CN110950350A - 一种室温制备二硼化钪纳米粒子的方法 - Google Patents

一种室温制备二硼化钪纳米粒子的方法 Download PDF

Info

Publication number
CN110950350A
CN110950350A CN201911307016.6A CN201911307016A CN110950350A CN 110950350 A CN110950350 A CN 110950350A CN 201911307016 A CN201911307016 A CN 201911307016A CN 110950350 A CN110950350 A CN 110950350A
Authority
CN
China
Prior art keywords
scandium
scandium diboride
diboride
reaction kettle
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911307016.6A
Other languages
English (en)
Inventor
童东革
陈磊
周瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201911307016.6A priority Critical patent/CN110950350A/zh
Publication of CN110950350A publication Critical patent/CN110950350A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种室温制备二硼化钪纳米粒子的方法。本发明通过液相等离子体,在室温于1‑丁基‑3‑甲基咪唑硫氰酸盐离子液体中,通过硼烷还原ScCl3合成出二硼化钪纳米粒子。与商用二硼化钪相比,本发明所制备的二硼化钪纳米粒子比表面积更大,抑菌效果更强。与丁胺卡那霉素和硫酸威替米星相比,本发明所制备的二硼化钪纳米粒子对雷氏普罗威登斯菌表现出了更强的抗菌活性。其优异的雷氏普罗威登斯菌抑菌功能使二硼化钪有望在烧伤、创伤和尿道感染等临床治疗领域方面得到广泛应用。

Description

一种室温制备二硼化钪纳米粒子的方法
技术领域
本发明涉及一种室温制备二硼化钪纳米粒子的方法,属于先进纳米材料制备技术领域。
背景技术
二硼化钪是一种半导体,轻质耐火及耐磨材料,一般通过高温烧结的方法来制备,不仅耗能,而且耗时。所以,非常有必要拓展新的绿色合成方法或技术途径来制备二硼化钪。
发明内容
本发明通过液相等离子体技术,首次在室温于1-丁基-3-甲基咪唑硫氰酸盐离子液体中通过硼烷还原ScCl3合成出二硼化钪纳米粒子,其具平均粒径为4.4nm左右,同时具有较优的雷氏普罗威登斯菌抑菌活性。雷氏普罗威登斯菌在一定条件下能引起各种感染,已成为重要的医源性感染条件致病菌,可引起烧伤、创伤和尿道感染等。
本发明采用如下技术方案:
本发明的二硼化钪纳米粒子的制备方法的具体步骤如下:
(1)将1.8mmol ScCl3加入24mL1-丁基-3-甲基咪唑硫氰酸盐离子液体中,在氩气保护下搅拌17分钟,以形成溶液;
(2)在氩气保护下把步骤(1)的混合液中转入50mL反应釜,通入硼烷,使硼烷与ScCl3的摩尔比为3.5-6.5:1,密闭反应釜;
(3)开启液相等离子体,功率为450-750W,对步骤(2)反应釜中的混合溶液在室温下进行处理25-55min后得到二硼化钪纳米粒子粗品;
(4)将产物用去离子水洗涤三次,再用无水乙醇洗涤三次,干燥备用。
步骤(2)中,优选在氩气保护和硼烷与ScCl3的摩尔比为5:1往步骤(1)的混合液中通入硼烷,密闭反应釜。
步骤(3)中,优选液相等离子体的功率为600W。
步骤(3)中,优选反应时间为40min。
本发明的积极效果如下:
1)本发明通过采用液相等离子体技术,首次成功地在室温下合成出二硼化钪纳米粒子。
2)与商用二硼化钪对比,本发明合成的二硼化钪纳米粒子的比表面积更大。
3)与商用二硼化钪对比,本发明合成的二硼化钪纳米粒子表现出更强的抗菌活性。
4)与丁胺卡那霉素和硫酸威替米星相比,本发明合成的二硼化钪纳米粒子对雷氏普罗威登斯菌表现出更强的抗菌活性。
附图说明
图1是实施例1所制备二硼化钪纳米粒子的TEM照片。
图2是实施例1所制备二硼化钪纳米粒子的X射线衍射图谱。
图3是实施例1所制备二硼化钪纳米粒子的Sc2pXPS图谱。
图4是实施例1所制备二硼化钪纳米粒子的B1sXPS图谱。
具体实施方式
下面的实施例是对本发明的进一步详细描述。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
(1)将1.8mmol ScCl3加入24mL1-丁基-3-甲基咪唑硫氰酸盐离子液体中,在氩气保护下搅拌17分钟,以形成溶液;
(2)在氩气保护下把步骤(1)的混合液中转入50mL反应釜,通入硼烷,使硼烷与ScCl3的摩尔比为5:1,密闭反应釜;
(3)开启液相等离子体,功率为600W,对步骤(2)反应釜中的混合溶液在室温下进行处理40min后得到二硼化钪纳米粒子粗品;
(4)将产物用去离子水洗涤三次,再用无水乙醇洗涤三次,干燥备用。
实施例2
(1)将1.8mmol ScCl3加入24mL1-丁基-3-甲基咪唑硫氰酸盐离子液体中,在氩气保护下搅拌17分钟,以形成溶液;
(2)在氩气保护下把步骤(1)的混合液中转入50mL反应釜,通入硼烷,使硼烷与ScCl3的摩尔比为5:1,密闭反应釜;
(3)开启液相等离子体,功率为450W,对步骤(2)反应釜中的混合溶液在室温下进行处理40min后得到二硼化钪纳米粒子粗品;
(4)将产物用去离子水洗涤三次,再用无水乙醇洗涤三次,干燥备用。
实施例3
(1)将1.8mmol ScCl3加入24mL1-丁基-3-甲基咪唑硫氰酸盐离子液体中,在氩气保护下搅拌17分钟,以形成溶液;
(2)在氩气保护下把步骤(1)的混合液中转入50mL反应釜,通入硼烷,使硼烷与ScCl3的摩尔比为5:1,密闭反应釜;
(3)开启液相等离子体,功率为750W,对步骤(2)反应釜中的混合溶液在室温下进行处理40min后得到二硼化钪纳米粒子粗品;
(4)将产物用去离子水洗涤三次,再用无水乙醇洗涤三次,干燥备用。
本发明的二硼化钪纳米粒子的性能:
采用TEM对实施例1所制备样品进行了表征,图1为样品的TEM图像。从图1可以看出,样品的平均粒径为4.4nm左右。
采用XRD对样品的物相组成进行了分析。从图谱中(图2)可以看出,样品没有明显的特征衍射峰,说明其具有非晶性质。此外,样品的Sc2pXPS图谱(图3)和B1sXPS图谱(图4)表明形成了二硼化钪纳米粒子合金。
ICP-AES分析测试结果表明,所制备的二硼化钪纳米粒子与商用二硼化钪的元素质量百分组成相同(Sc:67.52;B:32.48)。实施例1所制备二硼化钪纳米粒子的比表面积为128.4m2g-1,远大于商用二硼化钪(11.1m2g-1)。
对所制备二硼化钪纳米粒子的抗菌活性进行了研究(表1)。通过比色法测定抑菌浓度(MICs,μgmL-1)的方法,来确定样品对甲氧西林敏感金葡菌(S.aureus),表皮葡萄球菌(S.epidermidis),鲍曼不动杆菌(A.baumanii),类鼻疽假单胞菌(P.pseudomallei)和雷氏普罗威登斯菌(P.rettgeri)的抗菌活性。作为比较,商用二硼化钪,丁胺卡那霉素和硫酸威替米星的抗菌活性也列于表中。
表1样品的抗菌活性
Figure BDA0002323448920000041
本发明采用液相等离子体技术成功地制备出了二硼化钪纳米粒子。与商用二硼化钪相比,二硼化钪纳米粒子具有更强的抗菌活性。抗菌活性的增强归因于其具有较大的比表面积。此外,二硼化钪纳米粒子对雷氏普罗威登斯菌的抗菌活性比丁胺卡那霉素和硫酸威替米星强。二硼化钪纳米粒子较强的雷氏普罗威登斯菌抑菌功能使其有望在烧伤、创伤和尿道感染等临床治疗领域方面得到广泛应用。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种二硼化钪纳米粒子的制备方法,其特征在于:所述制备方法的具体步骤如下:
(1)将1.8mmol ScCl3加入24mL1-丁基-3-甲基咪唑硫氰酸盐离子液体中,在氩气保护下搅拌17分钟,以形成溶液;
(2)在氩气保护下把步骤(1)的混合液中转入50mL反应釜,通入硼烷,使硼烷与ScCl3的摩尔比为3.5-6.5:1,密闭反应釜;
(3)开启液相等离子体,功率为450-750W,对步骤(2)反应釜中的混合溶液在室温下进行处理25-55min后得到二硼化钪纳米粒子粗品;
(4)将产物用去离子水洗涤三次,再用无水乙醇洗涤三次,干燥备用。
2.如权利要求1所述的二硼化钪纳米粒子的制备方法,其特征在于:步骤(2)中,所通入硼烷与ScCl3的摩尔比为5:1。
3.如权利要求1所述的二硼化钪纳米粒子的制备方法,其特征在于:步骤(3)中,液相等离子体的功率为600W。
4.如权利要求1所述的二硼化钪纳米粒子的制备方法,其特征在于:步骤(3)中,反应时间为40min。
CN201911307016.6A 2019-12-18 2019-12-18 一种室温制备二硼化钪纳米粒子的方法 Pending CN110950350A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911307016.6A CN110950350A (zh) 2019-12-18 2019-12-18 一种室温制备二硼化钪纳米粒子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911307016.6A CN110950350A (zh) 2019-12-18 2019-12-18 一种室温制备二硼化钪纳米粒子的方法

Publications (1)

Publication Number Publication Date
CN110950350A true CN110950350A (zh) 2020-04-03

Family

ID=69982449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911307016.6A Pending CN110950350A (zh) 2019-12-18 2019-12-18 一种室温制备二硼化钪纳米粒子的方法

Country Status (1)

Country Link
CN (1) CN110950350A (zh)

Similar Documents

Publication Publication Date Title
Huang et al. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method
Yang et al. Preparation and magnetic properties of controllable-morphologies nano-SrFe12O19 particles prepared by sol–gel self-propagation synthesis
Uchiyama et al. Solvothermal synthesis of size-controlled ZrO2 microspheres via hydrolysis of alkoxides modified with acetylacetone
Suresh et al. Green synthesis and characterization of tea decoction stabilized copper nanoparticles
Zienkiewicz-Strzałka et al. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent
EP1546041B1 (en) Process to produce solutions to be used as coating in photo-catalytic and transparent films
Habibi et al. Effect of the thermal treatment conditions on the formation of zinc ferrite nanocomposite, ZnFe 2 O 4, by sol–gel method
Musić et al. Chemical and microstructural properties of Al-oxide phases obtained from AlCl3 solutions in alkaline medium
Kong et al. Surface modification of aramid pulp via coating zinc oxide to improve its dispersion in epoxy assisted by supercritical carbon dioxide
Singh et al. Synthesis, optimization and characterization of zinc oxide nanoparticles prepared by sol–gel technique
AU2020102620A4 (en) A process for synthesis of copper and copper oxide nanostructures
CN110950350A (zh) 一种室温制备二硼化钪纳米粒子的方法
Alex et al. Simple and rapid green synthesis of micrometer scale single crystalline gold nanoplates using chitosan as the reducing agent
CN110844917A (zh) 一种硼化镁纳米粒子的制备方法
Saengkwamsawang et al. Synthesis and characterization of Al2O3 nanopowders by a simple chitosan-polymer complex solution route
CN110872122A (zh) 一种NbB6纳米粒子的制备方法
LU500966B1 (en) Method for synthesizing titanium dioxide based on glutamine modification
Saraya Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate
CN110589846A (zh) 一种六硼化镱纳米棒晶体的制备方法
Sun et al. Effects of chloride ions on hydrothermal synthesis of tetragonal BaTiO3 by microwave heating and conventional heating
Javanbakht et al. Efficient anchoring of CuO nanoparticles on Ugi four-component-functionalized graphene quantum dots: colloidal soluble nanoplatform with great photoluminescent and antibacterial properties
Gandhi et al. Facile and green synthesis of ZnO nanostructures using ionic liquid assisted banana stem extract route
CN110759350A (zh) 一种硼化锆纳米粒子的制备方法
CN110745838A (zh) 一种CuB23纳米花的制备方法
CN110862094A (zh) 一种CaB6纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200403

WD01 Invention patent application deemed withdrawn after publication