CN110954594A - Underwater robot for detecting sludge hardening and detection method - Google Patents

Underwater robot for detecting sludge hardening and detection method Download PDF

Info

Publication number
CN110954594A
CN110954594A CN201911291636.5A CN201911291636A CN110954594A CN 110954594 A CN110954594 A CN 110954594A CN 201911291636 A CN201911291636 A CN 201911291636A CN 110954594 A CN110954594 A CN 110954594A
Authority
CN
China
Prior art keywords
ultrasonic
sedimentation tank
sludge
height
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911291636.5A
Other languages
Chinese (zh)
Other versions
CN110954594B (en
Inventor
杨斌
张玉洁
张立转
王伟东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jinkong Data Technology Co ltd
Original Assignee
Beijing Jinkong Data Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jinkong Data Technology Co ltd filed Critical Beijing Jinkong Data Technology Co ltd
Priority to CN201911291636.5A priority Critical patent/CN110954594B/en
Publication of CN110954594A publication Critical patent/CN110954594A/en
Application granted granted Critical
Publication of CN110954594B publication Critical patent/CN110954594B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02416Solids in liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The invention discloses an underwater robot for detecting sludge hardening and a detection method, wherein the underwater robot comprises an ultrasonic detection device, a central processing unit, a positioning device and a driving device; the ultrasonic detection device, the positioning device and the driving device are connected with the central processing unit; the driving device is used for driving the underwater robot to move in the sedimentation tank according to a preset path; the central processing unit is used for controlling the ultrasonic detection device to measure a first height of an interface between the ultrasonic detection device and muddy water, controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, calculating a second height between the ultrasonic detection device and the bottom of the sedimentation tank to be detected according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of ultrasonic waves in sludge obtained by pre-measurement, and judging whether sludge hardening exists on the bottom of the sedimentation tank to be detected or not according to the second height; the method can effectively detect the sludge hardening at the bottom of the sedimentation tank.

Description

Underwater robot for detecting sludge hardening and detection method
Technical Field
The invention relates to the technical field of intelligent sewage treatment, in particular to an underwater robot for detecting sludge hardening and a detection method.
Background
The sedimentation tank is an important structure of a sewage treatment plant, can remove suspended matters in water by utilizing the action of natural sedimentation or coagulating sedimentation of water, and is usually arranged in front of and behind a biochemical reaction tank for separating sludge with finer particles in water. In the radial flow sedimentation tank, a mud scraper scrapes mud generated by sedimentation into a mud hopper along the bottom of the tank, and the mud is discharged out of the tank through a mud discharge pipe. The mud scraper is an important part in the mud scraper, and the sludge is not completely cleaned due to abrasion, faults and the like, so that the hardening phenomenon of the sludge on the mud scraper at the bottom of the pool can be caused. Along with the increase of the plate-bonding layer thickness, the resistance of the mud scraper is also increased continuously, so that the parts are further damaged, and finally, the mud scraper stops working to influence the normal operation of a sewage treatment system. At present, the sludge hardening sites are usually searched by manually entering a sedimentation tank, and the mode is not only low in efficiency, but also not beneficial to the health of workers.
Disclosure of Invention
The invention provides an underwater robot for detecting sludge hardening and a detection method, aiming at solving the problems of low efficiency and high risk caused by manually entering a sedimentation tank to search for sludge hardening sites in the prior art.
The scheme 1 discloses an underwater robot for detecting sludge hardening, which comprises an ultrasonic detection device, a central processing unit, a positioning device and a driving device;
the ultrasonic detection device, the positioning device and the driving device are connected with the central processing unit;
the driving device is used for driving the underwater robot to move in the sedimentation tank according to a preset path;
in the process that the underwater robot moves in the sedimentation tank to be detected according to a preset path, the central processing unit is used for controlling the ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height of an interface between the ultrasonic detection device and muddy water, controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, calculating a second height between the ultrasonic detection device and the bottom of the sedimentation tank to be detected according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of ultrasonic waves in sludge obtained by pre-measurement, and judging whether sludge hardening exists on the bottom of the sedimentation tank to be detected according to the second height;
the positioning device is used for detecting the position information of the sludge hardening and sending the position information to the central processing unit.
Scheme 2, according to the underwater robot for detecting sludge hardening in scheme 1, the ultrasonic detection device includes a first ultrasonic detector and a second ultrasonic detector, the first ultrasonic detector includes a first probe, and the second ultrasonic detector includes a second probe;
the first probe is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal.
Scheme 3, according to scheme 1 be used for detecting the hardened and impervious underwater robot of mud, underwater robot still includes wireless transmission module, wireless transmission module with central processing unit is connected for with the position information transmission of mud hardening to long-range.
Scheme 4, the underwater robot for detecting sludge hardening according to scheme 1, characterized in that the underwater robot further comprises a navigation device, the navigation device is connected with the central processing unit, and the central processing unit is used for controlling the underwater robot to move according to a preset path through the navigation device.
Scheme 5, according to scheme 4 be used for detecting mud hardened underwater robot, characterized in that, underwater robot still includes the sealed cabin, central processing unit, wireless transmission module, navigation head and positioner set up in the sealed cabin, the main part of first ultrasonic detector and second ultrasonic detector set up in the geometric center department in the sealed cabin.
Scheme 6, according to scheme 5 be used for detecting hardened underwater robot of mud, its characterized in that, drive arrangement includes battery and a plurality of screw propeller, a plurality of screw propeller distribute in the sealed cabin surface, the battery set up in the sealed cabin, the screw propeller pass through the umbilical cable with battery and central processing unit connect.
Scheme 7, a method for detecting sludge hardening, which adopts the underwater robot of any one of the schemes 1-6 to detect, the method comprises:
measuring and calculating the propagation speed of the ultrasonic waves in the sludge in advance;
controlling an underwater robot to move in a sedimentation tank to be detected according to a preset path, and controlling an ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height between the ultrasonic detection device and a muddy water interface;
controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected;
calculating the second height of the ultrasonic detection device and the bottom of the sedimentation tank according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of the ultrasonic wave in the sludge;
judging whether sludge hardening exists on the bottom of the sedimentation tank according to the second height;
and if sludge hardening exists, acquiring position information of the sludge hardening.
Scheme 8 and the method for detecting sludge hardening according to scheme 7, wherein the ultrasonic detection device comprises a first ultrasonic detector and a second ultrasonic detector, the first ultrasonic detector comprises a first probe, and the second ultrasonic detector comprises a second probe; the first probe is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal;
the preset path is a plurality of concentric circles taking the circle center of the sedimentation tank as the circle center;
the distance between the adjacent concentric circles is twice the distance between the first probe and the second probe.
Scheme 9, according to the method for detecting sludge hardening in scheme 8, controlling an ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height of a mud-water interface of the ultrasonic detection device, includes:
controlling the first probe to transmit a first ultrasonic signal with a first frequency to a mud-water interface and receiving a returned first feedback signal;
and calculating a first height between a first probe and a mud-water interface in the sedimentation tank to be detected according to the pulse number of the first feedback signal.
The method for detecting sludge hardening according to claim 10 or 9,
the first height is calculated by the following formula:
h1=N1c1/(2f);
wherein h is1Is a first height, N1The number of pulses of the first feedback signal in the sedimentation basin to be detected, c1The propagation speed of the ultrasonic wave in water; f is the counting pulse frequency.
Scheme 11, according to the method for detecting sludge hardening in scheme 10, the feedback condition of the second ultrasonic signal is the number of pulses of the second feedback signal, and the second height is calculated by the following formula:
Figure BDA0002319237780000041
wherein h is1Is a first height, h2Is a second height, N1Number of pulses, N, of the first feedback signal in the sedimentation basin to be detected2The number of pulses of the second feedback signal in the sedimentation tank to be detected,
Figure BDA0002319237780000042
the propagation speed of the obtained ultrasonic waves in the sludge is measured in advance; f is the counting pulse frequency。
Scheme 12, the method for detecting sludge hardening according to scheme 11, which judges whether sludge hardening exists on the bottom of the sedimentation tank according to the second height, includes:
and comparing the difference between the theoretical height value of the ultrasonic detection device from the bottom of the sedimentation tank and the second height, which is obtained by pre-calculation, with a preset height, and if the difference is greater than or equal to a preset threshold value, determining that sludge hardening exists at the bottom of the sedimentation tank to be detected.
Scheme 13, according to the method for detecting sludge hardening described in scheme 12, after determining that sludge hardening exists at the bottom of the sedimentation tank to be detected, the method further comprises:
determining the length of a continuous locus of sludge hardening, if the length of the continuous locus is greater than or equal to a preset length, controlling an underwater robot to move to a midpoint of the continuous locus, moving to a position where sludge hardening does not occur from the midpoint along a normal line of a concentric circle towards a circle center direction, and simultaneously measuring the distance to obtain a first distance;
controlling the underwater robot to return to the middle point of the continuous point, moving the underwater robot to the side of the sedimentation tank to be detected along the normal line of the concentric circle from the middle point to the position where no sludge hardening occurs, and simultaneously measuring the distance to obtain a second distance;
and calculating the area of the sludge hardening according to the first distance, the second distance and the length of the continuous locus.
Scheme 14, according to the method for detecting sludge hardening in scheme 13, the area of sludge hardening is calculated by the following formula:
S=(a1+a2)L;
wherein S is the area of sludge hardening, a1Is a first distance, a2At the second distance, L is the length of the consecutive sites.
The method for detecting sludge hardening according to claim 15 or 14, wherein the step of measuring the propagation velocity of the obtained ultrasonic waves in the sludge in advance comprises:
controlling the underwater robot to move in a sedimentation tank without sludge hardening according to a preset path;
controlling the first probe to transmit a first ultrasonic signal with a first frequency to a mud-water interface of the sedimentation tank without sludge hardening, and receiving a returned first feedback signal;
controlling a second probe to transmit a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank without sludge hardening, and receiving a returned second feedback signal;
calculating the number of pulses of the first feedback signal and the number of pulses of the second feedback signal;
calculating the height between a first probe and a mud-water interface in the sedimentation tank without the occurrence of sludge hardening according to the number of pulses of the first feedback signal;
calculating the propagation speed of the ultrasonic waves in the sludge at the current position according to the pulse number of the first feedback signal, the pulse number of the second feedback signal and the height between the first probe and the mud-water interface;
and taking the average value of the propagation velocities obtained by calculation at a plurality of positions as the propagation velocity of the ultrasonic waves in the sludge.
Scheme 16 and the method for detecting sludge hardening according to scheme 15,
the propagation speed of the ultrasonic wave in the sludge at the current position is calculated by the following formula:
c2=2f(H-h3)/(N4-N3)
wherein h is3Height between the first probe and the mud-water interface in the sedimentation tank without sludge hardening, N3Number of pulses of first feedback signal in sedimentation tank without sludge hardening, N4The pulse number of a second feedback signal in the sedimentation tank without sludge hardening, f is the counting pulse frequency, c2H is the difference between the depth of liquid in the sedimentation tank and the submergence depth of the underwater robot.
The underwater robot for detecting sludge hardening and the detection method provided by the invention at least have the following beneficial effects:
(1) the underwater robot for detecting the sludge hardening site based on the ultrasonic technology can be submerged into water in the sedimentation tank, the position where sludge hardening occurs is detected by using the ultrasonic technology, workers can be replaced to enter the sedimentation tank, the problem that the efficiency for manually detecting the sludge hardening site is low is solved, and the underwater robot has the advantages of high data accuracy, convenience in operation, time saving and the like;
(2) the position where the sludge hardening occurs can be accurately positioned, the area of the sludge hardening is estimated, the detection accuracy is improved, and an operator can know the bottom condition of the sedimentation tank in detail.
Drawings
Fig. 1 is a structural block diagram of an embodiment of an underwater robot for detecting sludge hardening provided by the invention.
Fig. 2 is a schematic view of an appearance structure of an embodiment of the underwater robot for detecting sludge hardening provided by the invention.
Fig. 3 is a schematic view of an appearance structure of an embodiment of the underwater robot for detecting sludge hardening provided by the invention.
Fig. 4 is a schematic structural diagram of an embodiment of an underwater robot for detecting sludge hardening provided by the invention.
Fig. 5 is a flowchart of an embodiment of a method for detecting sludge hardening according to the present invention.
Fig. 6 is a schematic diagram of an embodiment of a preset path in the method for detecting sludge hardening provided by the present invention.
Fig. 7 is a schematic diagram of an embodiment of slab area estimation in the sludge slab detection method according to the present invention.
Detailed description of the preferred embodiments
In order to better understand the technical solution, the technical solution will be described in detail with reference to the drawings and the specific embodiments.
Example one
Referring to fig. 1, the present embodiment provides an underwater robot for detecting sludge hardening, including an ultrasonic detection device 1, a central processing unit 2, a positioning device 3 and a driving device 4;
the ultrasonic detection device 1, the positioning device 3 and the driving device 4 are connected with the central processing unit 2;
the driving device 4 is used for driving the underwater robot to move in the sedimentation tank according to a preset path;
in the process that the underwater robot moves in the sedimentation tank to be detected according to a preset path, the central processing unit 2 is used for controlling the ultrasonic detection device 1 to send a first ultrasonic signal with a first frequency to measure the first height of an interface between the ultrasonic detection device 1 and muddy water, controlling the ultrasonic detection device 1 to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, calculating the second height between the ultrasonic detection device 1 and the bottom of the sedimentation tank to be detected according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of ultrasonic waves in sludge obtained by pre-measurement, and judging whether sludge hardening exists on the bottom of the sedimentation tank to be detected or not according to the second height;
the positioning device 3 is used for detecting the position information of the sludge hardening and sending the position information to the central processing unit 2.
As a preferred embodiment, the positioning device 3 adopts an Evologics S2CR series underwater positioner of a USBL positioning system, can accurately determine the position to 0.1m, and can accurately determine the position of sludge hardening.
Further, referring to fig. 2, the sedimentation tank has a structure as shown in fig. 2, and includes an upper layer of water and a lower layer of sludge, a mud-water interface is formed between the upper layer of water and the lower layer of sludge, the ultrasonic detection device 1 includes a first ultrasonic detector 13 and a second ultrasonic detector 14, the first ultrasonic detector includes a first probe 11, and the second ultrasonic detector includes a second probe 12; the first probe 11 is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe 12 is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal;
the underwater robot further comprises a wireless transmission module 5, wherein the wireless transmission module 5 is connected with the central processing unit 2 and used for sending the position information of the sludge hardening to a remote place.
As a preferred embodiment, the wireless transmission module 5 and the remote operating system use a GPRS remote wireless transmission method for data transmission. The GPRS wireless transmission has the advantages of high signal transmission stability, high network reliability, low communication cost and the like, and is suitable for discontinuous, small or occasional large-amount data transmission.
The underwater robot further comprises a navigation device 6, the navigation device 6 is connected with the central processing unit 2, and the central processing unit 2 is used for controlling the underwater robot to move according to a preset path through the navigation device 6.
Further, referring to fig. 3 and 4, the underwater robot further comprises a sealed cabin 100, the central processing unit 2 and the positioning device 3 are arranged in the sealed cabin 100, and the first detector and the second detector are arranged at the geometric center in the sealed cabin 100;
the driving device 4 comprises a battery 41 and a plurality of propeller propellers 42, the propeller propellers 42 are distributed on the outer surface of the sealed cabin 100, the battery 41 is arranged in the sealed cabin 100, and the propeller propellers 42 are connected with the battery 41 and the central processing unit 2 through an umbilical cable 43.
In addition, the outer surface of the sealed cabin 100 is also provided with a frame 7 and a buoyancy tank 8, the frame 7 is made of high-density polyethylene, and has the advantages of high rigidity, toughness, mechanical strength, stable chemical performance, corrosion resistance, good electromagnetic shielding performance, light weight and the like, and the cost performance is high. The frame 7 comprises side plates at two sides of the buoyancy tank 8 and a bottom supporting plate, and the buoyancy tank 8 and the sealed cabin 100 are fixed on the bottom supporting plate.
The sealed cabin 100 is made of an aluminum alloy material coated with the anticorrosive coating, the aluminum alloy material is low in density, low in underwater motion resistance and excellent in strength performance, the anticorrosive coating can effectively prevent the aluminum alloy material from being corroded by sewage in the sedimentation tank, and the service life is prolonged. The sealed cabin 100 is further provided with a sealed cabin cover 101, in order to ensure the sealing effect of the sealed cabin, static sealing is adopted between the sealed cabin cover 101 and the cabin body of the sealed cabin 100, and double sealing gaskets are used for sealing in specific implementation.
The propeller thruster 42 adopts a rotatable multidirectional powerful propeller thruster, is connected with the central processing unit 2 and the battery 41 in the sealed cabin through the umbilical cable 43 and is fixed on the side surface of the sealed cabin 100, and the connection port of the umbilical cable 43 adopts an O-shaped ring for sealing. As a preferred embodiment, four propeller propellers 42 are arranged at four corners of the underwater robot to control the lifting and the direction of the underwater robot, and the number of the propeller propellers 42 can be adjusted as required in practical application.
As a preferred embodiment, the first probe 11 and the second probe 12 may be disposed in preset slots at the bottom of the capsule 100.
The underwater robot for detecting sludge hardening provided by the embodiment has the following working principle:
when the sludge hardening does not occur, the propagation speed of the ultrasonic wave in the sludge is measured in advance through the underwater robot, and the sludge properties of different sewage treatment plants are different, so that the propagation speed of the ultrasonic wave in the sludge cannot be directly calculated. The robot can be initialized, and the height of the ultrasonic probe at the bottom of the sewage tank is detected according to the planned walking route when no sludge hardening occurs, so that the propagation speed of ultrasonic waves in sludge is calculated.
Controlling an underwater robot to move in a sedimentation tank without sludge hardening according to a preset path, and controlling a first probe to transmit a first ultrasonic signal with a first frequency to a mud-water interface of the sedimentation tank without sludge hardening in the movement process and receive a returned first feedback signal; meanwhile, the second probe is controlled to transmit a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank without sludge hardening, and a returned second feedback signal is received; calculating the number of pulses of the first feedback signal and the number of pulses of the second feedback signal; calculating the height between a first probe and a mud-water interface in the sedimentation tank without the occurrence of sludge hardening according to the number of pulses of the first feedback signal; calculating the propagation speed of the ultrasonic waves in the sludge at the current position according to the pulse number of the first feedback signal, the pulse number of the second feedback signal and the height between the first probe and the mud-water interface; and taking the average value of the propagation velocities obtained by calculation at a plurality of positions as the propagation velocity of the ultrasonic wave in the sludge, and storing the propagation velocity of the ultrasonic wave in the sludge obtained by calculation.
The underwater robot enters a sedimentation tank to be detected, moves according to a preset path, a first probe sends a first ultrasonic signal with a first frequency to a mud-water interface, receives a returned first feedback signal, calculates a first height between the first probe and the mud-water interface according to the number of pulses of the first feedback signal, a second probe sends a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, receives a returned second feedback signal, calculates a second height between the second probe and the bottom of the sedimentation tank to be detected according to the number of pulses of the second feedback signal, the first height and the propagation speed of ultrasonic waves in sludge obtained by pre-measurement, judges whether sludge hardening exists on the bottom of the sedimentation tank to be detected according to the second height, and calculates a difference value between a theoretical height value of an ultrasonic detection device obtained by pre-calculation and the bottom of the sedimentation tank and the second height, and comparing the difference value with a preset height, if the difference value is greater than or equal to a preset threshold value, determining that sludge hardening exists at the bottom of the sedimentation tank to be detected, otherwise, if the difference value is less than the preset threshold value, determining that sludge hardening does not exist at the bottom of the sedimentation tank to be detected at the current position.
If determining that sludge hardening exists at the bottom of the sedimentation tank to be detected, determining the length of a continuous locus of the sludge hardening, if the length of the continuous locus is greater than or equal to a preset length, controlling the underwater robot to move to the midpoint of the continuous locus, moving to a position where the sludge hardening does not occur from the midpoint along the normal line of the concentric circle to the direction of the center of the circle, and simultaneously measuring the distance to obtain a first distance; controlling the underwater robot to return to the middle point of the continuous point, moving the underwater robot to the side of the sedimentation tank to be detected along the normal line of the concentric circle from the middle point to the position where no sludge hardening occurs, and simultaneously measuring the distance to obtain a second distance; and calculating the area of the sludge hardening according to the first distance, the second distance and the length of the continuous locus.
Please refer to example two for a specific measurement method.
The underwater robot for detecting the sludge hardening, provided by the embodiment, can submerge into the water of the sedimentation tank based on the underwater robot for detecting the sludge hardening site by using the ultrasonic technology, can replace workers to enter the sedimentation tank when detecting the position where the sludge hardening occurs by using the ultrasonic technology, solves the problem of low efficiency of manually detecting the sludge hardening site, and has the advantages of high data accuracy, convenience in operation, time saving and the like.
Example two
Referring to fig. 5, this embodiment provides a method for detecting sludge hardening, which uses the underwater robot according to the first embodiment to perform detection, and the method includes:
step S201, measuring the propagation speed of the obtained ultrasonic waves in the sludge in advance;
step S202, controlling an underwater robot to move in a sedimentation tank to be detected according to a preset path, and controlling an ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height between the ultrasonic detection device and a muddy water interface;
step S203, controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected;
step S204, calculating a second height between the ultrasonic detection device and the bottom of the sedimentation tank according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of the ultrasonic wave in the sludge;
step S205, judging whether sludge hardening exists on the bottom of the sedimentation tank according to the second height;
and step S206, if sludge hardening exists, acquiring position information of the sludge hardening.
As shown in the first embodiment, the ultrasonic detection device comprises a first probe and a second probe, wherein the first probe is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal.
Specifically, step S201 is executed, and the sludge property of different sewage treatment plants is different, so that the propagation speed of the ultrasonic wave in the sludge cannot be directly calculated. The robot can be initialized, and the height of the ultrasonic probe at the bottom of the sewage tank is detected according to a planned preset route when no sludge hardening occurs, so that the propagation speed of ultrasonic waves in sludge is calculated.
And controlling the underwater robot to move in the sedimentation tank without sludge hardening according to a preset path. The preset path is shown in fig. 6, and the preset path is a plurality of concentric circles taking the circle center of the sedimentation tank as the circle center; the distance between the adjacent concentric circles is twice the distance between the first probe and the second probe. The user inputs information such as the size, the water depth and the underwater robot submerging depth of the sedimentation tank on a remote operation display, the wireless transmission module 5 receives signals through a GPRS remote wireless transmission mode and transmits the signals to the central processing unit 2, the radial sedimentation tank is divided into concentric circles with the distance difference of 2d from the side to the center of the tank according to the input information, d is the distance between the first probe and the second probe, and the number A of the concentric circles is R/w-1 (N.cndot.cndot.n) -1. Wherein R is the radius of the radial flow sedimentation tank, and n is the remainder. In addition, the grid size can be adjusted according to the installation positions of the first probe and the second probe, so that the detection range can cover the whole sedimentation tank.
The robot moves to the concentric circle of the outermost circle at a constant speed at a specified height below the water surface, and turns 90 degrees to turn to the next inner concentric circle after detecting one circle.
In the moving process of the underwater robot, the first probe is controlled to transmit a first ultrasonic signal with a first frequency to a mud-water interface of the sedimentation tank without sludge hardening, and a returned first feedback signal is received. And controlling a second probe to transmit a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank without sludge hardening, and receiving a returned second feedback signal.
In a preferred embodiment, the first frequency is 150KHz and the pulse width is 7 μ s, and the second frequency is 40KHz and the pulse width is 24 μ s.
The time of the ultrasonic signal reflected to the probe through the interface is t, and the distance from the probe to the interface is h, 1/2 ct.
The propagation speed of ultrasonic waves in water is related to the temperature, and as the radial flow sedimentation tanks of most sewage treatment plants are arranged in the open air, the temperature change is large, corrective measures need to be taken, and the final detection result is prevented from generating large errors. At normal temperature, the sound velocity of the ultrasonic wave in water is 1481 m/s. The propagation speed of the ultrasonic wave in water is as follows:
c(P,t)=1402.7+488t-482t2+135t3+(15.9+2.8t+2.4t2)P/100; (1)
wherein P is a standard pressure in bar (bar); t is T/100, T is the temperature in degrees celsius.
Since the time from the generation of the ultrasonic wave to the reception is short, it is difficult to count the time with a stopwatch, and therefore, the time is indirectly measured by counting the high frequency pulses. Converting the round trip time of the ultrasonic wave into the measurement of the number N of counting pulses, wherein the distance from the probe to the interface is as follows:
h=Nc/(2f); (2)
wherein f is the counting pulse frequency, N is the number of pulses, c is the propagation speed of the ultrasonic wave in the medium, and h is the distance from the probe to the interface.
Thereby, the number of pulses of the first feedback signal and the number of pulses of the second feedback signal are calculated; according to the pulse number of the first feedback signal, calculating the height between a first probe and a mud-water interface in the sedimentation tank without the occurrence of sludge hardening:
h3=c1t1/2=N3c1/(2f); (3)
wherein h is3Height between the first probe and the mud-water interface in the sedimentation tank without sludge hardening, N3The number of pulses of the first feedback signal in the sedimentation tank without sludge hardening, c1F is the counting pulse frequency, which is the propagation speed of the ultrasonic wave in water.
Setting the theoretical height of the ultrasonic probe of the robot at the bottom of the pool as H, wherein the theoretical height H is obtained by subtracting the submerging depth of the underwater robot from the depth of liquid in the sedimentation pool, and the height from the first probe to a mud-water interface is H3The height from the second probe to the bottom of the sedimentation tank without sludge hardening is h4The height of the sludge is hMud
h4=hMud+h3
=(N4-N3)c2/(2f)+h3; (4)
The ultrasonic probe is known according to the theoretical height H of the bottom of the pool, so that the propagation speed of the ultrasonic wave in the sludge at the current position can be calculated through the following formula:
c2=2f(H-h3)/(N4-N3);(5)
wherein h is3Height between the first probe and the mud-water interface in the sedimentation tank without sludge hardening, N3Number of pulses of first feedback signal in sedimentation tank without sludge hardening, N4The pulse number of a second feedback signal in the sedimentation tank without sludge hardening, f is the counting pulse frequency, c2Is the propagation speed of the ultrasonic waves in the sludge at the current position.
And taking and storing the average value of the propagation velocities obtained by calculation at a plurality of positions as the propagation velocity of the ultrasonic waves in the sludge.
Further, step S202 is executed, the underwater robot is controlled to move in the sedimentation tank to be detected according to a preset path, the first probe is controlled to transmit a first ultrasonic signal with a first frequency to a mud-water interface, and a returned first feedback signal is received; and calculating a first height between a first probe and a mud-water interface in the sedimentation tank to be detected according to the pulse number of the first feedback signal.
The first height is calculated by the following formula:
h1=N1c1/(2f); (6)
wherein h is1Is a first height, c1The propagation velocity of ultrasonic waves in water, N1Counting the pulse of the first feedback signal in the sedimentation tank to be detected, wherein f is the counting pulse frequency.
Further, step S203 and step S204 are executed, the ultrasonic detection device is controlled to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, and receive a second feedback signal, the number of pulses of the second feedback signal is calculated, the first height and the propagation speed of the ultrasonic wave in the sludge are calculated, and the second height between the ultrasonic detection device and the bottom of the sedimentation tank is calculated.
The second height is calculated by the following formula:
Figure BDA0002319237780000131
wherein h is1Is a first height, h2Is a second height, N1Number of pulses, N, of the first feedback signal in the sedimentation basin to be detected2The number of pulses of the second feedback signal in the sedimentation tank to be detected,
Figure BDA0002319237780000141
the propagation speed of the obtained ultrasonic waves in the sludge is measured in advance; f is the counting pulse frequency.
Further, step S205 is executed, and whether sludge hardening exists on the bottom of the sedimentation tank is judged according to the second height, which specifically includes:
and comparing the difference between the theoretical height value of the ultrasonic detection device from the bottom of the sedimentation tank and the second height, which is obtained by pre-calculation, with a preset height, if the difference is greater than or equal to a preset threshold value, determining that sludge hardening exists at the bottom of the sedimentation tank to be detected, otherwise, if the difference is less than the preset threshold value, determining that sludge hardening does not exist at the bottom of the sedimentation tank to be detected.
The theoretical height value of the ultrasonic detection device from the bottom of the sedimentation tank is the height value of liquid in the sedimentation tank to be detected minus the submerged depth value of the underwater robot.
Preferably, the preset threshold is 0.01-0.05m, and the too small distance difference is negligible due to possible errors in the measurement; if the value of the preset threshold value is too large, the subsequent mud scraping efficiency is not completely influenced, and the mud scraper stops running again.
Further, step S206 is executed, if sludge hardening exists, the position information of the sludge hardening is acquired, and the position information is sent to a remote display system through the wireless transmission module.
As a preferred embodiment, after determining that sludge hardening exists at the bottom of the sedimentation tank to be detected, the method further comprises the following steps: and determining the length of the continuous sites of the sludge hardening.
If the length of the continuous locus is smaller than the preset length, the determination error exists or the hardening range is too small, and the influence on the mud scraper is avoided.
Referring to fig. 7, if the length of the continuous locus is greater than or equal to a preset length, controlling the underwater robot to move to a midpoint of the continuous locus, moving from the midpoint to a position where no sludge hardening occurs along a normal of a concentric circle towards a center of the circle, and simultaneously measuring the distance to obtain a first distance;
controlling the underwater robot to return to the middle point of the continuous point, moving the underwater robot to the side of the sedimentation tank to be detected along the normal line of the concentric circle from the middle point to the position where no sludge hardening occurs, and simultaneously measuring the distance to obtain a second distance;
and calculating the area of the sludge hardening according to the first distance, the second distance and the length of the continuous locus.
The area of the sludge hardening is calculated by the following formula:
S=(a1+a2)L; (8)
wherein S is the area of sludge hardening, a1Is a first distance, a2At the second distance, L is the length of the consecutive sites.
The method for detecting sludge hardening provided by the embodiment at least comprises the following beneficial effects:
(1) the underwater robot for detecting the sludge hardening site based on the ultrasonic technology can be submerged into water in the sedimentation tank, the position where sludge hardening occurs is detected by using the ultrasonic technology, workers can be replaced to enter the sedimentation tank, the problem that the efficiency for manually detecting the sludge hardening site is low is solved, and the underwater robot has the advantages of high data accuracy, convenience in operation, time saving and the like;
(2) the position where the sludge hardening occurs can be accurately positioned, the area of the sludge hardening is estimated, the detection accuracy is improved, and an operator can know the bottom condition of the sedimentation tank in detail.
While preferred embodiments of the present invention have been described, additional variations and modifications in those embodiments may occur to those skilled in the art once they learn of the basic inventive concepts. Therefore, it is intended that the appended claims be interpreted as including preferred embodiments and all such alterations and modifications as fall within the scope of the invention. It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (10)

1. An underwater robot for detecting sludge hardening is characterized by comprising an ultrasonic detection device, a central processing unit, a positioning device and a driving device;
the ultrasonic detection device, the positioning device and the driving device are connected with the central processing unit;
the driving device is used for driving the underwater robot to move in the sedimentation tank according to a preset path;
in the process that the underwater robot moves in the sedimentation tank to be detected according to a preset path, the central processing unit is used for controlling the ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height of an interface between the ultrasonic detection device and muddy water, controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected, calculating a second height between the ultrasonic detection device and the bottom of the sedimentation tank to be detected according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of ultrasonic waves in sludge obtained by pre-measurement, and judging whether sludge hardening exists on the bottom of the sedimentation tank to be detected according to the second height;
the positioning device is used for detecting the position information of the sludge hardening and sending the position information to the central processing unit.
2. The underwater robot for detecting sludge hardening according to claim 1, wherein the ultrasonic detection device includes a first ultrasonic detector including a first probe and a second ultrasonic detector including a second probe;
the first probe is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal.
3. The underwater robot for detecting sludge hardening as claimed in claim 1, further comprising a wireless transmission module, wherein the wireless transmission module is connected with the central processing unit, and is used for transmitting the position information of sludge hardening to a remote location.
4. The underwater robot for detecting sludge hardening as claimed in claim 1, further comprising a navigation device, wherein the navigation device is connected to the central processing unit, and the central processing unit is configured to control the underwater robot to move according to a preset path through the navigation device.
5. The underwater robot for detecting sludge hardening according to claim 4, further comprising a sealed cabin, wherein the central processing unit, the wireless transmission module, the navigation device and the positioning device are disposed in the sealed cabin, and the main bodies of the first ultrasonic detector and the second ultrasonic detector are disposed at the geometric center of the sealed cabin.
6. The underwater robot for detecting sludge hardening as claimed in claim 5, wherein the driving device includes a battery and a plurality of propeller thrusters, the propeller thrusters are distributed on the outer surface of the sealed cabin, the battery is disposed in the sealed cabin, and the propeller thrusters are connected with the battery and the central processing unit through an umbilical cable.
7. A method for detecting sludge hardening by using the underwater robot as claimed in any one of claims 1 to 6, the method comprising:
measuring and calculating the propagation speed of the ultrasonic waves in the sludge in advance;
controlling an underwater robot to move in a sedimentation tank to be detected according to a preset path, and controlling an ultrasonic detection device to send a first ultrasonic signal with a first frequency to measure a first height between the ultrasonic detection device and a muddy water interface;
controlling the ultrasonic detection device to send a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank to be detected;
calculating the second height of the ultrasonic detection device and the bottom of the sedimentation tank according to the feedback condition of the second ultrasonic signal, the first height and the propagation speed of the ultrasonic wave in the sludge;
judging whether sludge hardening exists on the bottom of the sedimentation tank according to the second height;
and if sludge hardening exists, acquiring position information of the sludge hardening.
8. The method for detecting sludge hardening according to claim 7, wherein the ultrasonic detection device comprises a first ultrasonic detector and a second ultrasonic detector, the first ultrasonic detector comprises a first probe, and the second ultrasonic detector comprises a second probe; the first probe is used for transmitting a first ultrasonic signal with a first frequency to the mud-water interface and receiving a returned first feedback signal; the second probe is used for transmitting a second ultrasonic signal with a second frequency to the bottom of the sedimentation tank and receiving a returned second feedback signal;
the preset path is a plurality of concentric circles taking the circle center of the sedimentation tank as the circle center;
the distance between the adjacent concentric circles is twice the distance between the first probe and the second probe.
9. The method for detecting sludge hardening according to claim 8, wherein controlling the ultrasonic detection device to emit a first ultrasonic signal with a first frequency to measure a first height of an interface between the ultrasonic detection device and sludge water comprises:
controlling the first probe to transmit a first ultrasonic signal with a first frequency to a mud-water interface and receiving a returned first feedback signal;
and calculating a first height between a first probe and a mud-water interface in the sedimentation tank to be detected according to the pulse number of the first feedback signal.
10. The method for detecting sludge hardening according to claim 9,
the first height is calculated by the following formula:
h1=N1c1/(2f);
wherein h is1Is a first height, N1The number of pulses of the first feedback signal in the sedimentation basin to be detected, c1The propagation speed of the ultrasonic wave in water; f is the counting pulse frequency.
CN201911291636.5A 2019-12-16 2019-12-16 Underwater robot for detecting sludge hardening and detection method Active CN110954594B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911291636.5A CN110954594B (en) 2019-12-16 2019-12-16 Underwater robot for detecting sludge hardening and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911291636.5A CN110954594B (en) 2019-12-16 2019-12-16 Underwater robot for detecting sludge hardening and detection method

Publications (2)

Publication Number Publication Date
CN110954594A true CN110954594A (en) 2020-04-03
CN110954594B CN110954594B (en) 2022-07-26

Family

ID=69981790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911291636.5A Active CN110954594B (en) 2019-12-16 2019-12-16 Underwater robot for detecting sludge hardening and detection method

Country Status (1)

Country Link
CN (1) CN110954594B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545023A (en) * 2020-06-18 2020-08-18 河北化工医药职业技术学院 Intelligent optimization system for limestone-gypsum wet flue gas desulfurization
CN114440807A (en) * 2021-12-30 2022-05-06 中国船舶重工集团公司第七一九研究所 Integrated automatic measurement device and method for sea mud thickness of pump room of nuclear power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141135A1 (en) * 2008-05-23 2009-11-26 Ashland Licensing And Intellectual Property Llc. Method and device for a high precision measurement of a characteristic of a fouling and/or scaling deposit inside a fluid vessel or of a characteristic of a portion of the wall inside a fluid vessel by using an ultrsonic transducer
CN204594437U (en) * 2015-05-20 2015-08-26 湖北省水利水电科学研究院 Underwater sludge sniffer
CN205482850U (en) * 2016-01-27 2016-08-17 福建宁德核电有限公司 Pipeline measurement system
US20170122789A1 (en) * 2014-07-14 2017-05-04 Continental Automotive Gmbh Method for determining the fill state in a tank
CN108267102A (en) * 2018-01-03 2018-07-10 京东方科技集团股份有限公司 A kind of segment difference detection device and segment difference detection method
CN108613645A (en) * 2018-05-11 2018-10-02 中南大学 A kind of Pb-Zn deposits absorbing well, absorption well surveying on sludge thickness method based on parameter Estimation
CN209689581U (en) * 2018-11-27 2019-11-26 李鹏志 A kind of detection device of sedimentation basin of sewage disposal sludge thickness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141135A1 (en) * 2008-05-23 2009-11-26 Ashland Licensing And Intellectual Property Llc. Method and device for a high precision measurement of a characteristic of a fouling and/or scaling deposit inside a fluid vessel or of a characteristic of a portion of the wall inside a fluid vessel by using an ultrsonic transducer
US20170122789A1 (en) * 2014-07-14 2017-05-04 Continental Automotive Gmbh Method for determining the fill state in a tank
CN204594437U (en) * 2015-05-20 2015-08-26 湖北省水利水电科学研究院 Underwater sludge sniffer
CN205482850U (en) * 2016-01-27 2016-08-17 福建宁德核电有限公司 Pipeline measurement system
CN108267102A (en) * 2018-01-03 2018-07-10 京东方科技集团股份有限公司 A kind of segment difference detection device and segment difference detection method
CN108613645A (en) * 2018-05-11 2018-10-02 中南大学 A kind of Pb-Zn deposits absorbing well, absorption well surveying on sludge thickness method based on parameter Estimation
CN209689581U (en) * 2018-11-27 2019-11-26 李鹏志 A kind of detection device of sedimentation basin of sewage disposal sludge thickness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏民祥 等: "《汽车电子与电气现代设计》", 31 January 2015, 国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545023A (en) * 2020-06-18 2020-08-18 河北化工医药职业技术学院 Intelligent optimization system for limestone-gypsum wet flue gas desulfurization
CN114440807A (en) * 2021-12-30 2022-05-06 中国船舶重工集团公司第七一九研究所 Integrated automatic measurement device and method for sea mud thickness of pump room of nuclear power plant

Also Published As

Publication number Publication date
CN110954594B (en) 2022-07-26

Similar Documents

Publication Publication Date Title
CN110954594B (en) Underwater robot for detecting sludge hardening and detection method
EP0372700B1 (en) A fluid level monitor
US8495913B2 (en) Level measurement system
KR101185746B1 (en) Laser scanning for mooring robot
CN109612685B (en) Integrated measuring device and method for flow speed and depth of water tank test
US20160299031A1 (en) Integrity testing of storage tank structure using robotic ultrasound
US20220316643A1 (en) Inspection robot
WO2009014467A2 (en) Method for determining sea water salinity and density
CN104260848B (en) A kind of cruiseway drauht detection method
CN112666936B (en) Intelligent obstacle avoidance system and method for semi-submersible unmanned ship
CN114910024A (en) Underwater sludge thickness detection method and system
WO2021111468A1 (en) System and method for measuring various parameters of riverine/ canal water flow
CN213984982U (en) Acoustic wave type pipe well sediment thickness detection device
RU2664456C2 (en) Ultrasonic method of measuring the velocity of flow and water expenditure in open water
CN103261525B (en) For determining the method and apparatus of the sedimentary deposit volume in loading area in mixture
CN212867529U (en) Drilling fluid outlet flow measuring device
CN111487616B (en) Flow metering method
CN209961626U (en) Position adjusting device for measuring device of water tank scouring test
CN209961627U (en) Measure measuring device in coordination of velocity of flow and scouring depth
JP7235274B2 (en) Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves
KR101401308B1 (en) A method of ultrasonic interface detecting with duplication
US20200355825A1 (en) Procede, module et systeme de determination d'un profil de celerite d'ondes sonores dans une colonne d'eau
Kolb Experiences with vessel borne ADCPs in shallow waters
JP2020003431A5 (en)
JP2002340656A (en) Instrument for measuring sludge interface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant