CN110943137A - 一种铁电光伏器件及其制备方法 - Google Patents

一种铁电光伏器件及其制备方法 Download PDF

Info

Publication number
CN110943137A
CN110943137A CN201911126462.7A CN201911126462A CN110943137A CN 110943137 A CN110943137 A CN 110943137A CN 201911126462 A CN201911126462 A CN 201911126462A CN 110943137 A CN110943137 A CN 110943137A
Authority
CN
China
Prior art keywords
thin film
pzt thin
thickness
pzt
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911126462.7A
Other languages
English (en)
Other versions
CN110943137B (zh
Inventor
樊贞
谭政伟
成声亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201911126462.7A priority Critical patent/CN110943137B/zh
Publication of CN110943137A publication Critical patent/CN110943137A/zh
Application granted granted Critical
Publication of CN110943137B publication Critical patent/CN110943137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及一种铁电光伏器件,包括依次层叠设置的单晶衬底、底电极、PZT薄膜和金属电极;所述PZT薄膜与所述底电极的界面形成耗尽层,所述PZT薄膜的厚度接近所述耗尽层的厚度;本发明还提供一种铁电光伏器件的制备方法。相对于现有技术,本发明提供的铁电光伏器件中控制PZT薄膜的厚度与其界面形成的耗尽层的厚度接近,使得电子‑空穴对在内建场作用下有效分离,能够有效抑制载流子复合,同时有效降低铁电光伏器件的串联电阻,从而获得较高的光电流及光电转换效率。

Description

一种铁电光伏器件及其制备方法
技术领域
本发明涉及光伏技术领域领域,特别是涉及一种铁电光伏器件及其制备方法和应用。
背景技术
随着世界能源需求迅速增长,日益严重的供需和环境问题已成为制约经济和社会发展的瓶颈,因此,有必要建立清洁、充足、经济、安全和可持续发展的能源体系。太阳能作为一种洁净的可再生能源得到了越来越多的重视,而太阳能电池被认为是解决能源衰竭和环境污染等一系列重大问题的最佳选择之一。太阳能电池是通过光伏效应将光能转换为电能的装置,目前,硅基太阳能电池占据着太阳能电池市场的主导地位,但是硅基太阳能电池的光伏机制决定了其光电转换效率无法突破肖克利-奎伊瑟极限,尽管通过电池叠装等制造工艺可以提高硅基太阳能电池的光电转换效率,同时也产生了高昂的成本,限制了其大规模生产和应用。因此,开发新型高效、低成本光伏材料是近年来的研究热点。
相比于硅基太阳能电池,新型半导体薄膜太阳能电池具有吸光率高、重量轻、工艺简单、低成本和低能耗等优点,其中,在多种用于太阳能电池的新型半导体薄膜中,具有非中心对称性的PZT薄膜尤为引人关注。PZT,即Pb(Zr,Ti)O3功能陶瓷,属于ABO3型钙钛矿结构,Zr、Ti处于氧八面体的中心,Pb处于氧八面体的间隙,具有优异的铁电性能和光电性能。但是,PZT薄膜这类铁电材料的载流子迁移率低、寿命短、扩散长度短,存在严重的载流子复合问题,导致铁电光伏器件的光电流及光电转换效率很低,进而限制了其广泛应用。
发明内容
基于此,本发明的目的在于克服现有技术的不足,提供一种铁电光伏器件及其制备方法,其能够有效提高光伏转换效率。
本发明是基于以下发明构思实现的:一种铁电光伏器件,包括依次层叠设置的单晶衬底、底电极、PZT薄膜和金属电极;所述PZT薄膜与所述底电极的界面形成耗尽层,所述PZT薄膜的厚度接近所述耗尽层的厚度。
相对于现有技术,本发明提供的铁电光伏器件中控制PZT薄膜的厚度与其界面形成的耗尽层的厚度接近,使得电子-空穴对在内建场作用下有效分离,能够有效抑制载流子复合,同时有效降低铁电光伏器件的串联电阻,从而获得较高的光电流及光电转换效率。
进一步地,所述PZT薄膜的厚度大于等于7nm,且小于等于W+50nm,其中,W为耗尽层的厚度;
Figure BDA0002276991150000021
式中,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′ni是有效内建电势,V′bi由PZT薄膜的电子亲和能、极化束缚电荷以及电极的功函数共同决定,并通过拟合电流-电压(I-V)特性曲线来获得。
进一步地,所述底电极为SrRuO3,所述PZT薄膜为Pb(Zr0.2Ti0.8)O3,所述PZT薄膜的厚度为7~50nm。
进一步地,所述单晶衬底为晶体取向为(001)的LaAlO3、(La,Sr)(Al,Ta)O3和SrRuO3的任意一种。在晶体取向(001)方向上生长的PZT薄膜为外延薄膜,其面外方向为(001),也是PZT薄膜极化的方向,该取向的PZT薄膜具有最大的面外极化,铁电光伏效应最强。
进一步地,所述底电极为LaNiO3、Ca0.96Ce0.04MnO3、La0.7Sr0.3MnO3和SrRuO3中的任意一种;所述金属电极为Au、Ag和Pt中的任意一种。
基于本发明构思,本发明还提供一种铁电光伏器件的制备方法,包括以下步骤:
S1、在单晶衬底上沉积一层底电极;
S2、在所述底电极表面沉积PZT薄膜,并控制所述PZT薄膜的厚度接近PZT薄膜与底电极接触的界面形成的耗尽层厚度;
S3、在所述PZT薄膜表面沉积金属电极。
进一步地,S2步骤中,所述PZT薄膜的厚度大于等于7nm,且小于等于W+50nm,其中,W为耗尽层厚度;
Figure BDA0002276991150000022
式中,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′bi是有效内建电势,V′bi由PZT薄膜的电子亲和能、极化束缚电荷以及电极的功函数共同决定,并通过拟合电流-电压(I-V)特性曲线来获得。
相对于现有技术,本发明通过理论计算、合理控制将PZT薄膜的厚度降低至其与底电极的界面形成的耗尽层的厚度附近,在耗尽层区域内,由于内建场的存在能促进载流子分离,并且载流子可发生漂移运动,减少载流子的复合问题;在耗尽层区域外,没有内建场,载流子仅能发生扩散运动,容易复合而造成损失;因此,本发明通过将PZT薄膜厚度减小至耗尽层厚度附近,可以避免耗尽层区域的复合损失。
进一步地,在步骤S2中采用激光脉冲法,通过控制激光脉冲数控制所述PZT薄膜的厚度为7-50nm。
进一步地,在步骤S2中,控制所述PZT薄膜在底电极表面的生长方向为外延生长,并形成PZT外延薄膜。
进一步地,步骤S3中,利用电子束光刻与电子束蒸发相结合的方法,在PZT薄膜的表面形成金属电极。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明实施例的铁电光伏器件结构示意图;
图2为本发明实施例的铁电光伏器件原理图;
图3a为本发明实施例的本发明制得的SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3/Pt材料中Pb(Zr0.2Ti0.8)O3的X射线衍射图;
图3b为本发明制得的SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3/Pt材料中Pb(Zr0.2Ti0.8)O3的透射电子显微镜图(TEM)及快速傅里叶变换图(FFT);
图4为本发明测得的PZT薄膜厚度与PCE关系图;
图5本发明的铁电光伏器件在紫外光照射下的单位光强电流密度-电压图。
具体实施方式
申请人设计了一种铁电光伏器件的结构,将PZT薄膜应用于铁电光伏器件,请参考图1,其为本发明铁电光伏器件结构示意图,其包括依次层叠设置的单晶衬底10、底电极20、PZT薄膜30和金属电极40。所述单晶衬底为晶体取向为(001)的LaAlO3、(La,Sr)(Al,Ta)O3和SrRuO3的任意一种;所述底电极为LaNiO3、Ca0.96Ce0.04MnO3、La0.7Sr0.3MnO3、SrRuO3的任意一种;所述PZT薄膜为Pb(Zr,Ti)O3;所述金属电极为Ag、Au、Pt的任意一种。
但是,申请人在将PZT薄膜应用于铁电光伏器件时发现,PZT薄膜的载流子迁移率低、寿命短、扩散长度短,存在严重的载流子复合问题,使得由PZT薄膜构成该铁电光伏器件的光电流及光电转换效率很低。由于PZT薄膜是n型半导体型,当它与底电极接触时,会在二者接触的界面处形成耗尽层,请参考图2(图中BE表示底电极,FE表示PZT薄膜,TE表示金属电极,Wb为耗尽层,d表示PZT薄膜的厚度)由于耗尽层Wb中存在内建场,内建场可以促进载流子分离,使载流子可发生漂移运动,从而减少载流子复合;但是,在耗尽层区域外没有内建场(即厚度为d-Wb的区域),载流子容易因复合而损失。申请人发现PZT薄膜的厚度对载流子的复合有影响,电子从底电极往金属电极运动,在经过PZT薄膜时,载流子会依次经过耗尽层和耗尽层以外的PZT薄膜区域,当PZT薄膜太厚时,耗尽层以外的区域厚度太大,载流子容易复合;申请人进一步发现减小PZT薄膜的厚度能有效减少载流子的复合,但是,当PZT薄膜厚度太小时,容易产生漏电流;当申请人将PZT薄膜的厚度减小至耗尽层厚度W附近时,能够有效抑制载流子复合,从而获得较高的光电流及光电转换效率。
因此,申请人设计PZT薄膜的厚度为大于等于7nm,且小于等于W+50nm,其中,W为耗尽层厚度;
Figure BDA0002276991150000041
式中,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′bi是有效内建电势,V′bi由PZT薄膜的电子亲和能、极化束缚电荷以及电极的功函数共同决定,并通过拟合电流-电压(I-V)特性曲线来获得。在本实施例中,所述单晶衬底为SrTiO3,所述底电极为SrRuO3,所述PZT薄膜为Pb(Zr0.2Ti0.8)O3,所述金属电极为Pb时,通过上述公式计算得到PZT/SrRuO3界面处耗尽层厚度为5.4nm,因此,将PZT薄膜的厚度设置为7nm-55.4nm,优选地PZT薄膜的厚度为12nm时,具有最高的PCE效率。
基于上述研究的PZT薄膜应用于铁电光伏器件的结构,进一步研究获得该铁电光伏器件的制备方法。
选取所述单晶衬底为SrTiO3,所述底电极为SrRuO3,所述PZT薄膜为Pb(Zr0.2Ti0.8)O3,所述金属电极为Pt,具体地,包括以下步骤:
S1、在单晶衬底上沉积一层底电极;
采用激光脉冲沉积法,将晶体取向为(001)的SrTiO3衬底放在PLD沉积腔的样品台上,将SrRuO3靶材和PZT陶瓷靶材放入PLD沉积腔的靶托内,控制靶材与将所述PLD沉积腔抽真空至10-4,设置温度为680℃,氧压15Pa,激光能量为56mJ,激光脉冲为2000,频率为5Hz,在SrTiO3衬底上沉积形成SrRuO3电极,获得SrTiO3/SrRuO3材料。
S2、在所述底电极表面沉积PZT薄膜,并控制所述PZT薄膜的厚度接近PZT薄膜与底电极接触的界面形成的耗尽层的厚度;
具体地,通过耗尽层的厚度计算公式计算耗尽层厚度:
Figure BDA0002276991150000042
式中,W为耗尽层厚度,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′bi是有效内建电势。公式(1)中V′bi是未知量,它由PZT薄膜的电子亲和能、极化束缚电荷以及金属电极的功函数共同决定,可以通过拟合电流-电压(I-V)特性曲线来获得。在本实施例中,代入数据q=1.6*10-19C,ε0=8.85*10-12F/m,εst=170,外加电压V=0;PZT/SrRuO3界面处Neff=~1.5*1027m-3、Vbi’=2.28V,可以计算得出PZT/SrRuO3界面处耗尽层厚度为5.4nm。
接着,将PLD沉积腔内的温度调整为600℃,氧压为15Pa,设定激光能量为52mJ,频率为5Hz,重新打开PLD激光器,利用激光轰击Pb(Zr0.2Ti0.8)O3陶瓷靶材,将Pb(Zr0.2Ti0.8)O3陶瓷靶材的靶材原子传递至生长有SrRuO3电极的SrTiO3衬底上形成Pb(Zr0.2Ti0.8)O3外延薄膜,控制激光脉冲数为400,在SrTiO3/SrRuO3材料表面沉积形成厚度为12nm的Pb(Zr0.2Ti0.8)O3薄膜,获得SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3材料。需要说明的是,利用激光脉冲法沉积PZT薄膜时,在保持能量、频率等条件不变的情况下,薄膜厚度与激光脉冲数大致成正比,因此,通过控制脉冲数就可以控制膜厚度。
S3、在所述PZT薄膜表面沉积金属电极;
具体地,在SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3材料表面铺设一层聚甲基丙烯酸甲酯薄膜,利用电子束光刻在聚甲基丙烯酸甲酯薄膜中刻出若干直径为5μm的圆孔作为掩膜版;再利用电子束蒸发的方法,在SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3材料的表面沉积Pt电极,沉积速度为0.2nm/s,沉积时间为50min,Pt电极的厚度为10nm,最终获得SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3/Pt材料作为本发明所述的铁电光伏器件。
请参阅图3a,其为本发明制得的SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3/Pt材料中Pb(Zr0.2Ti0.8)O3的X射线衍射图;由图3a可知,PZT呈现两种应力状态不同的四方相,均为(001)取向,且无杂相。
请参阅图3b,其为本发明制得的SrTiO3/SrRuO3/Pb(Zr0.2Ti0.8)O3/Pt材料中Pb(Zr0.2Ti0.8)O3的透射电子显微镜图(TEM)及快速傅里叶变换图(FFT);由TEM图可知,Pb(Zr0.2Ti0.8)O3和SrRuO3的界面外延性良好,由FFT图可以计算出PZT的晶格参数为:
Figure BDA0002276991150000051
Figure BDA0002276991150000052
以下通过实验数据进一步说明本发明实施例的铁电光伏器件的效果。
1、在其他条件(包括单晶衬底、底电极、PZT薄膜和金属电极的参数)不变的情况下,改变PZT薄膜的厚度(4nm、7nm、12nm、30nm、60nm、120nm、180nm、240nm、300nm)获得多个铁电光伏器件,并测试其PCE值,请参考图4,其为PZT薄膜厚度与PCE关系图,由图4可知,PZT薄膜的厚度过低(小于7nm时)因PZT薄膜厚度过小产生漏电流,PCE效率低;当PZT薄膜的厚度过高(大于60nm时),因PZT薄膜厚度过大导致载流子复合而损失,PCE效率降低;PZT薄膜的厚度在7-60nm之间,PCE效率随着膜的厚度先升高,达到一个最高点后下降,这个最高点为PZT薄膜的厚度为12nm,其具有最佳的PCE效率。
2、利用原子力显微镜的高压外接模式和Keitheley 6430源表,测量在波长为365nm、光强为22.3mW/cm2的紫外光照射下Pt/PZT/SRO铁电光伏器件的电流-电压(I-V)曲线。请参考图5,本发明实施例的铁电光伏器件开路电压为0.84V,单位光强的短路电流密度为87mA/W,PCE高达约2.49%。
相对于现有技术,本发明提供的铁电光伏器件中控制PZT薄膜的厚度与其界面形成的耗尽层的厚度接近,使得电子-空穴对在内建场作用下有效分离,能够有效抑制载流子复合,同时有效降低铁电光伏器件的串联电阻,从而获得较高的光电流及光电转换效率。同时,本发明证明了PZT薄膜用于制备高效的铁电光伏器件的巨大潜力,对于促进高效、低成本、轻量化太阳能电池的发展具有重要的意义。
本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (10)

1.一种铁电光伏器件,其特征在于:包括依次层叠设置的单晶衬底、底电极、PZT薄膜和金属电极;所述PZT薄膜与所述底电极的界面形成耗尽层,所述PZT薄膜的厚度接近所述耗尽层的厚度。
2.根据权利要求1所述的铁电光伏器件,其特征在于:所述PZT薄膜的厚度大于等于7nm,且小于等于W+50nm,其中,W为耗尽层的厚度;
Figure FDA0002276991140000011
式中,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′bi是有效内建电势。
3.根据权利要求2所述的铁电光伏器件,其特征在于:所述底电极为SrRuO3,所述PZT薄膜为Pb(Zr0.2Ti0.8)O3,所述PZT薄膜的厚度为7~50nm。
4.根据权利要求1所述的铁电光伏器件,其特征在于:所述单晶衬底为晶体取向为(001)的LaAlO3、(La,Sr)(Al,Ta)O3和SrTiO3中的任意一种。
5.根据权利要求1所述的铁电光伏器件,其特征在于:所述底电极为LaNiO3、Ca0.96Ce0.04MnO3、La0.7Sr0.3MnO3和SrRuO3中的任意一种;所述金属电极为Au、Ag和Pt中的任意一种。
6.一种铁电光伏器件的制备方法,其特征在于:包括以下步骤:
S1、在单晶衬底上沉积一层底电极;
S2、在所述底电极表面沉积PZT薄膜,并控制所述PZT薄膜的厚度接近PZT薄膜与底电极接触的界面形成的耗尽层的厚度;
S3、在所述PZT薄膜表面沉积金属电极。
7.根据权利要求6所述的铁电光伏器件的制备方法,其特征在于:S2步骤中,所述PZT薄膜的厚度大于等于7nm,且小于等于W+50nm,其中,W为耗尽层厚度;
Figure FDA0002276991140000012
式中,q为电子电荷,ε0为真空介电常数,εst是PZT薄膜的静态介电常数,Neff是PZT薄膜的缺陷有效电荷密度,V′bi是有效内建电势。
8.根据权利要求7所述的铁电光伏器件的制备方法,其特征在于:在步骤S2中采用激光脉冲法,通过控制激光脉冲数控制所述PZT薄膜的厚度为7-50nm。
9.根据权利要求8所述的铁电光伏器件的制备方法,其特征在于:在步骤S2中,控制所述PZT薄膜在底电极表面的生长方向为外延生长,并形成PZT外延薄膜。
10.根据权利要求9所述的铁电光伏器件的制备方法,其特征在于:步骤S3中,利用电子束光刻与电子束蒸发相结合的方法,在PZT薄膜的表面形成金属电极。
CN201911126462.7A 2019-11-18 2019-11-18 一种铁电光伏器件及其制备方法 Active CN110943137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126462.7A CN110943137B (zh) 2019-11-18 2019-11-18 一种铁电光伏器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911126462.7A CN110943137B (zh) 2019-11-18 2019-11-18 一种铁电光伏器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110943137A true CN110943137A (zh) 2020-03-31
CN110943137B CN110943137B (zh) 2023-05-30

Family

ID=69907009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911126462.7A Active CN110943137B (zh) 2019-11-18 2019-11-18 一种铁电光伏器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110943137B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832266A (zh) * 2012-09-07 2012-12-19 苏州大学 铁电光伏器件及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832266A (zh) * 2012-09-07 2012-12-19 苏州大学 铁电光伏器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHENGLIANG CHENG等: "Enhanced photovoltaic efficiency and persisted photoresponse switchability in LaVO3/Pb(Zr0.2Ti0.8)O3 perovskite heterostructures", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
王春燕: "铁电薄膜光阴极制备及其光电化学特性研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Also Published As

Publication number Publication date
CN110943137B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
Chen et al. Bismuth ferrite materials for solar cells: current status and prospects
Pérez-Tomás et al. Metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells
Yang et al. Manipulation of oxygen vacancy for high photovoltaic output in bismuth ferrite films
Jalaja et al. Ferroelectrics and multiferroics for next generation photovoltaics
Song et al. Domain-engineered BiFeO 3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting
Gupta et al. Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film
Ichiki et al. Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design
Lin et al. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method
US9484475B2 (en) Semiconductor ferroelectric compositions and their use in photovoltaic devices
Wu et al. Ferroelectric, optical, and photovoltaic properties of morphotropic phase boundary compositions in the PbTiO3–BiFeO3–Bi (Ni1/2Ti1/2) O3 system
Pérez-Tomas et al. PbZrTiO 3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells
WO2010151844A2 (en) Metal oxide structures, devices, & fabrication methods
Singh et al. Growth of doped SrTiO3 ferroelectric nanoporous thin films and tuning of photoelectrochemical properties with switchable ferroelectric polarization
Cui et al. Double perovskite Bi2FeMoxNi1-xO6 thin films: Novel ferroelectric photovoltaic materials with narrow bandgap and enhanced photovoltaic performance
Li et al. Photovoltaic effect induced by self-polarization in BiFeO3 films
Tan et al. Energy band gap modulation in Nd-doped BiFeO3/SrRuO3 heteroepitaxy for visible light photoelectrochemical activity
Chang et al. Tuning photovoltaic performance of perovskite nickelates heterostructures by changing the A-site rare-earth element
Chen et al. A bi-functional ferroelectric Pb (Zr0. 52Ti0. 48) O3 films: Energy storage properties and ferroelectric photovoltaic effects
Tu et al. Enhancing photovoltaic and photosensing performances in bismuth ferrite via polar order engineering
US20170040473A1 (en) Nanostructured Hybrid-Ferrite Photoferroelectric Device
Lan et al. Achieving ultrahigh photocurrent density of Mg/Mn-modified KNbO3 ferroelectric semiconductors by bandgap engineering and polarization maintenance
Pintilie et al. Properties of perovskite ferroelectrics deposited on F doped SnO2 electrodes and the prospect of their integration into perovskite solar cells
Wani et al. What ails the photovoltaic performance in single-layered unpoled BFO?–The role of oxygen annealing in improving the photovoltaic efficiency
Fan et al. Dual extraction of photogenerated electrons and holes from a ferroelectric Sr0. 5Ba0. 5Nb2O6 semiconductor
CN105355714B (zh) 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant