横摆角速度,K:稳定性因数,μ:路面附着系数,g:重力加速度,Iz:绕z轴转动惯量。
优选的,所述步骤二具体为:
失稳判断模型设计:为提高失稳判断的准确性,降低失稳的误报和漏报率,采用模型-相平面的方法,对横摆角速度和质心侧偏角进行联合判断。横摆角速度采用模型法(|γ-γd|<|μγd|)进行判断,质心侧偏角采用相平面法(
Figure BDA0002333079880000085
B1、B2为稳定边界系数)进行判断。
优选的,所述步骤三具体为:
运动跟踪控制器设计:车辆稳定性控制包括两个方面:一是车辆横摆角运动的稳定性控制问题;二是车辆轨迹保持问题。问题一由横摆角速度参数决定,横摆角速度体现汽车绕自身中心旋转的状态和程度;问题二由质心侧偏角参数决定,质心侧偏角反映车辆偏离方向的程度。因此,本发明采用模糊滑膜的算法对横摆角速度和质心侧偏角进行加权控制,用于提高车辆稳定控制性。
滑模面的选取:
s=ξ(γ-γd)+(1-ξ)(β-βd) (12)
s:滑模面,ξ:加权系数。
本发明采用加权的滑模面的设计,根据质心侧偏角的实际值判断加权系数值。根据车辆行驶工况的不同,车辆发生失稳的程度,采用不同的权重的滑模面,实现对控制变量的跟踪,提高车辆行驶的稳定性。当实际质心侧偏角很小即|β|<β11:质心侧偏角下限值)时,车辆发生小程度的失稳,需对横摆角速度进行控制,此时加权系数为1;当实际质心侧偏角处于β1<|β|<β22:质心侧偏角上限值)时,车辆发生中度失稳,需要对横摆角速度和质心侧偏角进行联合控制,此时加权系数为0~1;当实际质心侧偏角较大时|β|>β2,车辆发生严重失稳,行驶轨迹发生严重偏离,需对质心侧偏角进行控制,此时加权系数为0。加权系数采用模糊控制的算法确定,其实现如下:
为解决现有不考虑路况决策附加横摆力矩而导致的稳定降低的问题,本发明以实际的质心侧偏角的绝对值|β|作为模糊控制器输入,以加权系数ξ作为模糊控制的输出,根据经验利用模糊规则对加权系数进行调整。输入量|β|的论域选择为[0,1],输出量ξ的论域选择为[0,1],输入量|β|的模糊语言为S,B(分别为小,大),输出量ξ的模糊语言为S,B(分别为小,大)。输入量|β|隶属度函数如图1所示,输入量|β|与输出量ξ的关系曲线如图2所示。根据经验设计模糊规则为:(1)若|β|为小,则ξ为小;(2)若|β|为大,则ξ为大。
为削弱滑膜结构存在的抖振现象,趋近律选择:
Figure BDA0002333079880000101
根据滑膜控制原理得到附加横摆力矩:
Figure BDA0002333079880000102
ks:滑模面切换系数,ΔM:附加横摆力矩,Fyf:前轴轮胎侧偏力,Fyr:后轴轮胎侧偏力。
采用加权的滑模面的设计,根据质心侧偏角的实际值判断加权系数值。根据车辆行驶工况的不同,车辆发生失稳的程度,采用不同的权重的滑模面,实现对控制变量的跟踪,提高车辆行驶的稳定性,解决了现有不考虑路况决策附加横摆力矩而导致的稳定降低的问题。
优选的,所述步骤四具体为:
驱动力矩决策模型:采用PI控制算法,实现汽车的实际车速与驾驶员预期的目标车速的偏差的控制,决策出维持达到目标车速所需的总驱动力矩,其计算公式为:
Treq=Kspeed[kp(u-ud)+ki∫(u-ud)dt] (15)
式中:u:汽车实际车速,ud:驾驶员预期目标车速,Kspeed:速度系数,kp:比例系数,ki:积分系数,Treq:总驱动力矩。
优选的,所述步骤五具体为:
力矩分配器设计,考虑车辆行驶工况的复杂性,路面附着条件时刻变化,为提高变附着工况下力矩分配控制器的控制效果,本发明设计了一种基于路面识别的最优力矩分配器,以四个轮胎的附着利用率之和最小为目标函数,考虑路面附着椭圆的限制以及电机的限制。
Figure BDA0002333079880000111
Fxi:各轮胎纵向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fzi:各轮胎垂向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fyi:各轮胎侧向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,d:轮距,Tmax:电机输出最大转矩,R:车轮半径。
根据上述建立的优化目标函数和约束条件中都存在路面附着系数μ,而考虑车辆实际行驶工况,路面附着系数μ并非是定值,为实现变附着工况下,力矩分配控制器仍起作用,优选的,本发明设计路面识别估计器,对路面进行实时估计,以实现变附着工况的车辆稳定性。
路面识别估计器设计:基于Burckhardt模型提供的标准路面μ-s曲线,采用模糊控制的算法进行实现路面识别。以车轮滑移率和车轮利用附着系数为输入量,路面权重系数ξ为输出量,输入量的论域选择为[0,1],输出量的论域选择为[0,1],滑移率的模糊语言为S,M,B(小滑移率、中滑移率、大滑移率),利用附着系数的模糊语言为RS1,RS2,RS3,RS4,RS5,RS6,RS7,RS8,RS9(分别为冰,雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青),输出量ξ的模糊语言为DS,MS,S,VS(分别为不相似,一般相似,相似,完全相似)。输入量和输出量隶属度函数如图3-7所示。
模糊规则如表1所示:
表格1路面识别规则表
滑移率 附着系数 RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9
S RS9 DS DS DS DS DS DS MS S VS
M RS1 VS S DS DS DS DS DS DS DS
M RS2 S VS S MS DS DS DS DS DS
M RS3 MS S VS S DS DS DS DS DS
M RS4 DS MS S VS S MS DS DS DS
M RS5 DS DS MS S VS S MS DS DS
M RS6 DS DS DS MS S VS S MS DS
M RS7 DS DS DS DS MS S VS S MS
M RS8 DS DS DS DS DS MS S VS S
M RS9 DS DS DS DS DS DS MS S VS
B RS1 VS S MS DS DS DS DS DS DS
根据以上建立的模糊控制器,确定九种路面的权重系数,根据以下公式确定估计路面的峰值附着系数:
Figure BDA0002333079880000121
k1、k2、k3、k4、k5、k6、k7、k8、k9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的相似权重,μ1、μ2、μ3、μ4、μ5、μ6、μ7、μ8、μ9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的附着系数,μopt:估计路面峰值附着系数。
表格2各路路面附着系数参考值
Figure BDA0002333079880000122
Figure BDA0002333079880000131
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (6)

1.一种车辆在变附着工况下力矩分配方法,其特征在于,包括如下步骤:
步骤一:对车辆关键参数进行采集,并输入到车辆参考模型中得到期望的横摆角速度和质心侧偏角;
步骤二:判断车辆稳定性,失稳情况下执行步骤三;
步骤三:以测量得到的实际横摆角速度和质心侧偏角与期望的横摆角速度和质心侧偏角作为运动跟踪控制器的输入,根据横摆角速度偏差和质心侧偏角偏差,决策出用于修正车辆失稳的附加横摆力矩;
步骤四:根据驾驶员意图确定车辆行驶的驱动力矩;
步骤五:在变附着工况下对力矩分配。
2.如权利要求1所述的车辆在变附着工况下力矩分配方法,其特征在于,步骤一的车辆参考模型的是基于侧向和横摆两个方向的车辆二自由度车辆模型:
Figure FDA0002333079870000011
Figure FDA0002333079870000012
车辆在稳态条件下
Figure FDA0002333079870000013
带入上式得:
Figure FDA0002333079870000014
Figure FDA0002333079870000015
根据所述车辆参考模型得到期望横摆角速度和期望质心侧偏角的方法是:
(1)期望横摆角速度
Figure FDA0002333079870000016
Figure FDA0002333079870000017
期望横摆角速度受路面附着条件的限制:
Figure FDA0002333079870000021
综上期望横摆角速度满足以下关系:
γd=min(|γd|,γmax)sign(γd) (8)
(2)期望质心侧偏角
Figure FDA0002333079870000022
受路面附着条件的限制,满足以下条件:
βmax=arctan(0.02μg) (10)
综上期望质心侧偏角满足以下关系:
βd=min(|βd|,βmax)sign(βd) (11)
m:整车质量,vx:纵向车速,β:质心侧偏角,γ:横摆角速度,kf:前轴侧偏刚度,kr:后轴侧偏刚度,a:前轴至质心的距离,b:后轴至质心的距离,L:轴距,δ:前轮转角,βd:期望质心侧偏角,βmax:最大质心侧偏角γd:期望横摆角速度,γmax:最大横摆角速度,K:稳定性因数,μ:路面附着系数,g:重力加速度,Iz:绕z轴转动惯量。
3.如权利要求1所述的车辆在变附着工况下力矩分配方法,其特征在于,步骤二采用模型-相平面的方法对横摆角速度和质心侧偏角进行联合失稳判断,横摆角速度采用模型法进行判断,质心侧偏角采用相平面法进行判断。
4.如权利要求1所述的车辆在变附着工况下力矩分配方法,其特征在于,步骤四驱动力矩决策采用PI控制算法,实现汽车的实际车速与驾驶员预期的目标车速的偏差的控制,决策出维持达到目标车速所需的总驱动力矩,其计算公式为:
Treq=Kspeed|kp(u-ud)+ki∫(u-ud)dt| (15)
式中:u:汽车实际车速,ud:驾驶员预期目标车速,Kspeed:速度系数,kp:比例系数,ki:积分系数,Treq:总驱动力矩。
5.如权利要求1所述的车辆在变附着工况下力矩分配方法,其特征在于,步骤五力矩分配器以四个轮胎的附着利用率之和最小为目标函数:
Figure FDA0002333079870000031
Fxi:各轮胎纵向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fzi:各轮胎垂向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,Fyi:各轮胎侧向力,i=1,2,3,4:表示左前轮、右前轮、左后轮、右后轮,d:轮距,Tmax:电机输出最大转矩,R:车轮半径,μ:路面附着系数。
6.如权利要求5所述的车辆在变附着工况下力矩分配方法,其特征在于,路面识别估计器对路面进行实时估计:基于Burckhardt模型提供的标准路面μ-s曲线,采用模糊控制的算法进行实现路面识别,以车轮滑移率和车轮利用附着系数为输入量,路面权重系数ξ为输出量,输入量的论域选择为[0,1],输出量的论域选择为[0,1],滑移率的模糊语言为S,M,B,利用附着系数的模糊语言为RS1,RS2,RS3,RS4,RS5,RS6,RS7,RS8,RS9,输出量ξ的模糊语言为DS,MS,S,VS,确定输入量和输出量隶属度函数;根据模糊控制器,确定路面的权重系数,并根据以下公式确定估计路面的峰值附着系数作为路面附着系数:
Figure FDA0002333079870000032
k1、k2、k3、k4、k5、k6、k7、k8、k9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的相似权重,μ1、μ2、μ3、μ4、μ5、μ6、μ7、μ8、μ9:分别为冰、雪、湿鹅卵石、砾石、土路、湿沥青、干水泥、干沥青路面的附着系数,μopt:估计路面峰值附着系数。
CN201911344972.1A 2019-12-24 2019-12-24 车辆在变附着工况下力矩分配方法 Active CN110979304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911344972.1A CN110979304B (zh) 2019-12-24 2019-12-24 车辆在变附着工况下力矩分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911344972.1A CN110979304B (zh) 2019-12-24 2019-12-24 车辆在变附着工况下力矩分配方法

Publications (2)

Publication Number Publication Date
CN110979304A true CN110979304A (zh) 2020-04-10
CN110979304B CN110979304B (zh) 2023-03-31

Family

ID=70074710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911344972.1A Active CN110979304B (zh) 2019-12-24 2019-12-24 车辆在变附着工况下力矩分配方法

Country Status (1)

Country Link
CN (1) CN110979304B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645696A (zh) * 2020-04-28 2020-09-11 武汉理工大学 一种分布式驱动越野车复杂越野工况辨识方法
CN111746305A (zh) * 2020-07-10 2020-10-09 江西科技学院 线控四轮驱动轮毂电机电动汽车节能控制方法及系统
CN111959486A (zh) * 2020-07-01 2020-11-20 武汉理工大学 电机驱动车辆纵横向耦合控制方法、系统及存储介质
CN112224036A (zh) * 2020-10-28 2021-01-15 北京理工大学 分布式驱动电动车四轮驱动力矩分配方法及系统
CN112590737A (zh) * 2020-12-22 2021-04-02 安徽卡思普智能科技有限公司 一种直接横摆力矩控制器的设计方法
CN112606826A (zh) * 2020-12-24 2021-04-06 江苏大学 一种基于路面附着系数的状态变量全约束直接横摆力矩控制算法
CN112644455A (zh) * 2021-01-08 2021-04-13 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN113665575A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 一种适时四驱控制方法、车辆及存储介质
CN113682282A (zh) * 2021-09-10 2021-11-23 中国第一汽车股份有限公司 一种车辆稳定性控制方法、系统、车辆和存储介质
CN114647235A (zh) * 2022-05-24 2022-06-21 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种线控底盘的控制方法、联合控制系统及服务器
WO2022141323A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 一种车辆前后驱动扭矩分配方法、装置及车辆
CN117207974A (zh) * 2023-09-21 2023-12-12 广州汽车集团股份有限公司 车辆的控制方法及装置、电子设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201066322Y (zh) * 2007-06-08 2008-05-28 江苏大学 一种基于汽车联合制动系统的制动稳定性检测装置
CN106585425A (zh) * 2016-12-15 2017-04-26 西安交通大学 一种用于四轮毂电机驱动电动汽车的分层系统及控制方法
CN106828464A (zh) * 2017-01-06 2017-06-13 合肥工业大学 一种基于路面附着系数估算的车身稳定控制方法及系统
CN107042841A (zh) * 2016-12-14 2017-08-15 合肥工业大学 一种轮毂电机驱动电动汽车差动助力转向稳定性控制方法
CN107117073A (zh) * 2017-05-08 2017-09-01 电子科技大学 一种四轮轮毂电动汽车牵引力控制方法
CN107132849A (zh) * 2017-04-11 2017-09-05 武汉理工大学 一种相平面车辆稳定性判断方法
CN107253453A (zh) * 2017-07-05 2017-10-17 厦门大学 一种分布式电动汽车横向稳定性自适应控制系统及方法
CN109664774A (zh) * 2018-03-28 2019-04-23 北京理工大学 一种用于分布式驱动电动汽车的驱动防滑控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201066322Y (zh) * 2007-06-08 2008-05-28 江苏大学 一种基于汽车联合制动系统的制动稳定性检测装置
CN107042841A (zh) * 2016-12-14 2017-08-15 合肥工业大学 一种轮毂电机驱动电动汽车差动助力转向稳定性控制方法
CN106585425A (zh) * 2016-12-15 2017-04-26 西安交通大学 一种用于四轮毂电机驱动电动汽车的分层系统及控制方法
CN106828464A (zh) * 2017-01-06 2017-06-13 合肥工业大学 一种基于路面附着系数估算的车身稳定控制方法及系统
CN107132849A (zh) * 2017-04-11 2017-09-05 武汉理工大学 一种相平面车辆稳定性判断方法
CN107117073A (zh) * 2017-05-08 2017-09-01 电子科技大学 一种四轮轮毂电动汽车牵引力控制方法
CN107253453A (zh) * 2017-07-05 2017-10-17 厦门大学 一种分布式电动汽车横向稳定性自适应控制系统及方法
CN109664774A (zh) * 2018-03-28 2019-04-23 北京理工大学 一种用于分布式驱动电动汽车的驱动防滑控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘伟: "《汽车ESP系统控制策略研究及硬件在环验证》" *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645696A (zh) * 2020-04-28 2020-09-11 武汉理工大学 一种分布式驱动越野车复杂越野工况辨识方法
CN111959486B (zh) * 2020-07-01 2021-11-09 武汉理工大学 电机驱动车辆纵横向耦合控制方法、系统及存储介质
CN111959486A (zh) * 2020-07-01 2020-11-20 武汉理工大学 电机驱动车辆纵横向耦合控制方法、系统及存储介质
CN111746305A (zh) * 2020-07-10 2020-10-09 江西科技学院 线控四轮驱动轮毂电机电动汽车节能控制方法及系统
CN112224036A (zh) * 2020-10-28 2021-01-15 北京理工大学 分布式驱动电动车四轮驱动力矩分配方法及系统
CN112224036B (zh) * 2020-10-28 2022-08-05 北京理工大学 分布式驱动电动车四轮驱动力矩分配方法及系统
CN112590737B (zh) * 2020-12-22 2023-12-22 安徽卡思普智能科技有限公司 一种直接横摆力矩控制器的设计方法
CN112590737A (zh) * 2020-12-22 2021-04-02 安徽卡思普智能科技有限公司 一种直接横摆力矩控制器的设计方法
CN112606826A (zh) * 2020-12-24 2021-04-06 江苏大学 一种基于路面附着系数的状态变量全约束直接横摆力矩控制算法
CN112606826B (zh) * 2020-12-24 2022-02-15 江苏大学 一种基于路面附着系数的状态变量全约束直接横摆力矩控制算法
WO2022141323A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 一种车辆前后驱动扭矩分配方法、装置及车辆
CN112644455A (zh) * 2021-01-08 2021-04-13 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN112644455B (zh) * 2021-01-08 2022-04-12 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN113665575A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 一种适时四驱控制方法、车辆及存储介质
CN113682282A (zh) * 2021-09-10 2021-11-23 中国第一汽车股份有限公司 一种车辆稳定性控制方法、系统、车辆和存储介质
CN114647235A (zh) * 2022-05-24 2022-06-21 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种线控底盘的控制方法、联合控制系统及服务器
CN117207974A (zh) * 2023-09-21 2023-12-12 广州汽车集团股份有限公司 车辆的控制方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN110979304B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN110979304B (zh) 车辆在变附着工况下力矩分配方法
CN110979303B (zh) 行驶车辆决策附加横摆力矩的方法
Shino et al. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement
CN108248601B (zh) 一种基于四轮独立驱动电动车的转向稳定性控制系统及方法
CN105835721B (zh) 一种四轮轮毂电动汽车车速控制方法
CN107685733B (zh) 四轮独立驱动电动汽车路面附着系数的估计方法
CN107009916B (zh) 考虑驾驶员意图分布式驱动电动汽车防滑控制系统及方法
CN108594652A (zh) 一种基于观测器信息迭代的车辆状态融合估计方法
CN112572411B (zh) 一种考虑轮胎侧偏特性的车辆底盘协调控制方法及系统
CN107963126A (zh) 一种多轴转向车辆大曲率自动驾驶转向控制方法
CN112068445B (zh) 自动驾驶车辆路径规划与路径跟踪集成控制方法及系统
CN112537307B (zh) 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN113221257B (zh) 考虑控制区域的极限工况下车辆横纵向稳定控制方法
CN111731282A (zh) 一种考虑车辆稳定性的紧急避撞系统及其控制方法
CN111731267B (zh) 一种装备非充气弹性车轮的分布式电动汽车稳定性控制系统及方法
KR20210037785A (ko) 차량의 승차감 개선 장치 및 방법
EP0881114A2 (en) Vehicle steering control
KR20200017571A (ko) 자율주행 차량을 위한 횡방향 제어 파라미터 보정 장치 및 방법
CN114454871A (zh) 一种用于四轮独立驱动的无人驾驶平台稳定跟踪控制方法
CN111845755A (zh) 一种车辆纵向车速估计方法
CN113183953B (zh) 基于分布式驱动底盘的车辆碰后主动安全控制方法及系统
CN111267949B (zh) 一种用于车辆的滑移转向控制系统
Zhu et al. A simulation study for lateral stability control of vehicles on icy asphalt pavement
CN109606362A (zh) 一种基于道路曲率的可拓前馈车道保持控制方法
CN115933662A (zh) 一种基于自适应模型预测控制的智能汽车轨迹跟踪和稳定性控制系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant