JP2020003431A5 - - Google Patents

Download PDF

Info

Publication number
JP2020003431A5
JP2020003431A5 JP2018125461A JP2018125461A JP2020003431A5 JP 2020003431 A5 JP2020003431 A5 JP 2020003431A5 JP 2018125461 A JP2018125461 A JP 2018125461A JP 2018125461 A JP2018125461 A JP 2018125461A JP 2020003431 A5 JP2020003431 A5 JP 2020003431A5
Authority
JP
Japan
Prior art keywords
reflected echo
ultrasonic waves
adhesion
detecting
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018125461A
Other languages
Japanese (ja)
Other versions
JP7235274B2 (en
JP2020003431A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018125461A priority Critical patent/JP7235274B2/en
Priority claimed from JP2018125461A external-priority patent/JP7235274B2/en
Publication of JP2020003431A publication Critical patent/JP2020003431A/en
Publication of JP2020003431A5 publication Critical patent/JP2020003431A5/ja
Application granted granted Critical
Publication of JP7235274B2 publication Critical patent/JP7235274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

超音波による表面の変化状況の検出方法、及び超音波による表面の変化状況の検出システムA method for detecting surface changes by ultrasonic waves and a system for detecting surface changes by ultrasonic waves

本発明は、超音波を用いて構造物への付着物の付着状況を含む変化状況を検出する、超音波による表面の変化状況の検出方法、及び超音波による表面の変化状況の検出システムに関する。 The present invention relates to a method for detecting a surface change state by ultrasonic waves, which detects a change state including an adhesion state of deposits on a structure using ultrasonic waves, and a system for detecting a surface change state by ultrasonic waves.

船体表面へのフジツボ等の海洋生物付着は、推進時の船体抵抗を著しく増大させる。また、海洋生物が船舶の船体に付着して移動し本来の生息地から離れた場所で剥落して繁殖する「生物越境」も問題視されている。
現状、船体への海洋生物の付着状況の観測は、修繕ドック入渠時のドライアップ(水抜き)後に目視で行われることがほとんどである。ダイバーやROV(遠隔操作型の無人潜水機)による船底の画像撮影等によって観測することも可能ではあるが、船舶航行中の観測は困難であり観測のタイミングが限定される。
Adhesion of marine organisms such as barnacles to the surface of the hull significantly increases hull resistance during propulsion. In addition, "cross-border organisms", in which marine organisms attach to the hull of a ship, move, and fall off and propagate in places away from their original habitat, are also regarded as a problem.
At present, most of the observations of marine organisms attached to the hull are carried out visually after dry-up (drainage) at the time of docking the repair dock. It is possible to observe by taking an image of the bottom of the ship with a diver or ROV (remotely operated vehicle), but it is difficult to observe while the ship is sailing, and the timing of observation is limited.

ここで、特許文献1には、超音波探傷器の送信用と受信用とからなる一対の探触子を被検査管の外側に対称的に当て、超音波のパルスを発信し、受信したパルスの波形を健全な管に対する波形と比較することによって、配管内部における海生物の付着状況を測定する方法が開示されている。また、特許文献1には、被検査管の外側の一点に超音波探傷器の探触子を当て、管本体からのエコーと、海生物表面からのエコーを計測し、海生物表面からのエコーの伝播距離を読み取ることにより配管内部における海生物の付着厚さを測定する方法も開示されている。
また、特許文献2には、管の外壁より所定の間隙を隔てて超音波発信子と受信子とを対向配置し、該間隙を管内の流体と同種の音響接合液体で満たした状態で発信子より受信子へ向けて流体中に超音波を伝播してその超音波減衰割合を検出し、該検出値と予め既知のスケール厚さについて求めた超音波減衰率の校正値とから演算により管内に付着しているスケール厚さを求める方法が開示されている。
また、特許文献3には、支脚を有する枠体に固定したガイドバーに超音波送受波器を取り付けた走査体が摺動自在に支持され、超音波送受波器から一定周期毎に超音波のパルス信号を発射しながら走査体を移動させ、発射したパルス信号が海洋成生物から反射される信号を超音波送受波器で受波し、発射信号と受信信号との時間差を検出し、既知の超音波の音速と時間差から超音波送受波器と海洋成生物との距離を算出し、既知の超音波送受波器と基盤との距離から海洋成生物の層厚を算出し、信号発射点における海洋成生物の層厚を測定走査する装置が開示されている。
Here, in Patent Document 1, a pair of probes for transmitting and receiving ultrasonic flaw detectors are symmetrically applied to the outside of the tube to be inspected, ultrasonic pulses are transmitted, and received pulses are generated. Disclosed is a method of measuring the adhesion of marine organisms inside a pipe by comparing the waveform of the above with the waveform for a healthy pipe. Further, in Patent Document 1, an ultrasonic flaw detector probe is applied to a point on the outside of the tube to be inspected, an echo from the tube body and an echo from the surface of the marine organism are measured, and an echo from the surface of the marine organism is measured. Also disclosed is a method of measuring the adhesion thickness of marine organisms inside a pipe by reading the propagation distance of.
Further, in Patent Document 2, an ultrasonic transmitter and a receiver are arranged to face each other with a predetermined gap from the outer wall of the pipe, and the gap is filled with an acoustic bonding liquid of the same type as the fluid in the pipe. Ultrasonic waves are propagated into the fluid toward the receiver to detect the ultrasonic attenuation ratio, and the detected value and the calibration value of the ultrasonic attenuation factor obtained for the known scale thickness in advance are calculated into the pipe. A method for determining the thickness of the attached scale is disclosed.
Further, in Patent Document 3, a scanning body in which an ultrasonic wave transmitter / receiver is attached to a guide bar fixed to a frame body having a support leg is slidably supported, and ultrasonic waves are transmitted from the ultrasonic wave transmitter / receiver at regular intervals. The scanning body is moved while emitting a pulse signal, the emitted pulse signal is received by an ultrasonic transmitter / receiver, and the time difference between the emitted signal and the received signal is detected and known. The distance between the ultrasonic transmitter and receiver and the marine adult is calculated from the sound velocity and time difference of the ultrasonic wave, and the layer thickness of the marine adult is calculated from the distance between the known ultrasonic transmitter and receiver and the base, and the layer thickness of the marine adult is calculated at the signal emission point. An apparatus for measuring and scanning the layer thickness of marine adults is disclosed.

特開平3−188390号公報Japanese Unexamined Patent Publication No. 3-188390 特開昭62−54113号公報Japanese Unexamined Patent Publication No. 62-54113 実公平3−8967号公報Jitsufuku No. 3-8967 Gazette

しかし、特許文献1から特許文献3に記載の方法又は装置では、例えば船体外表面への付着物の付着状況を船体内側から検出することは以下の理由により困難である。
特許文献1に記載の方法のうち上記一つ目の方法、及び特許文献2に記載の方法は、管を隔てて対向配置した発信用と受信用の2つの超音波センサを用いて、超音波の透過波の減衰により管内に付着した付着物の付着状況を検出する。しかし、船体外表面への付着物を船体内側から検知しようとする場合は、船体外部に受信用の超音波センサを設置することは困難である。
特許文献1に記載の方法のうち上記二つ目の方法、及び特許文献3に記載の装置は、超音波のTime of Flight法(TOF法)を用いて配管内部に付着した付着物の付着厚さを測定するものである。しかし、船体外表面の付着物を船体内側から検知しようとする場合は、付着物の付着面(船体外表面)は超音波センサを接触させる面(船体内表面)のすぐ反対側の面であることにより、付着面からの反射エコーと付着物による反射エコーが重畳して計測されるため、付着物によるエコーの起点が不明確となり、TOF法の適用は困難である。
However, with the methods or devices described in Patent Documents 1 to 3, it is difficult to detect, for example, the state of adhesion of deposits on the outer surface of the hull from the inside of the hull for the following reasons.
Of the methods described in Patent Document 1, the first method described above and the method described in Patent Document 2 use ultrasonic waves using two ultrasonic sensors for transmission and reception, which are arranged so as to face each other across a tube. The state of adhesion of deposits adhering to the inside of the pipe is detected by the attenuation of the transmitted wave. However, when trying to detect deposits on the outer surface of the hull from the inside of the hull, it is difficult to install an ultrasonic sensor for reception outside the hull.
Of the methods described in Patent Document 1, the second method described above and the apparatus described in Patent Document 3 use the ultrasonic Time of Flight method (TOF method) to adhere to the thickness of deposits adhering to the inside of the pipe. It measures the patent. However, when attempting to detect deposits on the outer surface of the hull from the inside of the hull, the deposit surface (outer surface of the hull) is the surface immediately opposite to the surface (surface inside the hull) with which the ultrasonic sensor is contacted. As a result, the reflected echo from the adhering surface and the reflected echo due to the adhering material are superimposed and measured, so that the starting point of the echo due to the adhering material becomes unclear, and it is difficult to apply the TOF method.

そこで本発明は、例えば船体内側からでも船体外表面への付着物の付着状況を含めた変化状況が検出できるように、構造物の一方の面における付着物の付着状況を含めた変化状況を、その一方の面と表裏一体の関係にある他方の面から超音波を入射することで検出できる、超音波による表面の変化状況の検出方法、及び超音波による表面の変化状況の検出システムを提供することを目的とする。 The present invention is, for example changing circumstances, including the adhesion state of the deposit to the hull outer surface even from the hull interior to allow detection, a change situation, including the adhesion state of the deposit on one surface of the structure, can be detected by the incident ultrasonic waves from the other surface which is in relation of one surface inextricably linked, the detection method of a change situation of the surface by ultrasound, and provides a detection system changes the status of the surface by ultrasonic The purpose is.

請求項1記載に対応した超音波による表面の変化状況の検出方法においては、超音波を用いて構造物への付着物の付着状況を含めた表面の変化状況を検出する表面の変化状況の検出方法であって、第1の時刻において超音波を構造物へ入射させ第1の反射エコーを計測し、第2の時刻において超音波を少なくとも構造物へ入射させ第2の反射エコーを計測し、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルを比較するか、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて構造物への付着物の付着状況を含めた変化状況を検出することを特徴とする。
なお、付着物には外来の付着物、付着物が成長したもの、周囲から析出したもの、構造物が化学変化を起こして構造物の表面が付着物状になったもの等を含むものとする。
請求項1に記載の本発明によれば、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルの比較か、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて付着状況を含めた変化状況を検出することで、構造物の一方の面における付着物の付着状況を含めた変化状況を、例えば、その一方の面と表裏一体の関係にある他方の面側から検出することができる。これにより、例えば、船体外表面への付着物の有無を含めた変化状況を船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況を含めた変化状況のモニタリングが適時可能となる。
In the method for detecting the surface change status by ultrasonic waves according to the first aspect, the surface change status is detected by detecting the surface change status including the adhesion status of the deposits to the structure by using ultrasonic waves. In the method, at the first time, ultrasonic waves are incident on the structure and the first reflected echo is measured, and at the second time, ultrasonic waves are incident on at least the structure and the second reflected echo is measured. The adhesion status of deposits to the structure is compared by comparing the integrated value or power spectrum of the first reflected echo and the second reflected echo, or based on the deviation of the waveforms of the first reflected echo and the second reflected echo. It is characterized by detecting the change situation including.
In addition, the deposits include foreign deposits, those in which the deposits have grown, those in which the deposits have precipitated from the surroundings, those in which the structure has undergone a chemical change and the surface of the structure has become a deposit.
According to the first aspect of the present invention, for comparison of the integrated value or power spectrum of the first reflected echo and the second reflected echo, or for the deviation of the waveforms of the first reflected echo and the second reflected echo. by detecting a change situation, including the adhesion state on the basis of the other surface with a change situation, including the adhesion state of the deposit on one surface of the structure, for example, the relationship between the one surface inextricably linked It can be detected from the side. As a result, for example, the change status including the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the deposits adhere to the outer surface of the hull regardless of whether it is moored or sailing. It will be possible to monitor the change situation including the situation in a timely manner.

請求項2記載の本発明は、第1の時刻における第1の反射エコーを予め計測して記録し、記録した第1の反射エコーを比較に用いることを特徴とする。
請求項2に記載の本発明によれば、比較の基準となる第1の反射エコーを計測のたびに計測する必要がなくなるため、時間を短縮できる。例えば、第1の時刻が付着物の付いていない開始時刻であり、第2の時刻が付着物の付いた経過時刻である場合、経過時刻において、付着物を剥がして第1の反射エコーを計測しなくても済む。また、比較の基準が一定となることで、付着状況を含めた変化状況の検出精度が向上する。
The present invention according to claim 2 is characterized in that a first reflected echo at a first time is measured and recorded in advance, and the recorded first reflected echo is used for comparison.
According to the second aspect of the present invention, it is not necessary to measure the first reflected echo, which is a reference for comparison, every time the measurement is performed, so that the time can be shortened. For example, when the first time is the start time without deposits and the second time is the elapsed time with deposits, the deposits are peeled off and the first reflected echo is measured at the elapsed time. You don't have to. In addition, by making the comparison standard constant, the detection accuracy of the change status including the adhesion status is improved.

請求項3記載の本発明は、第1の反射エコーとして第1の反射エコー強度を、また第2の反射エコーとして第2の反射エコー強度を計測し、積分値として第1の反射エコー強度及び第2の反射エコー強度の時間的な積分値を用いることを特徴とする。
請求項3に記載の本発明によれば、計測が容易な反射エコー強度を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。
According to the third aspect of the present invention, the first reflected echo intensity is measured as the first reflected echo, the second reflected echo intensity is measured as the second reflected echo, and the first reflected echo intensity and the integrated value are measured. It is characterized by using the temporal integrated value of the second reflected echo intensity.
According to the third aspect of the present invention, since the difference between the first reflected echo and the second reflected echo is clarified by using the reflected echo intensity that is easy to measure, the adhesion state of the deposit is included. The change status can be easily detected.

請求項4記載の本発明は、第1の反射エコーとして第1のパワースペクトルを、また第2の反射エコーとして第2のパワースペクトルを計測し、第1のパワースペクトルと第2のパワースペクトルの支配的な周波数帯の変化を比較に用いることを特徴とする。
請求項4に記載の本発明によれば、付着状況を含めた変化状況が反映されるパワースペクトルの周波数帯の変化を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。
According to the fourth aspect of the present invention, the first power spectrum is measured as the first reflected echo and the second power spectrum is measured as the second reflected echo, and the first power spectrum and the second power spectrum are measured. It is characterized by using the change of the dominant frequency band for comparison.
According to the fourth aspect of the present invention, the difference between the first reflected echo and the second reflected echo is clarified by using the change in the frequency band of the power spectrum that reflects the change state including the adhesion state. Therefore, it becomes easy to detect the change status including the adhesion status of the deposits.

請求項5記載の本発明は、構造物が船体であり、付着物が船体に付着する海洋生物であることを特徴とする。
請求項5に記載の本発明によれば、船体に付着する海洋生物等の付着状況を含めた変化状況を検出することができる。
The present invention according to claim 5 is characterized in that the structure is a hull and the deposits are marine organisms that adhere to the hull.
According to the fifth aspect of the present invention, it is possible to detect a change state including an attachment state of marine organisms and the like adhering to the hull.

請求項6記載の本発明は、船体の内側から超音波を入射させ、内側で第1の反射エコー又は第2の反射エコーを計測することを特徴とする。
請求項6に記載の本発明によれば、航行中、停泊中であっても海洋生物等の付着状況を含めた変化状況を船体の内側から検出できる。
The present invention according to claim 6 is characterized in that ultrasonic waves are incident from the inside of the hull and the first reflected echo or the second reflected echo is measured inside.
According to the sixth aspect of the present invention, it is possible to detect a change state including an adhesion state of marine organisms from the inside of the hull even while sailing or berthing.

請求項7記載の本発明は、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の同一箇所で行なうことを特徴とする。
請求項7に記載の本発明によれば、時刻が変わっても同一箇所の付着物の付着状況を含めた変化状況を正確に検出できる。
The present invention according to claim 7 is characterized in that the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at the same location in the structure.
According to the seventh aspect of the present invention, even if the time changes, the change state including the adhesion state of the deposits at the same place can be accurately detected.

請求項8記載の本発明は、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の別の箇所で行なうことを特徴とする。
請求項8に記載の本発明によれば、広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。
The present invention according to claim 8 is characterized in that the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at different parts of the structure.
According to the eighth aspect of the present invention, it is possible to detect a change state including an adhesion state of deposits over a wide range.

請求項9記載の本発明は、超音波の入射を構造物の複数箇所で行い、第1の反射エコー及び第2の反射エコーの計測を構造物の一箇所で行なうことを特徴とする。
請求項9に記載の本発明によれば、より広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。
The present invention according to claim 9 is characterized in that the incident of ultrasonic waves is performed at a plurality of locations of the structure, and the measurement of the first reflected echo and the second reflected echo is performed at one location of the structure.
According to the ninth aspect of the present invention, it is possible to detect a change state including an adhesion state of deposits over a wider range.

請求項10記載の本発明は、検出した構造物への付着物の付着状況を報知することを特徴とする。
請求項10に記載の本発明によれば、検出現場から離れた場所にいる人へも付着状況を含めた変化状況を知らせることができる。
The present invention according to claim 10 is characterized in that the state of adhesion of the adhered matter to the detected structure is notified.
According to the tenth aspect of the present invention, it is possible to notify a person who is away from the detection site of the change status including the adhesion status.

請求項11記載に対応した超音波による表面の変化状況の検出システムにおいては、超音波を用いて構造物への付着物の付着状況を含めた表面の変化状況を検出する表面の変化状況の検出システムであって、超音波を少なくとも構造物へ入射させる超音波入射手段と、少なくとも構造物からの反射エコーを計測する反射エコー計測手段と、第1の時刻における第1の反射エコーと第2の時刻における第2の反射エコーの積分値又はパワースペクトルを比較するか、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて構造物への付着物の付着状況を含めた変化状況を検出する付着検出手段とを備えたことを特徴とする。
請求項11に記載の本発明によれば、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルの比較にか、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて付着状況を含めた変化状況を検出することで、構造物の一方の面における付着物の付着状況を含めた変化状況を、例えば、その一方の面と表裏一体の関係にある他方の面側から検出することができる。これにより、例えば、船体外表面への付着物の有無を含めた変化状況を船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況を含めた変化状況のモニタリングが適時可能となる。
In the surface change status detection system by ultrasonic waves corresponding to claim 11, the surface change status is detected by detecting the surface change status including the adhesion status of deposits to the structure using ultrasonic waves. In the system, at least the ultrasonic incident means for incidenting ultrasonic waves on the structure, at least the reflected echo measuring means for measuring the reflected echo from the structure, and the first reflected echo and the second reflected echo at the first time. Compare the integrated value or power spectrum of the second reflected echo at time , or change including the adhesion status of deposits to the structure based on the deviation of the waveforms of the first reflected echo and the second reflected echo. It is characterized by being provided with an adhesion detecting means for detecting a situation.
According to the eleventh aspect of the present invention, for comparison of the integrated value or the power spectrum of the first reflected echo and the second reflected echo, or the deviation of the waveforms of the first reflected echo and the second reflected echo. based on by detecting a change situation, including the adhesion state, one of a change situation, including the adhesion state of the deposit in the surface of the structure, for example, the other in relation one surface inextricably linked It can be detected from the surface side. As a result, for example, the change status including the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the deposits adhere to the outer surface of the hull regardless of whether it is moored or sailing. It will be possible to monitor the change situation including the situation in a timely manner.

請求項12記載の本発明は、第1の時刻における第1の反射エコーを予め計測した結果を記録し、第2の反射エコーとの比較に用いるための記録手段を備えたことを特徴とする。
請求項12に記載の本発明によれば、比較の基準となる第1の反射エコーを計測のたびに計測する必要がなくなるため、計測に要する時間を短縮できる。また、比較の基準が一定となることで、付着状況を含めた変化状況の検出精度が向上する。
The present invention according to claim 12 is characterized in that the present invention includes a recording means for recording the result of pre-measurement of the first reflected echo at the first time and using it for comparison with the second reflected echo. ..
According to the twelfth aspect of the present invention, it is not necessary to measure the first reflected echo as a reference for comparison every time the measurement is performed, so that the time required for the measurement can be shortened. In addition, by making the comparison standard constant, the detection accuracy of the change status including the adhesion status is improved.

請求項13記載の本発明は、反射エコー計測手段が、第1の反射エコーとして第1の反射エコー強度を、また第2の反射エコーとして第2の反射エコー強度を計測し、付着検出手段が、積分値として第1の反射エコー強度及び第2の反射エコー強度の時間的な積分値を比較に用いることを特徴とする。
請求項13に記載の本発明によれば、計測が容易な反射エコー強度を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。
According to the thirteenth aspect of the present invention, the reflected echo measuring means measures the first reflected echo intensity as the first reflected echo and the second reflected echo intensity as the second reflected echo, and the adhesion detecting means As an integrated value, the temporal integrated value of the first reflected echo intensity and the second reflected echo intensity is used for comparison.
According to the thirteenth aspect of the present invention, since the difference between the first reflected echo and the second reflected echo is clarified by using the reflected echo intensity that is easy to measure, the adhesion state of the deposit is included. The change status can be easily detected.

請求項14記載の本発明は、反射エコー計測手段が、第1の反射エコーとして第1のパワースペクトルを、また第2の反射エコーとして第2のパワースペクトルを計測し、付着検出手段が、第1のパワースペクトルと第2のパワースペクトルの支配的な周波数帯の変化を比較に用いることを特徴とする。
請求項14に記載の本発明によれば、付着状況を含めた変化状況が反映されるパワースペクトルの周波数帯の変化を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。
In the present invention according to claim 14, the reflected echo measuring means measures the first power spectrum as the first reflected echo and the second power spectrum as the second reflected echo, and the adhesion detecting means is the first. It is characterized in that the change of the dominant frequency band of the power spectrum of 1 and the power spectrum of the second is used for comparison.
According to the 14th aspect of the present invention, the difference between the first reflected echo and the second reflected echo is clarified by using the change in the frequency band of the power spectrum that reflects the change state including the adhesion state. Therefore, it becomes easy to detect the change status including the adhesion status of the deposits.

請求項15記載の本発明は、構造物が船体であり、付着物が船体に付着する海洋生物であることを特徴とする。
請求項15に記載の本発明によれば、船体に付着する海洋生物等の付着状況を含めた変化状況を検出することができる。
The present invention according to claim 15 is characterized in that the structure is a hull and the deposits are marine organisms that adhere to the hull.
According to the fifteenth aspect of the present invention, it is possible to detect a change state including an adhesion state of marine organisms and the like adhering to the hull.

請求項16記載の本発明は、超音波入射手段が、船体の内側から超音波を船体へ入射させ、反射エコー計測手段が、内側で反射エコーを計測することを特徴とする。
請求項16に記載の本発明によれば、航行中、停泊中であっても海洋生物等の付着状況を含めた変化状況を船体の内側から検出できる。
The present invention according to claim 16 is characterized in that the ultrasonic incident means incidents ultrasonic waves on the hull from the inside of the hull, and the reflected echo measuring means measures the reflected echo inside.
According to the sixteenth aspect of the present invention, it is possible to detect a change state including an adhesion state of marine organisms and the like from the inside of the hull even while sailing or berthing.

請求項17記載の本発明は、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の同一箇所で行なうことを特徴とする。
請求項17に記載の本発明によれば、時刻が変わっても同一箇所の付着物の付着状況を含めた変化状況を検出できる。
The present invention according to claim 17 is characterized in that the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at the same location in the structure.
According to the 17th aspect of the present invention, even if the time changes, the change state including the adhesion state of the deposits at the same place can be detected.

請求項18記載の本発明は、超音波入射手段と、反射エコー計測手段を構造物の別の箇所に設け、超音波の入射と反射エコーの計測を別の箇所で行なうことを特徴とする。
請求項18に記載の本発明によれば、広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。
The present invention according to claim 18 is characterized in that the ultrasonic wave incident means and the reflected echo measuring means are provided at different places in the structure, and the ultrasonic wave incident and the reflected echo are measured at different places.
According to the eighteenth aspect of the present invention, it is possible to detect a change state including an adhesion state of deposits over a wide range.

請求項19記載の本発明は、超音波入射手段を構造物の複数の箇所に設け、超音波の入射を複数箇所で行い、反射エコー計測手段を構造物の一箇所に設け、反射エコーの計測を一箇所で行なうことを特徴とする。
請求項19に記載の本発明によれば、より広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。
In the present invention according to claim 19, the ultrasonic wave incident means is provided at a plurality of places in the structure, the ultrasonic waves are incident at a plurality of places, the reflected echo measuring means is provided at one place in the structure, and the reflected echo is measured. Is characterized in that it is performed in one place.
According to the nineteenth aspect of the present invention, it is possible to detect a change state including an adhesion state of deposits over a wider range.

請求項20記載の本発明は、付着検出手段で検出した構造物への付着物の付着状況を報知する報知手段を備えたことを特徴とする。
請求項20に記載の本発明によれば、検出現場から離れた場所にいる人へも付着状況を含めた変化状況を知らせることができる。
The present invention according to claim 20 is characterized by comprising a notifying means for notifying the state of adhering to a structure detected by the adhering detecting means.
According to the 20th aspect of the present invention, it is possible to notify a person who is away from the detection site of the change status including the adhesion status.

本発明の超音波による表面の変化状況の検出方法によれば、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルの比較か、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて付着状況を含めた変化状況を検出することで、構造物の一方の面における付着物の付着状況を含めた変化状況を、例えば、その一方の面と表裏一体の関係にある他方の面側から検出することができる。これにより、例えば、船体外表面への付着物の有無を含めた変化状況を船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況を含めた変化状況のモニタリングが適時可能となる。 According to the method for detecting the change state of the surface by ultrasonic waves of the present invention, the integrated value or the power spectrum of the first reflected echo and the second reflected echo is compared, or the first reflected echo and the second reflected echo are compared. of by detecting a change situation, including the adhesion state on the basis of the deviation of the waveform, a change situation, including the adhesion state of the deposit on one surface of the structure, for example, one surface inextricably linked relationship It can be detected from the other side of the surface. As a result, for example, the change status including the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the deposits adhere to the outer surface of the hull regardless of whether it is moored or sailing. It will be possible to monitor the change situation including the situation in a timely manner.

また、第1の時刻における第1の反射エコーを予め計測して記録し、記録した第1の反射エコーを比較に用いる場合には、比較の基準となる第1の反射エコーを計測のたびに計測する必要がなくなるため、時間を短縮できる。例えば、第1の時刻が付着物の付いていない開始時刻であり、第2の時刻が付着物の付いた経過時刻である場合、経過時刻において、付着物を剥がして第1の反射エコーを計測しなくても済む。また、比較の基準が一定となることで、付着状況を含めた変化状況の検出精度が向上する。 Further, when the first reflected echo at the first time is measured and recorded in advance and the recorded first reflected echo is used for comparison, the first reflected echo as a reference for comparison is measured each time. Time can be shortened because there is no need to measure. For example, when the first time is the start time without deposits and the second time is the elapsed time with deposits, the deposits are peeled off and the first reflected echo is measured at the elapsed time. You don't have to. In addition, by making the comparison standard constant, the detection accuracy of the change status including the adhesion status is improved.

また、第1の反射エコーとして第1の反射エコー強度を、また第2の反射エコーとして第2の反射エコー強度を計測し、積分値として第1の反射エコー強度及び第2の反射エコー強度の時間的な積分値を用いる場合には、計測が容易な反射エコー強度を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。 Further, the first reflected echo intensity is measured as the first reflected echo, the second reflected echo intensity is measured as the second reflected echo, and the integrated values of the first reflected echo intensity and the second reflected echo intensity are measured. When the temporal integrated value is used, the difference between the first reflected echo and the second reflected echo becomes clear by using the reflected echo intensity that is easy to measure, so the change including the adhesion status of the deposits is included. The situation can be easily detected.

また、第1の反射エコーとして第1のパワースペクトルを、また第2の反射エコーとして第2のパワースペクトルを計測し、第1のパワースペクトルと第2のパワースペクトルの支配的な周波数帯の変化を比較に用いる場合には、付着状況を含めた変化状況が反映されるパワースペクトルの周波数帯の変化を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。 Further, the first power spectrum is measured as the first reflected echo, and the second power spectrum is measured as the second reflected echo, and the change in the dominant frequency band of the first power spectrum and the second power spectrum is performed. Is used for comparison because the difference between the first reflected echo and the second reflected echo becomes clear by using the change in the frequency band of the power spectrum that reflects the change status including the adhesion status. It becomes easy to detect the change status including the adhesion status of the kimono.

また、構造物が船体であり、付着物が船体に付着する海洋生物である場合には、船体に付着する海洋生物等の付着状況を含めた変化状況を検出することができる。 Further, when the structure is a hull and the deposit is a marine organism that adheres to the hull, it is possible to detect the change status including the adhesion status of the marine organisms that adhere to the hull.

また、船体の内側から超音波を入射させ、内側で第1の反射エコー又は第2の反射エコーを計測する場合には、航行中、停泊中であっても海洋生物等の付着状況を含めた変化状況を船体の内側から検出できる。 In addition, when ultrasonic waves are incident from the inside of the hull and the first reflected echo or the second reflected echo is measured inside, the adhesion status of marine organisms, etc. is included even while sailing or moored. The change status can be detected from the inside of the hull.

また、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の同一箇所で行なう場合には、時刻が変わっても同一箇所の付着物の付着状況を含めた変化状況を検出できる。 In addition, when the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at the same location of the structure, changes including the adhesion status of deposits at the same location even if the time changes. The situation can be detected.

また、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の別の箇所で行なう場合には、広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。 Further, when the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at different locations in the structure, the change status including the adhesion status of deposits can be detected over a wide range. ..

また、超音波の入射を構造物の複数箇所で行い、第1の反射エコー及び第2の反射エコーの計測を構造物の一箇所で行なう場合には、より広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。 Further, when the ultrasonic waves are incident at a plurality of places in the structure and the first reflected echo and the second reflected echo are measured at one place in the structure, the adhesion state of the deposits can be checked over a wider range. The change status including can be detected.

また、検出した構造物への付着物の付着状況を報知する場合には、検出現場から離れた場所にいる人へも付着状況を含めた変化状況を知らせることができる。 Further, when notifying the adhered state of the adhered matter to the detected structure, it is possible to inform the change status including the adhered state to a person who is away from the detection site.

また、本発明の超音波による付着物の検出システムによれば、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルの比較か、或いは第1の反射エコーと第2の反射エコーの波形のずれに基づいて付着状況を含めた変化状況を検出することで、構造物の一方の面における付着物の付着状況を含めた変化状況を、例えば、その一方の面と表裏一体の関係にある他方の面側から検出することができる。これにより、例えば、船体外表面への付着物の有無を含めた変化状況を船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況を含めた変化状況のモニタリングが適時可能となる。 Further, according to the ultrasonic deposit detection system of the present invention, the integrated value or power spectrum of the first reflected echo and the second reflected echo is compared, or the first reflected echo and the second reflected echo are compared. of by detecting a change situation, including the adhesion state on the basis of the deviation of the waveform, a change situation, including the adhesion state of the deposit on one surface of the structure, for example, one surface inextricably linked relationship It can be detected from the other side of the surface. As a result, for example, the change status including the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the deposits adhere to the outer surface of the hull regardless of whether it is moored or sailing. It will be possible to monitor the change situation including the situation in a timely manner.

また、第1の時刻における第1の反射エコーを予め計測した結果を記録し、第2の反射エコーとの比較に用いるための記録手段を備えた場合には、比較の基準となる第1の反射エコーを計測のたびに計測する必要がなくなるため、計測に要する時間を短縮できる。また、比較の基準が一定となることで、付着状況を含めた変化状況の検出精度が向上する。 Further, when a recording means for recording the result of pre-measurement of the first reflected echo at the first time and using it for comparison with the second reflected echo is provided, the first reflected echo serves as a reference for comparison. Since it is not necessary to measure the reflected echo every time the measurement is performed, the time required for the measurement can be shortened. In addition, by making the comparison standard constant, the detection accuracy of the change status including the adhesion status is improved.

また、反射エコー計測手段が、第1の反射エコーとして第1の反射エコー強度を、また第2の反射エコーとして第2の反射エコー強度を計測し、付着検出手段が、積分値として第1の反射エコー強度及び第2の反射エコー強度の時間的な積分値を比較に用いる場合には、計測が容易な反射エコー強度を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。 Further, the reflected echo measuring means measures the first reflected echo intensity as the first reflected echo and the second reflected echo intensity as the second reflected echo, and the adhesion detecting means measures the first reflected echo as an integrated value. When the temporal integrated value of the reflected echo intensity and the second reflected echo intensity is used for comparison, the difference between the first reflected echo and the second reflected echo is clear by using the reflected echo intensity that is easy to measure. Therefore, it becomes easy to detect the change status including the adhesion status of the deposits.

また、反射エコー計測手段が、第1の反射エコーとして第1のパワースペクトルを、また第2の反射エコーとして第2のパワースペクトルを計測し、付着検出手段が、第1のパワースペクトルと第2のパワースペクトルの支配的な周波数帯の変化を比較に用いる場合には、付着状況を含めた変化状況が反映されるパワースペクトルの周波数帯の変化を用いて第1の反射エコーと第2の反射エコーとの差が明確になるため、付着物の付着状況を含めた変化状況の検出が容易となる。 Further, the reflected echo measuring means measures the first power spectrum as the first reflected echo and the second power spectrum as the second reflected echo, and the adhesion detecting means measures the first power spectrum and the second power spectrum. When the change in the dominant frequency band of the power spectrum of is used for comparison, the change in the frequency band of the power spectrum that reflects the change situation including the adhesion state is used for the first reflection echo and the second reflection. Since the difference from the echo becomes clear, it becomes easy to detect the change status including the adhesion status of the deposits.

また、構造物が船体であり、付着物が船体に付着する海洋生物である場合には、船体に付着する海洋生物等の付着状況を含めた変化状況を検出することができる。 Further, when the structure is a hull and the deposit is a marine organism that adheres to the hull, it is possible to detect the change status including the adhesion status of the marine organisms that adhere to the hull.

また、超音波入射手段が、船体の内側から超音波を船体へ入射させ、反射エコー計測手段が、内側で反射エコーを計測する場合には、航行中、停泊中であっても海洋生物等の付着状況を含めた変化状況を船体の内側から検出できる。 In addition, when the ultrasonic incident means incidents ultrasonic waves on the hull from the inside of the hull and the reflected echo measuring means measures the reflected echo inside, marine organisms and the like may be present even while sailing or moored. The change status including the adhesion status can be detected from the inside of the hull.

また、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物の同一箇所で行なう場合には、時刻が変わっても同一箇所の付着物の付着状況を含めた変化状況を検出できる。 In addition, when the incident of ultrasonic waves and the measurement of the first reflected echo and the second reflected echo are performed at the same location of the structure, changes including the adhesion status of deposits at the same location even if the time changes. The situation can be detected.

まあ、超音波入射手段と、反射エコー計測手段を構造物の別の箇所に設け、超音波の入射と反射エコーの計測を別の箇所で行なう場合には、広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。 Well, if the ultrasonic wave incident means and the reflected echo measuring means are provided at different places in the structure and the ultrasonic wave incident and the reflected echo are measured at different places, the adhesion status of the deposits can be measured over a wide range. The change status including can be detected.

また、超音波入射手段を構造物の複数の箇所に設け、超音波の入射を複数箇所で行い、反射エコー計測手段を構造物の一箇所に設け、反射エコーの計測を一箇所で行なう場合には、より広い範囲にわたって付着物の付着状況を含めた変化状況を検出できる。 Further, when the ultrasonic wave incident means is provided at a plurality of places in the structure, the ultrasonic waves are incident at a plurality of places, the reflected echo measuring means is provided at one place in the structure, and the reflected echo is measured at one place. Can detect change status including adhesion status of deposits over a wider range.

また、付着検出手段で検出した構造物への付着物の付着状況を報知する報知手段を備えた場合には、検出現場から離れた場所にいる人へも付着状況を含めた変化状況を知らせることができる。 In addition, when a notification means for notifying the adhesion status of the deposit to the structure detected by the adhesion detection means is provided, the change status including the adhesion status is notified to a person who is away from the detection site. Can be done.

本実施形態における超音波による付着物の検出システムの配置例を示す図The figure which shows the arrangement example of the deposit detection system by ultrasonic wave in this embodiment. 実験に用いた装置の概要図Schematic diagram of the equipment used in the experiment 反射エコーの例を示す図Diagram showing an example of reflected echo 超音波の反射の例を示す概念図Conceptual diagram showing an example of ultrasonic reflection 反射エコー強度の積分値(累積値)の例を示す図The figure which shows the example of the integrated value (cumulative value) of the reflected echo intensity. 第1の反射エコーと第2の反射エコーとのずれが略一定となった時点における反射エコー強度の積分値の例を示す図The figure which shows the example of the integral value of the reflected echo intensity at the time when the deviation between the 1st reflected echo and the 2nd reflected echo becomes substantially constant. 反射エコーのパワースペクトルの例を示す図The figure which shows the example of the power spectrum of the reflected echo 超音波入射手段と反射エコー計測手段の他の配置例を示す図The figure which shows the other arrangement example of the ultrasonic wave incident means and the reflected echo measuring means

本発明の実施形態における超音波による付着物の検出方法、及び超音波による付着物の検出システムについて説明する。
本実施形態の超音波による付着物の検出方法及び検出システムは、超音波を発信し、構造物及び付着物から反射された反射エコーを利用して構造物への付着物の付着状況を検出する。
なお、表面の変化には、付着物として外来の付着物、付着物が成長したもの、周囲から析出したもの、構造物が化学変化を起こして構造物の表面が付着物状になったもの等を含むものとする。
The method for detecting deposits by ultrasonic waves and the system for detecting deposits by ultrasonic waves in the embodiment of the present invention will be described.
The method and detection system for detecting deposits by ultrasonic waves of the present embodiment emits ultrasonic waves and detects the state of adhesion of deposits to the structure by using the reflected echo reflected from the structure and the deposits. ..
The surface changes include foreign deposits, growth of deposits, precipitation from the surroundings, chemical changes in the structure, and the surface of the structure becoming deposits. Shall include.

図1は、本実施形態における超音波による付着物の検出システムの配置例を示す図である。
構造物1は、一方の面1Aは液体と接しており、他方の面1Bは液体と接していない。なお、超音波プローブ10と他方の面1Bの間には、超音波の伝達を促進させる接触媒質(グリセリン等)を充填することが好ましい。構造物1は、例えば船体である。一方の面(船体外表面等)1Aに接する液体が海水の場合は、一方の面1Aにフジツボ等の海洋生物が付着する可能性がある。なお、「船体」には、船体外板の他、シーチェスト、プロペラ、海水冷却システムの構成機器(配管、熱交換器、グレーチング等)、舵等の操舵装置、スタビライザー等の海水に没した部位等を含む。
超音波による付着物の検出システムは、超音波を発信する超音波入射手段11と、反射面で反射されてエコーとなった超音波(反射エコー)を受信する反射エコー計測手段12と、反射エコーに基づいて構造物1への付着物の付着状況を検出する付着検出手段21と、反射エコーのデータを記録する記録手段22と、検出された付着物の付着状況を音又は文字等によって知らせる報知手段23を備える。
本実施形態においては、超音波を送受信する1台の超音波プローブ10が、超音波入射手段11と反射エコー計測手段12を兼用している。
また、付着検出手段21、記録手段22及び報知手段23は、1台のノートパソコン20に備えられている。
超音波プローブ10とノートパソコン20との間には、超音波信号の送受信を行うパルサーレシーバ30と、オシロスコープ40が配置されており、超音波プローブ10とパルサーレシーバ30間、パルサーレシーバ30とオシロスコープ40間、オシロスコープ40とノートパソコン20間は、それぞれ有線接続されている。なお、有線接続の一部、又は全部を無線接続とすることも可能である。
超音波プローブ10で計測される反射エコーの信号は、オシロスコープ40を介してノートパソコン20に取り込まれる。なお、超音波プローブ10の入射手段11と反射エコー計測手段12、ノートパソコン20の機能としての付着検出手段21、記録手段22及び報知手段23、パルサーレシーバ30、及びオシロスコープ40は、適宜、個別にまた組み合わせて構成することができる。
FIG. 1 is a diagram showing an arrangement example of a deposit detection system by ultrasonic waves in the present embodiment.
In the structure 1, one surface 1A is in contact with the liquid and the other surface 1B is not in contact with the liquid. It is preferable to fill the space between the ultrasonic probe 10 and the other surface 1B with a contact medium (glycerin or the like) that promotes the transmission of ultrasonic waves. The structure 1 is, for example, a hull. If the liquid in contact with one surface (outer surface of the hull, etc.) 1A is seawater, marine organisms such as barnacles may adhere to one surface 1A. In addition to the hull skin, the "hull" includes sea chests, propellers, seawater cooling system components (pipes, heat exchangers, gratings, etc.), steering devices such as rudders, and parts submerged in seawater such as stabilizers. Etc. are included.
The detection system for deposits by ultrasonic waves includes an ultrasonic incident means 11 that emits ultrasonic waves, a reflected echo measuring means 12 that receives ultrasonic waves (reflected echoes) that are reflected by a reflecting surface and become echoes, and reflected echoes. Adhesion detecting means 21 for detecting the adhering state of the adhering matter to the structure 1 based on the above, recording means 22 for recording the reflected echo data, and notification of the adhering state of the detected adhering matter by sound or letters. Means 23 is provided.
In the present embodiment, one ultrasonic probe 10 for transmitting and receiving ultrasonic waves also serves as the ultrasonic incident means 11 and the reflected echo measuring means 12.
Further, the adhesion detecting means 21, the recording means 22, and the notifying means 23 are provided in one notebook computer 20.
A pulsar receiver 30 for transmitting and receiving ultrasonic signals and an oscilloscope 40 are arranged between the ultrasonic probe 10 and the notebook computer 20, and the pulsar receiver 30 and the oscilloscope 40 are arranged between the ultrasonic probe 10 and the pulsar receiver 30. The oscilloscope 40 and the notebook computer 20 are connected by wire. It is also possible to make a part or all of the wired connection a wireless connection.
The reflected echo signal measured by the ultrasonic probe 10 is taken into the notebook computer 20 via the oscilloscope 40. The incident means 11 and the reflected echo measuring means 12 of the ultrasonic probe 10, the adhesion detecting means 21 as a function of the notebook computer 20, the recording means 22, the notification means 23, the pulsar receiver 30, and the oscilloscope 40 are individually used as appropriate. It can also be combined and configured.

図1に示すように、超音波による付着物の検出システムは、超音波入射手段11及び反射エコー計測手段12も含めて構造物1の片側一方のみに配置される。
図1においては、超音波プローブ10(超音波入射手段11及び反射エコー計測手段12)の先端を構造体1の壁の他方の面1Bに接触させ、ノートパソコン20、パルサーレシーバ30、及びオシロスコープ40を床置きした状態を示している。
As shown in FIG. 1, the ultrasonic deposit detection system, including the ultrasonic incident means 11 and the reflected echo measuring means 12, is arranged on only one side of the structure 1.
In FIG. 1, the tip of the ultrasonic probe 10 (ultrasonic wave incident means 11 and reflected echo measuring means 12) is brought into contact with the other surface 1B of the wall of the structure 1, and the notebook computer 20, the pulsar receiver 30, and the oscilloscope 40 are brought into contact with each other. Is shown on the floor.

構造物1に付着した付着物の検出は、以下の手順で行う。
まず、構造物1について、海洋生物等の付着物の付着状況を確認する位置となる計測箇所を決定する。この計測箇所は、その時点において一方の面1Aへの付着物の付着が無い位置を選定することが好ましい。
次に、決定した計測箇所における構造物1の他方の面1Bに超音波プローブ10の先端を、グリセリン等を介して密接させる。次に、超音波入射手段11から計測箇所へ向けて超音波を発信して超音波を構造物1へ入射させ、その反射エコーを反射エコー計測手段12で計測する。このときに計測された反射エコーを、第1の時刻における第1の反射エコーとして、記録手段22に記録する。
第1の時刻における第1の反射エコーを計測してから所定時間が経過した後、第1の時刻における第1の反射エコーの計測箇所と同位置において、反射エコーの計測を行う。まず、計測箇所における船体1の他方の面1Bに超音波プローブ10の先端を密接させる。次に、超音波入射手段11から計測箇所へ向けて超音波を発信して超音波を構造物1へ入射させ、その反射エコーを反射エコー計測手段12で計測する。このときに計測された反射エコーを、第2の時刻における第2の反射エコーとして、記録手段22に記録する。
The deposits adhering to the structure 1 are detected by the following procedure.
First, for the structure 1, a measurement point is determined as a position for confirming the adhesion state of deposits such as marine organisms. For this measurement point, it is preferable to select a position where no deposits adhere to one surface 1A at that time.
Next, the tip of the ultrasonic probe 10 is brought into close contact with the other surface 1B of the structure 1 at the determined measurement location via glycerin or the like. Next, the ultrasonic wave incident means 11 transmits an ultrasonic wave toward the measurement point to make the ultrasonic wave incident on the structure 1, and the reflected echo is measured by the reflected echo measuring means 12. The reflected echo measured at this time is recorded in the recording means 22 as the first reflected echo at the first time.
After a predetermined time has elapsed from the measurement of the first reflected echo at the first time, the reflected echo is measured at the same position as the measurement point of the first reflected echo at the first time. First, the tip of the ultrasonic probe 10 is brought into close contact with the other surface 1B of the hull 1 at the measurement point. Next, the ultrasonic wave incident means 11 transmits an ultrasonic wave toward the measurement point to make the ultrasonic wave incident on the structure 1, and the reflected echo is measured by the reflected echo measuring means 12. The reflected echo measured at this time is recorded in the recording means 22 as the second reflected echo at the second time.

第2の時刻における第2の反射エコーを計測した後、付着検出手段21は、記録手段22に記録されている第1の反射エコーの積分値又はパワースペクトルと、第2の反射エコーの積分値又はパワースペクトルを読み出し、両者を比較する。
比較の結果、第1の反射エコーの積分値又はパワースペクトルと第2の反射エコーの積分値又はパワースペクトルとに所定の差が生じていない場合は、第1の時刻から第2の時刻の間に計測箇所における一方の面1Aへの付着物の付着状況は変化していないと判断する。また、第1の反射エコーの積分値又はパワースペクトルと第2の反射エコーの積分値又はパワースペクトルとに所定の差が生じている場合は、第1の時刻から第2の時刻の間に計測箇所における一方の面1Aへの付着物の付着状況が変化したと判断する。
超音波による付着物の検出システムは、付着検出手段21による検出結果を、有線又は無線通信網に接続された報知手段23を通じて計測者や管理者等へ報知する。報知手段23を備えることにより、検出現場から離れた場所にいる人へも付着状況を知らせることができる。なお、報知手段23は、画像、音声、触覚等凡そ報知ができる手段の全てを含むものとする。
After measuring the second reflected echo at the second time, the adhesion detecting means 21 transfers the integrated value or power spectrum of the first reflected echo recorded in the recording means 22 and the integrated value of the second reflected echo. Or read the power spectrum and compare the two.
As a result of comparison, if there is no predetermined difference between the integrated value or power spectrum of the first reflected echo and the integrated value or power spectrum of the second reflected echo, it is between the first time and the second time. It is judged that the state of adhesion of the deposits on one surface 1A at the measurement point has not changed. If there is a predetermined difference between the integrated value or power spectrum of the first reflected echo and the integrated value or power spectrum of the second reflected echo, measurement is performed between the first time and the second time. It is determined that the state of adhesion of the deposit to one surface 1A at the location has changed.
The adhesion detection system by ultrasonic waves notifies the measurer, the manager, and the like of the detection result by the adhesion detection means 21 through the notification means 23 connected to the wired or wireless communication network. By providing the notification means 23, it is possible to notify the adhesion status to a person who is away from the detection site. It should be noted that the notification means 23 includes all means that can perform approximately notification such as image, voice, and tactile sensation.

ここで、本発明を用いた実験について説明する。図2は、実験に用いた装置の概要図である。
本実験では、構造物を試験片2で模擬した。試験片2は、素材が一般構造用鋼(SS400)であり、寸法は高さ200mm、幅190mm、板厚9mmである。また、試験片2の表面には、塗装膜250μmの防食塗料が施されている。試験片2を実海域の海水中に長時間浸漬することにより一方の面2Aのみにフジツボを付着させた。付着したフジツボの大きさは、試験片2と接する部分で直径約10mmである。
航行中の船体内側からの計測を想定し、試験片2のうち、フジツボが付着している一方の面2Aを水面に接触させた状態で、フジツボが付着していない他方の面2B側から超音波を入射させることで計測を行った。試験片2の計測箇所は2箇所選定し、1つ目の計測箇所は一方の面2Aにフジツボが付着していない位置とし、2つ目の計測箇所は一方の面2Aにフジツボが付着している位置とした。
まず1つ目の計測箇所(フジツボ付着無し)において、超音波プローブ10の先端を他方の面2Bに密接させた状態で超音波入射手段11から超音波を発信して超音波を試験片2に入射させ、その反射エコーを反射エコー計測手段12で計測した。このときに計測された反射エコーを、第1の時刻における第1の反射エコーとして記録手段22に記録した。
次に、2つ目の計測箇所(フジツボ付着有り)において、超音波プローブ10の先端を他方の面2Bに密接させた状態で超音波入射手段11から超音波を発信して超音波を試験片2に入射させ、その反射エコーを反射エコー計測手段12で計測した。このときに計測された反射エコーを、第2の時刻における第2の反射エコーとして記録手段22に記録した。
Here, an experiment using the present invention will be described. FIG. 2 is a schematic view of the apparatus used in the experiment.
In this experiment, the structure was simulated with the test piece 2. The test piece 2 is made of general structural steel (SS400) and has dimensions of 200 mm in height, 190 mm in width, and 9 mm in thickness. The surface of the test piece 2, anticorrosive paint coating thickness 250μm is applied. The barnacles were attached only to one surface 2A by immersing the test piece 2 in seawater in the actual sea area for a long time. The size of the attached barnacle is about 10 mm in diameter at the portion in contact with the test piece 2.
Assuming measurement from the inside of the hull during navigation, one side 2A of the test piece 2 to which the barnacles are attached is in contact with the water surface, and the other side 2B to which the barnacles are not attached is super The measurement was performed by injecting a sound wave. Two measurement points for the test piece 2 were selected, the first measurement point was the position where the barnacles did not adhere to one surface 2A, and the second measurement point had the barnacles attached to one surface 2A. It was the position where it was.
First, at the first measurement point (without Fujitsubo adhesion), ultrasonic waves are transmitted from the ultrasonic incident means 11 with the tip of the ultrasonic probe 10 in close contact with the other surface 2B, and the ultrasonic waves are sent to the test piece 2. The incident was made, and the reflected echo was measured by the reflected echo measuring means 12. The reflected echo measured at this time was recorded in the recording means 22 as the first reflected echo at the first time.
Next, at the second measurement point (with Fujitsubo adhesion), the ultrasonic wave is transmitted from the ultrasonic wave incident means 11 with the tip of the ultrasonic probe 10 in close contact with the other surface 2B, and the ultrasonic wave is sent to the test piece. It was incident on 2 and the reflected echo was measured by the reflected echo measuring means 12. The reflected echo measured at this time was recorded in the recording means 22 as the second reflected echo at the second time.

図3は、本実験における反射エコーを示す図であり、縦軸は電圧[mV]、横軸は時間[nsec]である。図3(a)では電圧を正負の値で表し、図3(b)では電圧を絶対値で表している。図3において、破線は1つ目の計測箇所(フジツボ付着無し)における計測結果を示し、実線は2つ目の計測箇所(フジツボ付着有り)における計測結果を示している。
また、図4は、本実験における超音波の反射を示す概念図である。図4(a)は2つ目の計測箇所(フジツボ付着有り)における反射を示し、図4(b)は1つ目の計測箇所(フジツボ付着無し)における反射を示している。
図3より、測定開始から一定時間経過後に(超音波プローブ10から一定の距離離れた箇所において)両者の波形にずれが生じることが分かる。このずれは、両者における反射面の数の違いに因る。図4(a)に示すように、2つ目の計測箇所(フジツボ付着有り)の場合は、試験片2に入射した超音波の反射面は、試験片2と防食塗料3との境界面、防食塗料3とフジツボ4との境界面、及びフジツボ4と海水5との境界面の計3つである。一方、図4(b)に示すように、1つ目の計測箇所(フジツボ付着無し)の場合は、試験片2に入射した超音波の反射面は、試験片2と防食塗料3との境界面、及び防食塗料3と海水5との境界面の計2つである。すなわち、2つ目の計測箇所(フジツボ付着有り)のほうが、1つ目の計測箇所(フジツボ付着無し)よりも反射面が多いため反射エコーが多く、両者の波形にずれが生じる。
FIG. 3 is a diagram showing the reflected echo in this experiment, in which the vertical axis represents voltage [mV] and the horizontal axis represents time [nsec]. In FIG. 3A, the voltage is represented by a positive or negative value, and in FIG. 3B, the voltage is represented by an absolute value. In FIG. 3, the broken line shows the measurement result at the first measurement point (without barnacles attached), and the solid line shows the measurement result at the second measurement point (with barnacles attached).
Further, FIG. 4 is a conceptual diagram showing the reflection of ultrasonic waves in this experiment. FIG. 4A shows the reflection at the second measurement point (with barnacles attached), and FIG. 4B shows the reflection at the first measurement point (without barnacles attached).
From FIG. 3, it can be seen that the waveforms of the two waveforms deviate after a certain period of time has elapsed from the start of the measurement (at a position separated from the ultrasonic probe 10 by a certain distance). This deviation is due to the difference in the number of reflecting surfaces between the two. As shown in FIG. 4A, in the case of the second measurement point (with barnacles attached), the reflection surface of the ultrasonic waves incident on the test piece 2 is the boundary surface between the test piece 2 and the anticorrosion paint 3. There are a total of three, the interface between the anticorrosive paint 3 and the barnacle 4, and the interface between the barnacle 4 and the seawater 5. On the other hand, as shown in FIG. 4B, in the case of the first measurement point (without barnacle adhesion), the reflection surface of the ultrasonic wave incident on the test piece 2 is the boundary between the test piece 2 and the anticorrosion paint 3. There are a total of two surfaces, the surface and the interface between the anticorrosive paint 3 and the seawater 5. That is, since the second measurement point (with barnacles attached) has more reflecting surfaces than the first measurement point (without barnacles attached), there are more reflected echoes, and the waveforms of the two are out of alignment.

このように付着物が有る場合には超音波を反射する界面(反射面)が増加するため、より多くの反射エコーが返ってくる。そこで、1つ目の計測箇所(フジツボ付着無し)における第1の反射エコーとして第1の反射エコー強度の時間的な積分値と、2つ目の計測箇所(フジツボ付着有り)における第2の反射エコーとして第2の反射エコー強度の時間的な積分値とを比較することで、計測が容易な反射エコー強度を用いて第1の反射エコーと第2の反射エコーとの差が明確になり、付着物の有無の検出が容易となる。
図5は、反射エコーの積分値(累積値)を示す図であり、縦軸は電圧[mV]、横軸は時間[nsec]である。図5において、破線は1つ目の計測箇所(フジツボ付着無し)における計測結果を示し、実線は2つ目の計測箇所(フジツボ付着有り)における計測結果を示している。
図6は、第1の反射エコーと第2の反射エコーとのずれが概略一定となった時点における反射エコーの積分値[μV・s]を示す図である。図6において、左側のデータは1つ目の計測箇所(フジツボ付着無し)における計測結果を示し、右側のデータは2つ目の計測箇所(フジツボ付着有り)における計測結果を示している。
図5及び図6より、2つ目の計測箇所(フジツボ付着有り)のほうが1つ目の計測箇所(フジツボ付着無し)よりも反射エコー強度の積分値が大きくなっていることが分かる。
なお、図5は、反射エコーの積分値(累積値)の時間的な推移を示し、図6は、図5のある時間での累積値の差を積分値として示しているが、積分値として差が見えることで、付着の有無を判断することができる。積分値に基づく付着の判断は、積分値の差だけで行われるだけでなく、累積値(積分値)やその差が概略一定になる前の状態においても、例えば、図5の2つの曲線の差の推移(傾き、微分等)等からも判断が可能となる。この際に、目視、パターン認識、画像処理、人工知能(AI)等を用いて比較することができる。
When there are deposits in this way, the interface (reflecting surface) that reflects ultrasonic waves increases, so more reflected echoes are returned. Therefore, as the first reflected echo at the first measurement point (without Fujitsubo adhesion), the temporal integrated value of the first reflected echo intensity and the second reflection at the second measurement point (with Fujitsubo adhesion) By comparing the second reflected echo intensity with the temporal integrated value as an echo, the difference between the first reflected echo and the second reflected echo becomes clear using the reflected echo intensity that is easy to measure. The presence or absence of deposits can be easily detected.
FIG. 5 is a diagram showing an integrated value (cumulative value) of the reflected echo, in which the vertical axis represents voltage [mV] and the horizontal axis represents time [nsec]. In FIG. 5, the broken line shows the measurement result at the first measurement point (without barnacles attached), and the solid line shows the measurement result at the second measurement point (with barnacles attached).
FIG. 6 is a diagram showing an integrated value [μV · s] of the reflected echo at the time when the deviation between the first reflected echo and the second reflected echo becomes substantially constant. In FIG. 6, the data on the left side shows the measurement result at the first measurement point (without barnacles attached), and the data on the right side shows the measurement result at the second measurement point (with barnacles attached).
From FIGS. 5 and 6, it can be seen that the integrated value of the reflected echo intensity at the second measurement point (with barnacles attached) is larger than that at the first measurement point (without barnacles attached).
Note that FIG. 5 shows the temporal transition of the integrated value (cumulative value) of the reflected echo, and FIG. 6 shows the difference between the accumulated values at a certain time in FIG. 5 as the integrated value. By seeing the difference, it is possible to judge the presence or absence of adhesion. The determination of adhesion based on the integrated value is made not only by the difference in the integrated values, but also in the state before the cumulative value (integrated value) and the difference become substantially constant, for example, in the two curves of FIG. Judgment is also possible from the transition of the difference (slope, differentiation, etc.). At this time, comparison can be performed using visual inspection, pattern recognition, image processing, artificial intelligence (AI), and the like.

また、図7は反射エコーのパワースペクトルを示す図であり、縦軸はパワースペクトル、横軸は周波数[MHz]である。
図7のデータは、図3のデータをフーリエ変換により周波数変換したものである。 図7においては、1つ目の計測箇所(フジツボ付着無し)における計測結果を破線で示し、2つ目の計測箇所(フジツボ付着有り)における計測結果を実線で示している。
図7より、両者のパワースペクトルの周波数帯の変化度合には有意な差が生じていることが分かる。
このように、付着物が付着している場合と付着物が付着していない場合とではパワースペクトルの周波数帯の変化度合が異なるため、第1の反射エコーとして第1のパワースペクトルを計測し、第2の反射エコーとして第2のパワースペクトルを計測し、両者のパワースペクトルの支配的な周波数帯の変化を比較に用いることで、付着状況が反映されるパワースペクトルの周波数帯の変化を用いて第1の反射エコーと第2の反射エコーとの差が明確になり、付着物の有無の検出が容易となる。
支配的な周波数帯の変化の比較は、目視、パターン認識、画像処理、人工知能(AI)等を用いて比較することができる。
なお、第1のパワースペクトルと第2のパワースペクトルを積分して、比較することも可能である。
Further, FIG. 7 is a diagram showing a power spectrum of the reflected echo, in which the vertical axis represents the power spectrum and the horizontal axis represents the frequency [MHz].
The data shown in FIG. 7 is obtained by frequency-converting the data shown in FIG. 3 by Fourier transform. In FIG. 7, the measurement result at the first measurement point (without barnacles attached) is shown by a broken line, and the measurement result at the second measurement point (with barnacles attached) is shown by a solid line.
From FIG. 7, it can be seen that there is a significant difference in the degree of change in the frequency bands of the two power spectra.
In this way, since the degree of change in the frequency band of the power spectrum differs between the case where the deposit is attached and the case where the deposit is not attached, the first power spectrum is measured as the first reflected echo. By measuring the second power spectrum as the second reflected echo and using the change in the dominant frequency band of both power spectra for comparison, the change in the frequency band of the power spectrum that reflects the adhesion situation is used. The difference between the first reflected echo and the second reflected echo becomes clear, and the presence or absence of deposits can be easily detected.
Comparison of dominant frequency band changes can be made using visual inspection, pattern recognition, image processing, artificial intelligence (AI), and the like.
It is also possible to integrate and compare the first power spectrum and the second power spectrum.

上記の実験により、フジツボが付着している場合としていない場合とでは反射エコーの積分値又はパワースペクトルに差が生じるため、第1の反射エコーと第2の反射エコーについて、積分値又はパワースペクトルの少なくとも一方を比較することで、付着物の付着有無など、付着物の付着状況を検出できることが分かる。
したがって、図1を用いて説明したように、第1の時刻において超音波を構造物1へ入射させ第1の反射エコーを計測し、第2の時刻において超音波を少なくとも構造物1へ入射させ第2の反射エコーを計測し、第1の反射エコーと第2の反射エコーの積分値又はパワースペクトルを比較して構造物1への付着物の付着状況を検出することで、構造物1の一方の面1Aにおける付着物の付着状況を、例えば、一方の面1Aと表裏一体の関係にある他方の面1B側から検出することができる。これにより、例えば、船体外表面への付着物の有無を船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況のモニタリングが適時可能となり、船体の効率的な保守管理を行うことができる。また、停泊間隔が長い船舶においては、入渠時期を早める必要があるか否かの判断等に付着状況の検出結果を利用することができる。また、今後は生物越境問題の観点から外航船の入港に際しての船体への生物付着状況のチェックが厳格化されることも予想されるため、その対策としての活用が期待される。なお、反射エコーの積分値とパワースペクトルについては、両者を組み合わせて付着物の付着状況を検出することも可能である。
According to the above experiment, there is a difference in the integrated value or power spectrum of the reflected echo between the case where the Fujitsubo is attached and the case where the Fujitsubo is not attached. By comparing at least one of them, it can be seen that the state of adhesion of the deposit, such as the presence or absence of the deposit, can be detected.
Therefore, as described with reference to FIG. 1, the ultrasonic waves are incident on the structure 1 at the first time to measure the first reflected echo, and the ultrasonic waves are incident on at least the structure 1 at the second time. By measuring the second reflected echo and comparing the integrated value or power spectrum of the first reflected echo with the second reflected echo to detect the adhesion state of the deposit to the structure 1, the structure 1 The state of adhesion of deposits on one surface 1A can be detected, for example, from the side of the other surface 1B, which has a front-to-back relationship with one surface 1A. As a result, for example, the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the status of deposits on the outer surface of the hull can be monitored in a timely manner regardless of whether the ship is moored or sailing. This makes it possible to carry out efficient maintenance and management of the hull. In addition, for ships with long berthing intervals, the detection result of the adhesion status can be used to determine whether or not it is necessary to advance the docking time. In addition, from the perspective of cross-border biological issues, it is expected that checks on the status of biofouling on the hull when ocean-going vessels enter the port will become stricter, and this is expected to be used as a countermeasure. Regarding the integrated value of the reflected echo and the power spectrum, it is also possible to detect the adhesion state of the deposit by combining both.

なお、新造船時やメンテナンス時など構造物1に付着物が付着していない状態において、第1の時刻における第1の反射エコーを、構造物1ごとに予め計測して記録手段22に記録しておくことが好ましい。
比較の基準となる第1の反射エコーを予め記録しておくことにより、計測のたびに第1の反射エコーを計測する必要がなくなるため、計測に要する時間を短縮できる。例えば、第1の時刻が付着物の付いていない開始時刻であり、第2の時刻が付着物の付いた経過時刻である場合、経過時刻において、付着物を剥がして第1の反射エコーを計測しなくても済む。また、比較の基準が一定となることで、付着検出手段21による付着状況の検出精度が向上する。さらに、構造物1に付着物が付着していない状態における反射エコーを第1の反射エコーとして記録しておくことで、付着物が無い状態における反射エコーのデータが明確となり、付着物の有無の検出精度をより向上させることができる。
In a state where no deposits are attached to the structure 1 such as during new shipbuilding or maintenance, the first reflected echo at the first time is measured in advance for each structure 1 and recorded in the recording means 22. It is preferable to keep it.
By recording the first reflected echo as a reference for comparison in advance, it is not necessary to measure the first reflected echo each time the measurement is performed, so that the time required for the measurement can be shortened. For example, when the first time is the start time without deposits and the second time is the elapsed time with deposits, the deposits are peeled off and the first reflected echo is measured at the elapsed time. You don't have to. Further, when the comparison standard becomes constant, the accuracy of detecting the adhesion state by the adhesion detection means 21 is improved. Further, by recording the reflected echo in the state where no deposit is attached to the structure 1 as the first reflected echo, the data of the reflected echo in the state where there is no deposit is clarified, and the presence or absence of the deposit is present. The detection accuracy can be further improved.

また、超音波入射手段11と反射エコー計測手段12は、構造物1の種類や計測範囲等に応じて、相対位置や数を変更してもよい。なお、この場合においても、超音波入射手段11と反射エコー計測手段12は構造物1の片側一方のみに配置する。
図8は、超音波入射手段と反射エコー計測手段の他の配置例を示す図である。図8において、左側は構造物を省略した下面図、右側は側面断面図である。
図8(a)は、超音波入射手段11と反射エコー計測手段12を一つの筺体に収容しており、図1と同じく、超音波の入射と、第1の反射エコー及び第2の反射エコーの計測を構造物1の同一箇所で行うものである。このように配置することにより、時刻が変わっても同一箇所の付着物の付着状況を正確に検出できる。なお、図1では超音波入射手段11が反射エコー計測手段12を兼ねていたが、図8(a)では超音波入射手段11と反射エコー計測手段12とが独立したものである点において相違する。
図8(b)は、超音波入射手段11と、反射エコー計測手段12を離して設け、超音波入射と反射エコーの計測を別々の箇所で行うものである。このように配置することにより、より広い範囲にわたって付着物の付着状況を検出できる。
図8(c)は、超音波入射手段11を構造物1の複数の箇所に設け、反射エコー計測手段12を構造物1の一箇所に設け、超音波の入射を複数箇所で行い、反射エコーの計測を一箇所で行うものである。このように配置することにより、より広い範囲にわたって付着物の付着状況を検出できる。
なお、超音波入射手段11から送信する超音波は、超音波入射手段11と反射エコー計測手段12の配置や計測範囲に応じて、縦波、横波、又は表面波を選択する。
Further, the ultrasonic wave incident means 11 and the reflected echo measuring means 12 may change their relative positions and numbers according to the type and measurement range of the structure 1. Also in this case, the ultrasonic wave incident means 11 and the reflected echo measuring means 12 are arranged only on one side of the structure 1.
FIG. 8 is a diagram showing another arrangement example of the ultrasonic wave incident means and the reflected echo measuring means. In FIG. 8, the left side is a bottom view in which the structure is omitted, and the right side is a side sectional view.
In FIG. 8A, the ultrasonic wave incident means 11 and the reflected echo measuring means 12 are housed in one housing, and as in FIG. 1, the ultrasonic wave incident, the first reflected echo, and the second reflected echo Is measured at the same location in the structure 1. By arranging in this way, it is possible to accurately detect the adhesion state of deposits at the same location even if the time changes. In FIG. 1, the ultrasonic wave incident means 11 also serves as the reflected echo measuring means 12, but in FIG. 8A, the ultrasonic wave incident means 11 and the reflected echo measuring means 12 are independent. ..
In FIG. 8B, the ultrasonic wave incident means 11 and the reflected echo measuring means 12 are provided separately, and the ultrasonic wave incident and the reflected echo are measured at different locations. By arranging in this way, it is possible to detect the adhesion state of deposits over a wider range.
In FIG. 8C, ultrasonic wave incident means 11 are provided at a plurality of locations of the structure 1, reflection echo measuring means 12 is provided at one location of the structure 1, ultrasonic waves are incident at a plurality of locations, and reflection echoes are performed. Is measured at one place. By arranging in this way, it is possible to detect the adhesion state of deposits over a wider range.
As the ultrasonic wave transmitted from the ultrasonic wave incident means 11, a longitudinal wave, a transverse wave, or a surface wave is selected according to the arrangement and measurement range of the ultrasonic wave incident means 11 and the reflected echo measuring means 12.

また、構造物1は、上述した船体に限られるものではない。
構造物1は、陸上における発電所や工場の配管、又は配管設備、冷却用海水の取水口に設置されるグレーチングとすることもできる。
また、構造物1は、海上や海中における風力発電、波力発電、海流発電、潮流発電、水流発電、又は石油・鉱物等の掘削設備等の施設・設備とすることもできる。
また、構造物1は、航路標識、ブイ、航空・港湾設備、又はフジツボ類の養殖施設等とすることもできる。
Further, the structure 1 is not limited to the above-mentioned hull.
The structure 1 may be a grating installed in the piping of a power plant or factory on land, piping equipment, or an intake of seawater for cooling.
Further, the structure 1 can be a facility / equipment such as wind power generation, wave power generation, marine current power generation, tidal current power generation, water current power generation, or drilling equipment for oil / minerals at sea or underwater.
The structure 1 can also be a sea mark, a buoy, an aviation / port facility, a barnacle aquaculture facility, or the like.

また、超音波の入射と、その反射エコーの計測を構造物1の外側から行い、付着物の付着状況を検出することもできる。例えば構造物1が船体の場合は、ROVやAUV(自律型無人潜水機)等に搭載した付着物の検出システムにより、船体外板等に対して外側(付着物側)から超音波を海水、又は水を介して入射させ、その反射エコーを外側で計測する。 It is also possible to detect the state of adhesion of deposits by measuring the incident of ultrasonic waves and the reflected echo thereof from the outside of the structure 1. For example, when the structure 1 is a hull, ultrasonic waves are emitted from the outside (adhesion side) to the hull skin, etc. by means of a deposit detection system mounted on an ROV, AUV (autonomous underwater vehicle), etc. Alternatively, it is incident through water and its reflected echo is measured on the outside.

本発明によれば、船体外表面への付着物の有無を含めた表面の変化状況が船体内側からでも検出することができるため、停泊中と航行中とを問わずに船体外表面への付着物の付着状況を含めた表面の変化状況のモニタリングが適時可能となり、船体外表面の効率的な保守管理を行うことができる。また、外航船による生物越境問題の解決策の一助とすることができる。さらに、各種構造物への様々な付着物の付着状況や、物理的な海蝕又は摩耗による表面の塗装膜厚の変化等を検出することが可能である。 According to the present invention, the state of change in the surface including the presence or absence of deposits on the outer surface of the hull can be detected even from the inside of the hull, so that the surface is attached to the outer surface of the hull regardless of whether it is moored or sailing. It is possible to timely monitor changes in the surface, including the adhesion of kimono, and to efficiently maintain and manage the outer surface of the hull. It can also help solve the problem of cross-border living organisms by ocean-going vessels. Furthermore, it is possible to detect the state of adhesion of various deposits to various structures , changes in the coating film thickness of the surface due to physical sea erosion or wear, and the like.

1 構造物
11 超音波入射手段
12 反射エコー計測手段
21 付着検出手段
22 記録手段
23 報知手段
1 Structure 11 Ultrasonic wave incident means 12 Reflected echo measuring means 21 Adhesion detecting means 22 Recording means 23 Notifying means

Claims (20)

超音波を用いて構造物への付着物の付着状況を含めた表面の変化状況を検出する表面の変化状況の検出方法であって、第1の時刻において前記超音波を前記構造物へ入射させ第1の反射エコーを計測し、第2の時刻において前記超音波を少なくとも前記構造物へ入射させ第2の反射エコーを計測し、前記第1の反射エコーと前記第2の反射エコーの積分値又はパワースペクトルを比較するか、或いは前記第1の反射エコーと前記第2の反射エコーの波形のずれに基づいて前記構造物への前記付着物の付着状況を含めた変化状況を検出することを特徴とする超音波による表面の変化状況の検出方法。 It is a method of detecting a surface change state including a state of adhesion of deposits to a structure using ultrasonic waves, and is a method of detecting a surface change state in which the ultrasonic waves are incident on the structure at a first time. The first reflected echo is measured, the ultrasonic wave is incident on at least the structure at the second time, the second reflected echo is measured, and the integrated value of the first reflected echo and the second reflected echo. Alternatively, the power spectra can be compared , or a change status including the adhesion status of the deposit to the structure can be detected based on the deviation between the waveforms of the first reflected echo and the second reflected echo. A characteristic method for detecting changes in the surface by ultrasonic waves. 前記第1の時刻における前記第1の反射エコーを予め計測して記録し、記録した前記第1の反射エコーを前記比較に用いることを特徴とする請求項1に記載の超音波による表面の変化状況の検出方法。 The change in surface due to ultrasonic waves according to claim 1, wherein the first reflected echo at the first time is measured and recorded in advance, and the recorded first reflected echo is used for the comparison. How to detect the situation. 前記第1の反射エコーとして第1の反射エコー強度を、また前記第2の反射エコーとして第2の反射エコー強度を計測し、前記積分値として前記第1の反射エコー強度及び前記第2の反射エコー強度の時間的な積分値を用いることを特徴とする請求項1又は請求項2に記載の超音波による表面の変化状況の検出方法。 The first reflected echo intensity is measured as the first reflected echo, and the second reflected echo intensity is measured as the second reflected echo, and the first reflected echo intensity and the second reflection are measured as the integrated values. The method for detecting a surface change state by ultrasonic waves according to claim 1 or 2, wherein a temporal integrated value of echo intensity is used. 前記第1の反射エコーとして第1のパワースペクトルを、また前記第2の反射エコーとして第2のパワースペクトルを計測し、前記第1のパワースペクトルと前記第2のパワースペクトルの支配的な周波数帯の変化を前記比較に用いることを特徴とする請求項1に記載の超音波による表面の変化状況の検出方法。 The first power spectrum is measured as the first reflected echo, and the second power spectrum is measured as the second reflected echo, and the dominant frequency band of the first power spectrum and the second power spectrum is measured. The method for detecting a surface change state by ultrasonic waves according to claim 1, wherein the change in the above is used for the comparison. 前記構造物が船体であり、前記付着物が前記船体に付着する海洋生物であることを特徴とする請求項1から請求項4のいずれか1項に記載の超音波による表面の変化状況の検出方法。 The detection of a surface change state by ultrasonic waves according to any one of claims 1 to 4, wherein the structure is a hull and the deposits are marine organisms adhering to the hull. Method. 前記船体の内側から前記超音波を入射させ、前記内側で前記第1の反射エコー又は前記第2の反射エコーを計測することを特徴とする請求項5に記載の超音波による表面の変化状況の検出方法。 The state of surface change due to ultrasonic waves according to claim 5, wherein the ultrasonic waves are incident from the inside of the hull, and the first reflected echo or the second reflected echo is measured inside the hull. Detection method. 前記超音波の入射と、前記第1の反射エコー及び前記第2の反射エコーの計測を前記構造物の同一箇所で行なうことを特徴とする請求項1から請求項6のいずれか1項に記載の超音波による表面の変化状況の検出方法。 The invention according to any one of claims 1 to 6, wherein the incident of the ultrasonic wave and the measurement of the first reflected echo and the second reflected echo are performed at the same location of the structure. How to detect the change of the surface by ultrasonic waves. 前記超音波の入射と、前記第1の反射エコー及び前記第2の反射エコーの計測を前記構造物の別の箇所で行なうことを特徴とする請求項1から請求項6のいずれか1項に記載の超音波による表面の変化状況の検出方法。 The invention according to any one of claims 1 to 6, wherein the incident of the ultrasonic wave and the measurement of the first reflected echo and the second reflected echo are performed at another location of the structure. The method for detecting changes in the surface by ultrasonic waves described above. 前記超音波の入射を前記構造物の複数箇所で行い、前記第1の反射エコー及び前記第2の反射エコーの計測を前記構造物の一箇所で行なうことを特徴とする請求項1から請求項6のいずれか1項に記載の超音波による表面の変化状況の検出方法。 Claims 1 to 1, wherein the ultrasonic waves are incident at a plurality of locations of the structure, and the first reflected echo and the second reflected echo are measured at one location of the structure. The method for detecting a change state of a surface by ultrasonic waves according to any one of 6. 検出した前記構造物への前記付着物の付着状況を報知することを特徴とする請求項1から請求項9のいずれか1項に記載の超音波による表面の変化状況の検出方法。 The method for detecting a surface change state by ultrasonic waves according to any one of claims 1 to 9, wherein the state of attachment of the deposit to the detected structure is notified. 超音波を用いて構造物への付着物の付着状況を含めた表面の変化状況を検出する表面の変化状況の検出システムであって、前記超音波を少なくとも前記構造物へ入射させる超音波入射手段と、少なくとも前記構造物からの反射エコーを計測する反射エコー計測手段と、第1の時刻における第1の反射エコーと第2の時刻における第2の反射エコーの積分値又はパワースペクトルを比較するか、或いは前記第1の反射エコーと前記第2の反射エコーの波形のずれに基づいて前記構造物への前記付着物の付着状況を含めた変化状況を検出する付着検出手段とを備えたことを特徴とする超音波による表面の変化状況の検出システム。 A surface change status detection system that detects the surface change status including the adhesion status of deposits to the structure using ultrasonic waves, and is an ultrasonic incident means for at least incidenting the ultrasonic waves on the structure. And at least compare the reflected echo measuring means for measuring the reflected echo from the structure with the integrated value or power spectrum of the first reflected echo at the first time and the second reflected echo at the second time. Alternatively, it is provided with an adhesion detecting means for detecting a change state including the adhesion state of the deposit to the structure based on the deviation of the waveforms of the first reflected echo and the second reflected echo. A featured ultrasonic surface change detection system. 前記第1の時刻における前記第1の反射エコーを予め計測した結果を記録し、前記第2の反射エコーとの前記比較に用いるための記録手段を備えたことを特徴とする請求項11に記載の超音波による表面の変化状況の検出システム。 The eleventh aspect of claim 11, wherein the result of pre-measurement of the first reflected echo at the first time is recorded, and a recording means for using the recording means for comparison with the second reflected echo is provided. A system for detecting surface changes caused by ultrasonic waves. 前記反射エコー計測手段が、前記第1の反射エコーとして第1の反射エコー強度を、また前記第2の反射エコーとして第2の反射エコー強度を計測し、前記付着検出手段が、前記積分値として前記第1の反射エコー強度及び前記第2の反射エコー強度の時間的な積分値を前記比較に用いることを特徴とする請求項11又は請求項12に記載の超音波による表面の変化状況の検出システム。 The reflected echo measuring means, the first echo intensity as the first echo and said second second echo intensity is measured as a reflected echo, the deposition detecting unit, as the integral value The detection of a surface change state by ultrasonic waves according to claim 11 or 12, wherein the temporal integrated value of the first reflected echo intensity and the second reflected echo intensity is used for the comparison. system. 前記反射エコー計測手段が、前記第1の反射エコーとして第1のパワースペクトルを、また前記第2の反射エコーとして第2のパワースペクトルを計測し、前記付着検出手段が、前記第1のパワースペクトルと前記第2のパワースペクトルの支配的な周波数帯の変化を前記比較に用いることを特徴とする請求項11又は請求項12に記載の超音波による表面の変化状況の検出システム。 The reflected echo measuring means measures the first power spectrum as the first reflected echo and the second power spectrum as the second reflected echo, and the adhesion detecting means measures the first power spectrum. The ultrasonic surface change state detection system according to claim 11 or 12, wherein the change in the dominant frequency band of the second power spectrum is used for the comparison. 前記構造物が船体であり、前記付着物が前記船体に付着する海洋生物であることを特徴とする請求項11から請求項14のいずれか1項に記載の超音波による表面の変化状況の検出システム。 The detection of a surface change state by ultrasonic waves according to any one of claims 11 to 14, wherein the structure is a hull and the deposits are marine organisms adhering to the hull. system. 前記超音波入射手段が、前記船体の内側から前記超音波を前記船体へ入射させ、前記反射エコー計測手段が、前記内側で前記反射エコーを計測することを特徴とする請求項15に記載の超音波による表面の変化状況の検出システム。 The super-ultrasonic wave according to claim 15, wherein the ultrasonic wave incident means incidents the ultrasonic wave into the hull from the inside of the hull, and the reflected echo measuring means measures the reflected echo inside the hull. A detection system for surface changes caused by ultrasonic waves. 前記超音波の入射と、前記第1の反射エコー及び前記第2の反射エコーの計測を前記構造物の同一箇所で行なうことを特徴とする請求項11から請求項16のいずれか1項に記載の超音波による表面の変化状況の検出システム。 The method according to any one of claims 11 to 16, wherein the incident of the ultrasonic wave and the measurement of the first reflected echo and the second reflected echo are performed at the same location of the structure. A system for detecting surface changes caused by ultrasonic waves. 前記超音波入射手段と、前記反射エコー計測手段を前記構造物の別の箇所に設け、前記超音波の入射と前記反射エコーの計測を別の箇所で行なうことを特徴とする請求項11から請求項16のいずれか1項に記載の超音波による表面の変化状況の検出システム。 The eleventh aspect of claim 11, wherein the ultrasonic wave incident means and the reflected echo measuring means are provided at different places in the structure, and the incident of the ultrasonic waves and the measurement of the reflected echo are performed at different places. Item 4. The system for detecting a surface change state by ultrasonic waves according to any one of Items 16. 前記超音波入射手段を前記構造物の複数の箇所に設け、前記超音波の入射を複数箇所で行い、前記反射エコー計測手段を前記構造物の一箇所に設け、前記反射エコーの計測を一箇所で行なうことを特徴とする請求項11から請求項16のいずれか1項に記載の超音波による表面の変化状況の検出システム。 The ultrasonic wave incident means is provided at a plurality of locations of the structure, the ultrasonic waves are incident at a plurality of locations, the reflected echo measuring means is provided at one location of the structure, and the reflected echo is measured at one location. The system for detecting a surface change state by ultrasonic waves according to any one of claims 11 to 16, wherein the system is characterized by the above-mentioned method. 前記付着検出手段で検出した前記構造物への前記付着物の付着状況を報知する報知手段を備えたことを特徴とする請求項11から請求項19のいずれか1項に記載の超音波による表面の変化状況の検出システム。 The surface by ultrasonic waves according to any one of claims 11 to 19, wherein the notification means for notifying the adhesion status of the deposit to the structure detected by the adhesion detecting means is provided. Change status detection system.
JP2018125461A 2018-06-29 2018-06-29 Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves Active JP7235274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125461A JP7235274B2 (en) 2018-06-29 2018-06-29 Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125461A JP7235274B2 (en) 2018-06-29 2018-06-29 Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves

Publications (3)

Publication Number Publication Date
JP2020003431A JP2020003431A (en) 2020-01-09
JP2020003431A5 true JP2020003431A5 (en) 2021-07-26
JP7235274B2 JP7235274B2 (en) 2023-03-08

Family

ID=69099800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125461A Active JP7235274B2 (en) 2018-06-29 2018-06-29 Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves

Country Status (1)

Country Link
JP (1) JP7235274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414470B (en) * 2022-01-17 2022-12-13 广东海洋大学 Marine organism adhesion detection method, device and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223307A (en) * 1988-03-02 1989-09-06 Micro Tec Kk Method for monitoring growth of aquatic life
JP3940580B2 (en) 2001-10-22 2007-07-04 株式会社東芝 Piping inspection method and piping inspection device
JP4994736B2 (en) 2006-07-27 2012-08-08 三菱重工業株式会社 Piping or plate state detection method and apparatus
NO334481B1 (en) 2009-01-30 2014-03-17 Statoilhydro Asa Method and apparatus for measuring the thickness of a material deposit on an inner wall of a pipe structure
JP6411156B2 (en) 2013-10-04 2018-10-24 株式会社東芝 Piping inspection device and piping inspection method

Similar Documents

Publication Publication Date Title
US6317387B1 (en) Method and apparatus for inspecting a submerged structure
Demer et al. Calibration of acoustic instruments
US11719592B2 (en) Integrity testing of storage tank structure using robotic ultrasound
US6501704B2 (en) Underwater object positioning system
US9778097B2 (en) Location and monitoring of undersea cables
WO2012129612A1 (en) Method and system for surveying or monitoring underwater features
JP2011522218A (en) Adjustable acoustic reflector
Rizzo Sensing solutions for assessing and monitoring underwater systems
GB2232488A (en) Multi-beam doppler-sonar marine current determination
CN104260848B (en) A kind of cruiseway drauht detection method
JP7235274B2 (en) Surface change detection method using ultrasonic waves, and surface change detection system using ultrasonic waves
JP2020003431A5 (en)
Boltryk et al. An ultrasonic transducer array for velocity measurement in underwater vehicles
Violante Acoustic remote sensing for seabed archaeology
Grelowska et al. Gdansk Bay sea bed sounding and classification of its results
RU2559311C1 (en) Assessment method of state of ice field
Bjørnø Developments in sonar technologies and their applications
CN114966711B (en) Manned submersible vehicle-oriented seawater depth determination method and system
KR102612198B1 (en) Asv for underwater cultural asset exploration
US4832532A (en) Apparatus for determining liquid/gas interfaces
Alexander et al. Noise characterisation of the Aurora Australis while stationary in Antarctic sea ice
KR101145504B1 (en) System for checking buried materials using a boat
Andersson et al. Underwater Radiated Noise from Leisure Boats: Measurement Using an Interim Guide
Ali et al. Investigating the Vertical Uncertainty in MBES Measurements
Rona et al. Acoustic scintillation thermography