CN110954080A - 一种消除载体磁干扰的磁罗盘校准方法 - Google Patents

一种消除载体磁干扰的磁罗盘校准方法 Download PDF

Info

Publication number
CN110954080A
CN110954080A CN201911358750.5A CN201911358750A CN110954080A CN 110954080 A CN110954080 A CN 110954080A CN 201911358750 A CN201911358750 A CN 201911358750A CN 110954080 A CN110954080 A CN 110954080A
Authority
CN
China
Prior art keywords
magnetic
carrier
axis
field data
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911358750.5A
Other languages
English (en)
Inventor
吕冰
孟诚
邓超凡
伍东凌
童卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
710th Research Institute of CSIC
Original Assignee
710th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 710th Research Institute of CSIC filed Critical 710th Research Institute of CSIC
Priority to CN201911358750.5A priority Critical patent/CN110954080A/zh
Publication of CN110954080A publication Critical patent/CN110954080A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明公开了一种消除载体磁干扰的磁罗盘校准方法,步骤如下:步骤一,采集载体平台不同姿态下的磁罗盘三轴磁场数据;步骤二,建立关于三轴磁传感器校准前、后三轴磁场数据之间的误差模型,利用所述三轴磁场数据求解误差模型中的三轴磁传感器误差参数,得到误差模型;步骤三,重新采集磁罗盘三轴磁场数据和三轴加速度数据,将重新采集的磁罗盘三轴磁场数据代入误差模型后得到校准后的三轴磁场数据,结合三轴加速度数据求解得到磁罗盘的俯仰角、横滚角及方位角,由此输出校准后的磁罗盘姿态角。本发明能够输出高精度的载体方位角。

Description

一种消除载体磁干扰的磁罗盘校准方法
技术领域
本发明属于导航技术领域,具体涉及一种消除载体磁干扰的磁罗盘校准方法。
背景技术
磁罗盘是利用测得的三轴方向地磁场数据对方位角进行解算,由于其具有体积小、功耗低、可靠性高、精度高、价格便宜等优势,在航空、航海、车载、各类观瞄设备领域等方面得到广泛应用。将磁罗盘安装在各类载体平台上应用时,由于大多数载体平台上均存在类似电池、电缆、电机、钢铁结构件等铁磁性物体,这些铁磁性物体将极大的影响磁罗盘方位角测量精度。因此,为提高磁罗盘在载体平台上方位角测量精度,需要设计适用于载体平台的磁罗盘校准方法,对载体平台存在的硬磁干扰及软磁干扰进行校准,消除这些磁干扰对磁罗盘的影响,从而准确解算出载体平台的方位角。
发明内容
有鉴于此,本发明提供了一种消除载体磁干扰的磁罗盘校准方法,能够输出高精度的载体方位角。
本发明是通过下述技术方案实现的:
一种消除载体磁干扰的磁罗盘校准方法,所述校准方法步骤如下:
步骤一,采集载体平台不同姿态下的磁罗盘三轴磁场数据;
步骤二,建立关于三轴磁传感器校准前、后三轴磁场数据之间的误差模型,利用所述三轴磁场数据求解误差模型中的三轴磁传感器误差参数,得到误差模型;
步骤三,重新采集磁罗盘三轴磁场数据和三轴加速度数据,将重新采集的磁罗盘三轴磁场数据代入误差模型后得到校准后的三轴磁场数据,结合三轴加速度数据求解得到磁罗盘的俯仰角、横滚角及方位角,由此输出校准后的磁罗盘姿态角。
进一步地,所述方位角的求解方法为:将校准后的三轴磁场数据转化为水平坐标系下X、Y轴方向的磁场数据;然后将所述水平坐标系下X、Y轴方向的磁场数据代入磁方位角计算公式中求解出磁罗盘方位角。
进一步地,所述步骤二中的误差模型是利用泊松模型建立的。
进一步地,所述步骤二中三轴磁传感器误差参数的求解方法具体为:
将误差模型取二范数整理作为卡尔曼滤波器的量测方程,将误差模型中的三轴磁传感器误差参数作为卡尔曼滤波器的状态向量,将单位矩阵作为卡尔曼滤波器的状态转移矩阵,以此建立卡尔曼滤波器方程,利用十二种以上不同姿态下的三轴磁场数据求解卡尔曼滤波器方程,解算得到状态向量的估计值即三轴磁传感器误差参数。
进一步地,所述步骤三中俯仰角、横滚角的求解方法为:利用地理坐标系与载体坐标系之间的变换关系计算。
进一步地,所述载体平台不同姿态的采集方法如下:
若载体平台为手持式载体,则在空间内旋转载体平台,间隔固定时间动态采集十二组以上三轴磁场数据并输出;或改变载体平台的姿态,静态采集十二组以上三轴磁场数据并输出。
进一步地,在空间内旋转的方法为:手持载体,首先使载体平台绕垂直轴线Z轴方向慢旋转一圈,然后绕俯仰轴Y轴方向旋转一圈,最后绕横滚轴X轴方向转圈一圈。
进一步地,若所述载体平台在平面内校准,则在平面内旋转载体平台,间隔固定时间动态采集八组以上三轴磁场数据并输出;或改变载体平台的姿态,静态采集八组以上三轴磁场数据并输出。
有益效果:
本发明能够实现对载体平台上存在的硬磁干扰及软磁干扰的校准,输出高精度的载体方位角,且校准方法不借助复杂精密设备,利用磁罗盘内置的算法,结合采集的多组数据进行校准,操作简单,校准效率高。
附图说明
图1为磁罗盘姿态角及坐标系定义示意图;
图2为磁罗盘空间多点校准方法姿态摆放示意图;
图3为磁罗盘平面多点校准方法姿态摆放示意图;
图4为磁罗盘校准及方位角解算流程图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
磁罗盘由三轴磁传感器、三轴加速度传感器以及数据采集处理系统构成,三轴磁传感器用于测量三轴方向磁场数据,三轴加速度传感器用于测量三轴方向加速度数据。
本实施例提供了一种消除载体磁干扰的磁罗盘校准方法,地理坐标系是指当地北东地坐标系,与一般地理坐标系定义所不同的是,地理坐标系X轴指向磁北而不是真北,Y轴与X轴垂直指向东方,Z轴沿着水平面垂直方向向下。载体坐标系是指与载体平台相对固定的坐标系,磁罗盘沿载体坐标系安装,载体坐标系X轴沿载体纵轴指向前方,Y轴沿载体横轴指向右侧,Z轴向下,与X、Y轴形成右手坐标系。如图1所示,方位角测量范围为0°~360°,指向磁北时为0°,顺时针旋转为正;俯仰角测量范围为-90°~90°,水平时为0°,往上抬头为正,向下低头为负;横滚角测量范围为-180°~180°,水平时为0°,右倾为正,左倾为负;磁罗盘箭头方向为前向方向,对应三轴磁传感器X轴和三轴加速度传感器A轴,磁罗盘右向方向对应三轴磁传感器Y轴和三轴加速度传感器B轴,磁罗盘垂直向下方向对应三轴磁传感器Z轴和三轴加速度传感器C轴。
由于载体坐标系与地理坐标系在绝大部分条件下是不重合的,而求解载体方位角,需要利用地理坐标系下X轴和Y轴方向的磁场数据进行计算,因此需要利用姿态旋转矩阵,将载体坐标系下三轴磁场数据变换到地理坐标系下,才能求解方位角α。
根据欧拉转动关系可得载体坐标系与地理坐标系间转换关系的矩阵表示:
Figure BDA0002336626630000041
其中,β为俯仰角、γ为横滚角、α为方位角。
俯仰角β、横滚角γ的计算方法为:地球重力加速度在地理坐标系中的水平方向上没有投影分量,三轴加速度传感器只在C轴方向上的值不为零,为g。则有:
Figure BDA0002336626630000042
式中,
Figure BDA0002336626630000043
为磁罗盘载体坐标系下测得的三轴加速度值,
Figure BDA0002336626630000044
为地理坐标系到载体坐标系的坐标旋转矩阵,将(2)式展开可得:
Figure BDA0002336626630000051
通过对式(3)求解,可计算出俯仰角β、横滚角γ:
Figure BDA0002336626630000052
Figure BDA0002336626630000053
载体坐标系下测得的三轴磁场值分别为HX、HY、HZ,令式(1)中方位角α为0,利用坐标旋转矩阵
Figure BDA0002336626630000054
将HX、HY、HZ变换到地理坐标系下得到水平方向两轴磁场值分别为MX、MY,对应的计算公式如公式(6)所示。
MX=HXcosβ+HYsinβsinγ+HZsinβcosγ
MY=HYcosγ-HZsinγ (6)
得到地理坐标系下水平方向即水平坐标系下两轴磁场值MX、MY后,利用磁方位角计算公式(7)可计算出磁罗盘方位角。
α=arctan2(MX,MY) (7)
从以上公式中可以看出,要计算出准确的磁罗盘方位角,必须采集得到载体坐标系下准确的三轴磁场值,由于载体平台上可能存在硬磁干扰及软磁干扰,必须将这些磁干扰消除,才能保证磁罗盘测得的载体方位角测量精度达到相应技术指标要求。
如果磁罗盘安装在小型载体平台上使用,如手持式载体,且在使用过程中,需要在载体大倾斜角下对方位角进行测量,可采用空间多点校准方法或空间旋转校准方法对载体平台上存在的硬磁干扰及软磁干扰进行校准。
假设磁罗盘直接采集得到的三轴磁场数据(校准前数据)为maga=[BX BY BZ]T,校准后得到的三轴磁场数据为magb=[HX HY HZ]T,根据泊松模型构建误差模型如式(8)所示。
magb=K(maga+Z) (8)
式中,K为三轴磁传感器灵敏度误差、非正交度误差构成的参数矩阵,Z为三轴磁传感器零偏误差构成的参数矩阵。
将式(8)取二范数整理可得式(9),
Figure BDA0002336626630000061
在校准过程中,由于磁罗盘是在一定区域内摆放各种姿态采集数据,该区域地磁场||magb||为已知值,求解模型参数c1~c10通过卡尔曼滤波完成,c1~c10为三轴磁传感器误差参数,参数矩阵K、Z由三轴磁传感器误差参数c1~c10构成。
卡尔曼滤波器的状态向量为:
X=[c1 c2 c3 c4 c5 c6 c7 c8 c9 c10]T
将式(9)作为卡尔曼滤波器的量测方程,卡尔曼滤波器的状态转移矩阵为单位矩阵I。
建立卡尔曼滤波器系统状态方程XI与量测方程后,卡尔曼滤波器求解过程基本方程如式(10)所示。
Figure BDA0002336626630000062
式中,k为计算时输入数据的次数,Qk-1为卡尔曼滤波器系统噪声序列的方差矩阵;Rk为量测噪声序列的方差矩阵;
Figure BDA0002336626630000063
和Pk-1为滤波器的状态估计初值,Φk,k-1为滤波器状态转移矩阵,
Figure BDA0002336626630000064
为滤波的状态一步预测,Pk/k-1为一步预测均方误差,Kk为卡尔曼滤波增益,
Figure BDA0002336626630000065
为滤波状态估计,Pk为状态估计误差,Zk为状态量即||magb||,Hk为量测矩阵,
Figure BDA0002336626630000071
为量测方程。量测矩阵Hk由式(9)得到,量测方程
Figure BDA0002336626630000072
中包含c1~c10
如图4所示,给定滤波器初值
Figure BDA0002336626630000073
和P0,采集十二种以上不同姿态下的磁罗盘三轴磁场数据BX、BY、BZ并将该数据输入卡尔曼滤波器方程式(10)中,递推计算出k时刻的状态估计
Figure BDA0002336626630000074
得到的卡尔曼滤波器状态向量的估计值
Figure BDA0002336626630000075
即为需要求解的参数c1~c10
得到参数c1~c10后,带入式(8)中得到校准三轴磁场数据所用的误差模型。
重新采集磁罗盘的三轴磁场数据,将校准前的三轴磁场数据代入式(8)中得得到校准后的三轴磁场数据HX、HY、HZ,然后利用式(6)~(7)计算得到磁罗盘的方位角α。
上述磁罗盘校准及姿态角解算方法为磁罗盘的内置算法,无需借助其他精密仪器。
计算得到的参数c1~c10的准确性取决于卡尔曼滤波器量测输入数据是否能够均匀稳定的分布在空间内。理论上讲,为了得到较为准确的参数,最少需要10组量测输入数据,并且量测输入数据越多,解算的参数c1~c10越精确,但在实际校准过程中,量测输入数据量越大,解算效率越低,并且会增加采集数据的工作量。一般采集12~32组数据即可精确的解算出模型参数。
为了便于用户开展空间校准工作,设计了空间多点校准及空间旋转校准两种校准方法。
对于空间多点校准方法,可将载体平台按图2所示进行姿态摆放,在每个姿态下静态采集相关数据,侧视图仅展示俯仰角状态。载体平台每个姿态摆放的姿态角说明如下:
姿态1表示:使载体方位角指向0°,俯仰角0°,横滚角45°;
姿态2表示:使载体方位角指向90°,俯仰角0°,横滚角-45°;
姿态3表示:使载体方位角指向180°,俯仰角0°,横滚角45°;
姿态4表示:使载体方位角指向270°,俯仰角0°,横滚角-45°;
姿态5表示:使载体方位角指向30°,俯仰角45°,横滚角45°;
姿态6表示:使载体方位角指向120°,俯仰角45°,横滚角-45°;
姿态7表示:使载体方位角指向210°,俯仰角45°,横滚角45°;
姿态8表示:使载体方位角指向300°,俯仰角45°,横滚角-45°;
姿态9表示:使载体方位角指向60°,俯仰角-45°,横滚角45°;
姿态10表示:使载体方位角指向150°,俯仰角-45°,横滚角-45°;
姿态11表示:使载体方位角指向240°,俯仰角-45°,横滚角45°;
姿态12表示:使载体方位角指向330°,俯仰角-45°,横滚角-45°。
需要特别说明的是:
a)本实施例的空间多点校准方法包含但不限于空间12点校准,可根据实际情况来增加更多姿态采集相应数据;
b)以上提及的姿态摆放要点中所表述的方位角不是指载体平台绝对的方位角,而是相对的角度,例如摆放姿态1时,磁罗盘方位角可指向任意角度,比如42°,但在摆放姿态2时,磁罗盘方位角就需要摆放为132°左右,以此类推;
c)以上提及的姿态摆放要点中所表述的俯仰角、横滚角是指载体平台相对水平面的绝对角度,但摆放以上各个姿态时,方位角、俯仰角、横滚角的角度值不需要特别严格,各个角度误差在±15°以内均可接受;
d)在一些应用场景中,在摆放载体姿态时,可不对载体施加横滚角进行摆放,只需对载体按上述说明摆放方位角及俯仰角即可,且载体俯仰角摆放的具体角度可根据实际情况进行调整;
e)以上所表述的姿态1到姿态12只是为了方便进行表述,实际操作过程中,并不限定数据采集顺序。
对于空间旋转校准方法,按以下步骤实施校准:手持载体,首先使其绕垂直轴线Z轴方向匀速缓慢旋转一圈(转动方位角),然后绕俯仰轴Y轴方向匀速缓慢旋转一圈(转动俯仰角),最后绕横滚轴X轴方向匀速缓慢转圈一圈(转动横滚角)。在以上匀速缓慢转动过程中,间隔固定时间磁罗盘自动发送相关命令,动态获取转动过程中的三轴磁场数据。
数据采集完成后,磁罗盘内置算法即可自动完成空间多点校准或空间旋转校准工作,对误差模型进行求解,保存得到的校准参数,将得到的参数带入式(8)中得到校准后的三轴磁场数据,然后利用式(7)计算得到载体实时的方位角α。
如果磁罗盘所安装的载体平台只需要在接近水平状态下来对载体方位角进行测量,可采用平面多点校准方法或平面圆周校准方法对载体平台上存在的硬磁干扰及软磁干扰进行校准。
考虑到平面校准过程中,采集的数据均为接近水平状态下的数据,缺少与Z轴相关的磁场数据,因此将式(8)取二范数整理可得式(11):
d1W1 2+d2W2 2+d3W1W2+d4W1W3+d5W2W3+d6W1+d7W2=||magb|| (11)
式中,d1~d7为模型平面三轴磁传感器误差参数,W1、W2、W3分别为磁罗盘三轴磁传感器X轴、Y轴和Z轴测得的三轴磁场数据,在校准过程中,由于载体是在一定区域内转动,采集各个方向的数据,该区域地磁场||magb||为已知值,求解参数d1~d7可同样通过卡尔曼滤波完成,卡尔曼滤波器的状态向量为:
X=[d1 d2 d3 d4 d5 d6 d7]T
将式(11)作为卡尔曼滤波器的量测方程,卡尔曼滤波器的状态转移矩阵为单位矩阵I。
建立卡尔曼滤波器系统状态方程与量测方程后,卡尔曼滤波器求解过程基本方程如式(12)所示。
Figure BDA0002336626630000101
式中,k为计算时输入数据的次数,Qk-1为卡尔曼滤波器系统噪声序列的方差矩阵;Rk为量测噪声序列的方差矩阵;
Figure BDA0002336626630000102
和Pk-1为滤波器的状态估计初值,Φk,k-1为滤波器状态转移矩阵,
Figure BDA0002336626630000103
为滤波的状态一步预测,Pk/k-1为一步预测均方误差,Kk为卡尔曼滤波增益,
Figure BDA0002336626630000104
为滤波状态估计,Pk状态估计误差,Hk为量测矩阵,
Figure BDA0002336626630000105
为量测方程。量测矩阵Hk由式(11)得到,量测方程
Figure BDA0002336626630000106
中包含d1~d7
给定滤波器初值
Figure BDA0002336626630000107
和P0,采集八种以上不同姿态下的三轴磁场数据WX、WY、WZ并将该数据输入卡尔曼滤波器方程式(12)中,递推计算出k时刻的状态估计
Figure BDA0002336626630000108
将所有测得数据输入后得到的卡尔曼滤波器状态向量的估计值
Figure BDA0002336626630000109
即为需要求解的参数d1~d7
计算得到的参数d1~d7的准确性取决于卡尔曼滤波器量测输入数据是否能够均匀稳定的分布在平面内。理论上讲,为了得到较为准确的参数,最少需要7组量测输入数据,并且量测输入数据越多,解算的参数d1~d7越精确,但在实际校准过程中,量测输入数据量越大,解算效率越低,并且会增加采集数据的工作量。一般采集平面内8~24个姿态的数据即可精确的解算出模型参数。
为了便于用户开展平面校准工作,设计了平面多点校准及平面圆周校准两种校准方法。
对于平面多点校准方法,可将载体平台按图3所示进行姿态摆放,在每个姿态下静态采集相关数据,侧视图仅展示俯仰角状态。载体平台每个姿态摆放姿态角具体说明如下:
姿态1表示:使载体方位角指向0°,俯仰角0°,横滚角0°;
姿态2表示:使载体方位角指向45°,俯仰角0°,横滚角0°;
姿态3表示:使载体方位角指向90°,俯仰角0°,横滚角0°;
姿态4表示:使载体方位角指向135°,俯仰角0°,横滚角0°;
姿态5表示:使载体方位角指向180°,俯仰角0°,横滚角0°;
姿态6表示:使载体方位角指向225°,俯仰角0°,横滚角0°;
姿态7表示:使载体方位角指向270°,俯仰角0°,横滚角0°;
姿态8表示:使载体方位角指向315°,俯仰角0°,横滚角0°。
需要特别说明的是:
a)平面多点校准方法包含但不限于平面8点校准,可根据实际情况来增加或减小姿态采集相应数据;
b)以上提及的姿态摆放要点中所表述的方位角不是指载体绝对的方位角,而是相对的角度,例如摆放姿态1时,磁罗盘方位角可指向任意角度,比如42°,但在摆放姿态2时,磁罗盘方位角就需要摆放为87°左右,以此类推;
c)以上提及的姿态摆放要点中所表述的俯仰角、横滚角是指载体相对水平面的绝对角度,但摆放以上各个姿态时,方位角、俯仰角、横滚角角度不需要特别严格,各个角度误差在±15°以内均可接受;
d)以上所表述的姿态1到姿态8只是为了方便进行表述,实际操作过程中,并不限定数据采集顺序。
对于平面圆周校准方法,按以下步骤实施校准:保持载体平台水平,使其绕垂直轴线Z轴方向匀速缓慢旋转一圈(转动方位角),可在任意方位角下开始转动,且按顺时针或逆时针方向转动均可。在匀速缓慢转动过程中,间隔固定时间磁罗盘自动发送相关命令,动态获取转动过程中的三轴磁场数据。
无论是平面多点校准或平面圆周校准中提及的旋转一圈,均是指在载体平台在限定区域内旋转一圈,限定区域是指:该设备旋转一圈所需的最小区域。
数据采集完成后,磁罗盘内置算法即可自动完成平面多点校准或平面圆周校准工作,对误差模型进行求解,保存得到的三轴磁传感器误差参数,将得到的三轴磁传感器误差参数带入式(8)中得到校准后的三轴磁场数据,然后利用式(7)计算得到载体实时的方位角α。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种消除载体磁干扰的磁罗盘校准方法,其特征在于,所述校准方法步骤如下:
步骤一,采集载体平台不同姿态下的磁罗盘三轴磁场数据;
步骤二,建立关于三轴磁传感器校准前、后三轴磁场数据之间的误差模型,利用所述三轴磁场数据求解误差模型中的三轴磁传感器误差参数,得到误差模型;
步骤三,重新采集磁罗盘三轴磁场数据和三轴加速度数据,将重新采集的磁罗盘三轴磁场数据代入误差模型后得到校准后的三轴磁场数据,结合三轴加速度数据求解得到磁罗盘的俯仰角、横滚角及方位角,由此输出校准后的磁罗盘姿态角。
2.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,所述方位角的求解方法为:将校准后的三轴磁场数据转化为水平坐标系下X、Y轴方向的磁场数据;然后将所述水平坐标系下X、Y轴方向的磁场数据代入磁方位角计算公式中求解出磁罗盘方位角。
3.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,所述步骤二中的误差模型是利用泊松模型建立的。
4.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,所述步骤二中三轴磁传感器误差参数的求解方法具体为:
将误差模型取二范数整理作为卡尔曼滤波器的量测方程,将误差模型中的三轴磁传感器误差参数作为卡尔曼滤波器的状态向量,将单位矩阵作为卡尔曼滤波器的状态转移矩阵,以此建立卡尔曼滤波器方程,利用十二种以上不同姿态下的三轴磁场数据求解卡尔曼滤波器方程,解算得到状态向量的估计值即三轴磁传感器误差参数。
5.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,所述步骤三中俯仰角、横滚角的求解方法为:利用地理坐标系与载体坐标系之间的变换关系计算。
6.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,所述载体平台不同姿态的采集方法如下:
若载体平台为手持式载体,则在空间内旋转载体平台,间隔固定时间动态采集十二组以上三轴磁场数据并输出;或改变载体平台的姿态,静态采集十二组以上三轴磁场数据并输出。
7.如权利要求6所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,在空间内旋转的方法为:手持载体,首先使载体平台绕垂直轴线Z轴方向慢旋转一圈,然后绕俯仰轴Y轴方向旋转一圈,最后绕横滚轴X轴方向转圈一圈。
8.如权利要求1所述的消除载体磁干扰的磁罗盘校准方法,其特征在于,若所述载体平台在平面内校准,则在平面内旋转载体平台,间隔固定时间动态采集八组以上三轴磁场数据并输出;或改变载体平台的姿态,静态采集八组以上三轴磁场数据并输出。
CN201911358750.5A 2019-12-25 2019-12-25 一种消除载体磁干扰的磁罗盘校准方法 Pending CN110954080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911358750.5A CN110954080A (zh) 2019-12-25 2019-12-25 一种消除载体磁干扰的磁罗盘校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911358750.5A CN110954080A (zh) 2019-12-25 2019-12-25 一种消除载体磁干扰的磁罗盘校准方法

Publications (1)

Publication Number Publication Date
CN110954080A true CN110954080A (zh) 2020-04-03

Family

ID=69984090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911358750.5A Pending CN110954080A (zh) 2019-12-25 2019-12-25 一种消除载体磁干扰的磁罗盘校准方法

Country Status (1)

Country Link
CN (1) CN110954080A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815939A (zh) * 2020-05-21 2020-10-23 摩拜(北京)信息技术有限公司 车辆的停放控制方法及电子设备
CN117537792A (zh) * 2024-01-03 2024-02-09 西南应用磁学研究所(中国电子科技集团公司第九研究所) 电子罗盘自适应方位角矫正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370201A (zh) * 2016-09-07 2017-02-01 武汉普惠海洋光电技术有限公司 一种高精度三维电子罗盘校准装置及校准方法
CN108507553A (zh) * 2018-04-26 2018-09-07 西南应用磁学研究所 电子罗盘的校正方法
CN109238262A (zh) * 2018-11-05 2019-01-18 珠海全志科技股份有限公司 一种航向姿态解算及罗盘校准抗干扰方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370201A (zh) * 2016-09-07 2017-02-01 武汉普惠海洋光电技术有限公司 一种高精度三维电子罗盘校准装置及校准方法
CN108507553A (zh) * 2018-04-26 2018-09-07 西南应用磁学研究所 电子罗盘的校正方法
CN109238262A (zh) * 2018-11-05 2019-01-18 珠海全志科技股份有限公司 一种航向姿态解算及罗盘校准抗干扰方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MANON KOK ETC.: "Magnetometer Calibration Using Inertial Sensors", 《IEEE SENSORS JOURNAL》 *
冯毅博 等: "一种电子磁罗盘航向误差的自适应补偿方法", 《仪器仪表学报》 *
郭鹏飞 等: "一种十二位置不对北的磁罗盘标定方法", 《中国惯性技术学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815939A (zh) * 2020-05-21 2020-10-23 摩拜(北京)信息技术有限公司 车辆的停放控制方法及电子设备
CN117537792A (zh) * 2024-01-03 2024-02-09 西南应用磁学研究所(中国电子科技集团公司第九研究所) 电子罗盘自适应方位角矫正方法
CN117537792B (zh) * 2024-01-03 2024-04-30 西南应用磁学研究所(中国电子科技集团公司第九研究所) 电子罗盘自适应方位角矫正方法

Similar Documents

Publication Publication Date Title
CN108592950B (zh) 一种单目相机和惯性测量单元相对安装角标定方法
CN107270893B (zh) 面向不动产测量的杆臂、时间不同步误差估计与补偿方法
CN108225370B (zh) 一种运动姿态传感器的数据融合与解算方法
CN109550219B (zh) 一种运动信息的确定方法、系统及移动设备
CN110146839A (zh) 一种移动平台磁梯度张量系统校正方法
CN109827571B (zh) 一种无转台条件下的双加速度计标定方法
CN109084806B (zh) 标量域mems惯性系统标定方法
CN110174123B (zh) 一种磁传感器实时标定方法
CN109186633B (zh) 一种复合测量装置的现场标定方法及系统
CN104698485A (zh) 基于bd、gps及mems的组合导航系统及导航方法
CN113267794B (zh) 一种基线长度约束的天线相位中心校正方法及装置
CN112461224B (zh) 一种基于已知姿态角的磁力计标定方法
Zongwei et al. A low-cost calibration strategy for measurement-while-drilling system
CN108398124B (zh) 一种电子罗盘校准方法
CN110954080A (zh) 一种消除载体磁干扰的磁罗盘校准方法
CN111189474A (zh) 基于mems的marg传感器的自主校准方法
CN109916396A (zh) 一种基于多维地磁信息的室内定位方法
CN108801250B (zh) 基于水下机器人的实时姿态获取方法及装置
CN110779514B (zh) 面向仿生偏振导航辅助定姿的分级卡尔曼融合方法及装置
CN106595669B (zh) 一种旋转体姿态解算方法
CN105606093A (zh) 基于重力实时补偿的惯性导航方法及装置
CN110954081A (zh) 一种磁罗盘快速校准装置及方法
CN111982155B (zh) 磁传感器的标定方法、装置、电子设备和计算机存储介质
CN108088431B (zh) 一种自校正电子罗盘及其校正方法
CN106931965B (zh) 一种确定终端姿态的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200403