CN110929430B - 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法 - Google Patents

柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法 Download PDF

Info

Publication number
CN110929430B
CN110929430B CN201911412306.7A CN201911412306A CN110929430B CN 110929430 B CN110929430 B CN 110929430B CN 201911412306 A CN201911412306 A CN 201911412306A CN 110929430 B CN110929430 B CN 110929430B
Authority
CN
China
Prior art keywords
particles
contact
silicon carbide
normal
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911412306.7A
Other languages
English (en)
Other versions
CN110929430A (zh
Inventor
阮帅帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Institute of Communications
Original Assignee
Zhejiang Institute of Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Institute of Communications filed Critical Zhejiang Institute of Communications
Priority to CN201911412306.7A priority Critical patent/CN110929430B/zh
Publication of CN110929430A publication Critical patent/CN110929430A/zh
Application granted granted Critical
Publication of CN110929430B publication Critical patent/CN110929430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,包含如下步骤:首先通过两个碳化硅颗粒之间的法向压缩受力分析和切向受力分析得到颗粒之间的接触参数,然后对于颗粒捕集器中随机填充的碳化硅颗粒,基于颗粒在颗粒捕集器容器中随机均匀分布和颗粒接触参数得到联系填充颗粒整体平均应力和平均应变的矩阵表达式,由此矩阵表达式计算填充碳化硅颗粒整体的弹性杨氏模量和剪切模量。本发明在不预知碳化硅颗粒具体排列信息时,可以快速预估随机填充在颗粒捕集器中的碳化硅微球的整体模量。

Description

柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法
技术领域
本发明属于汽车工程领域,尤其涉及柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法。
背景技术
柴油车尾气颗粒净化的颗粒捕集器中,已开发由碳化硅颗粒捕集器(SiC-DPF),也有文献制备空心多孔结构的碳化硅微球,且将此微球填入容器中用来过滤柴油车尾气中的颗粒,且基于碳化硅导电从而通电将这些尾气颗粒燃烧掉,从而净化尾气中的颗粒。但这些碳化硅微球为随机填充,缺乏一种快速预估随机填充在颗粒捕集器中的碳化硅微球的整体模量的方法,这样不利于颗粒捕集器的快速受力分析。
发明内容
本发明为了克服难以快速预估随机填充在颗粒捕集器中的碳化硅微球的整体模量,为了有助于颗粒捕集器的快速受力分析,本发明提供了一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法。
本发明的技术方案:一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,所述方法包括以下步骤:
步骤1:建立碳化硅颗粒接触点局部坐标系,通过两个碳化硅颗粒之间的法向压缩受力分析和切向受力分析得到颗粒之间的接触参数;
步骤2:对于颗粒捕集器中随机填充的碳化硅颗粒,基于颗粒在颗粒捕集器容器中随机均匀分布和颗粒接触参数得到联系填充颗粒整体平均应力和平均应变的矩阵表达式;
步骤3:基于矩阵表达式计算填充碳化硅颗粒整体的弹性杨氏模量和剪切模量。
优选地,所述步骤1包括以下步骤:
步骤1.1:设两个接触的颗粒分别为颗粒A和B,两个颗粒的球心在坐标轴xi上的坐标分别为
Figure BDA0002350295710000021
Figure BDA0002350295710000022
坐标轴x1和x2为水平向,坐标轴x3为竖向,接触点的法线为
Figure BDA0002350295710000023
法线
Figure BDA0002350295710000024
的长度为L,法线
Figure BDA0002350295710000025
的单位向量为
Figure BDA0002350295710000026
这里ni表示法线
Figure BDA0002350295710000027
与坐标轴xi夹角的余弦,然后在接触点上选两个相互垂直的单位向量
Figure BDA0002350295710000028
Figure BDA0002350295710000029
Figure BDA00023502957100000210
Figure BDA00023502957100000211
这里si和ti分别为
Figure BDA00023502957100000212
Figure BDA00023502957100000213
对坐标轴xi夹角的余弦;由单位向量
Figure BDA00023502957100000214
Figure BDA00023502957100000215
建立局部坐标系;
步骤1.2:在局部坐标系
Figure BDA00023502957100000216
Figure BDA00023502957100000217
的方向上,设接触力的分量分别为Δfn,Δfs和△ft,接触点位移的分量分别为△δn,△δs和△δt,kn和ks分别为法向接触刚度和切向接触刚度,有如下关系:△fn=kn△δn,△f=ks△δs,△ft=ks△δt
步骤1.3:对两个颗粒间的接触点以及颗粒与颗粒捕集器壁面间的接触点进行法向受力和切向受力测试,在局部坐标系
Figure BDA00023502957100000218
Figure BDA00023502957100000219
的方向上,设测得接触力的分量分别为fn,fs和ft,接触点位移的分量分别为δns和δt,设测得的法向接触刚度kn和切向接触刚度ks分别为:kn=fnn,ks=fss
优选地,所述步骤1.1中,
Figure BDA0002350295710000031
Figure BDA0002350295710000032
Figure BDA0002350295710000033
其中,γ为向量
Figure BDA0002350295710000034
与坐标轴x1的夹角,以全局坐标系的原点为o,向量
Figure BDA0002350295710000035
在x2-o-x3平面上的投影与坐标轴x2的夹角为β,0≤γ≤π,0≤β≤2π。
优选地,所述步骤1.3中,测量法向接触刚度kn的方法为:将两个颗粒上下放置,下部颗粒固定,用压杆在上部颗粒顶点由上至下施加竖向力fn,压杆由电机驱动,在压杆横截面上安放压电陶瓷片,实时记录压电陶瓷片电压,由压电陶瓷受到的压力和电压的关系实时监测fn的大小,在两个颗粒上各画一个标记点,实时拍摄两个颗粒标记点的照片,通过比较不同时刻照片上两个颗粒标记点竖向距离的变化,得到法向位移δn,然后计算kn=fnn
优选地,所述步骤1.3中,测量切向接触刚度ks的方法为:将两个颗粒上下放置,下部颗粒用底板固定,用固定构件将两个颗粒在竖直方向预压紧,固定构件和上部颗粒固定连接,固定构件在水平方向和底板自由滑动,固定构件和底板在竖直方向限制住竖向相对位移,用压杆在上部颗粒侧边施加水平力fs,压杆由电机驱动,在压杆横截面上安放压电陶瓷片,实时记录压电陶瓷片电压,由压电陶瓷受到的压力和电压的关系实时监测fs的大小,在两个颗粒上各画一个标记点,实时拍摄两个颗粒标记点的照片,通过比较不同时刻照片上两个颗粒标记点水平方向投影的距离变化,得到无滑动状态时弹性变形产生的切向位移δs,然后计算ks=fss
优选地,所述步骤2包括以下步骤:
步骤2.1:在全局坐标系上,取颗粒集合体总体积为V,颗粒总接触数为Mv,颗粒集合体的平均应力为σ11、σ22、σ33、σ12、σ23、σ31、σ21、σ32和σ13,这里σ11、σ22和σ33分别为坐标轴x1、x2和x3方向的平均正应力,这里σ12、σ23、σ31、σ21、σ32和σ13分别为平均剪应力;颗粒集合体的平均应变为ε11、ε22、ε33、ε12、ε23、ε31、ε21、ε32和ε13,这里ε11、ε22和ε33分别为坐标轴x1、x2和x3方向的平均正应变,ε12、ε23、ε31、ε21、ε32和ε13为平均剪应变;
步骤2.2:计算矩阵[B],
Figure BDA0002350295710000041
计算矩阵[B]的逆矩阵[H],[H]=[B]-1
步骤2.3:得到应力应变关系:
Figure BDA0002350295710000042
优选地,所述步骤2.3中,总接触数Mv用离散元数值模拟方法进行预估,包括以下步骤:
步骤2.3.1:基于离散元法,数值建模颗粒捕集器外壳;
步骤2.3.2:在颗粒捕集器外壳包含的空间内随机数值生成球颗粒,球颗粒的半径和碳化硅颗粒半径相同,且球颗粒的接触参数和碳化硅颗粒相同;
步骤2.3.3:在数值模型中施加重力,使数值模型中的球颗粒达到平衡状态;
步骤2.3.4:在离散元模拟的碳化硅颗粒中统计总接触数Mv
优选地,所述步骤3中,由应变对应力的偏导数计算杨氏模量E和剪切模量G:
Figure BDA0002350295710000051
Figure BDA0002350295710000052
Figure BDA0002350295710000053
Figure BDA0002350295710000054
Figure BDA0002350295710000055
Figure BDA0002350295710000056
本发明的有益效果是快速预估随机填充在颗粒捕集器中的碳化硅微球的整体模量,以柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法辅助于颗粒捕集器的快速受力分析。
附图说明
图1为随机填充碳化硅颗粒和颗粒捕集器外壳三维示意图;
图2中,(a)为在全局坐标系下颗粒和颗粒接触示意图,(b)为颗粒和颗粒捕集器壁面接触示意图;
图3中,(a)为测量颗粒和颗粒的接触参数示意图,(b)为测量颗粒与颗粒捕集器壁面的接触参数示意图。
图中1.碳化硅颗粒,2.颗粒捕集器外壳,3.压杆,4.电机,5.压电陶瓷片,6.底板,7.固定构件,8.相机,9.第一标记点,10.第二标记点
具体实施方式
为了使本发明实现的技术手段、创新特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
如图1-图3所示本发明的技术方案:一种柴油机颗粒捕集器中随机填充碳化硅颗粒1的模量计算方法,包含如下步骤:首先通过两个碳化硅颗粒1之间的法向压缩受力分析和切向受力分析得到颗粒1之间的接触参数,然后对于颗粒捕集器外壳2中随机填充的碳化硅颗粒1,基于颗粒1在颗粒捕集器外壳2中随机均匀分布和颗粒接触参数得到联系填充颗粒1整体平均应力和平均应变的矩阵表达式,由此矩阵表达式计算填充碳化硅颗粒1整体的弹性模量和剪切模量。
一种柴油机颗粒捕集器中随机填充碳化硅颗粒1的模量计算方法:
本发明涉及一些简写和符号,以下为注解:
A、B:两个接触颗粒1的编号;
xi:坐标轴xi,坐标轴x1和x2为水平向,坐标轴x3为竖向;
Figure BDA0002350295710000061
颗粒A圆心坐标;
Figure BDA0002350295710000062
颗粒B圆心坐标;
Figure BDA0002350295710000063
接触点的法线,
Figure BDA0002350295710000064
L:法线
Figure BDA0002350295710000065
的长度;
Figure BDA0002350295710000066
这里ni表示法线
Figure BDA0002350295710000067
与坐标轴xi夹角的余弦;
Figure BDA0002350295710000071
这里si表示法线
Figure BDA0002350295710000072
与坐标轴xi夹角的余弦;
Figure BDA0002350295710000073
这里ti表示法线
Figure BDA0002350295710000074
与坐标轴xi夹角的余弦;
γ:夹角,取0≤γ≤π;
β:夹角,取0≤β≤2π;
Δfn:接触力在局部坐标系
Figure BDA0002350295710000075
方向上的分量;
Δfs:接触力在局部坐标系
Figure BDA0002350295710000076
方向上的分量;
△ft:接触力在局部坐标系
Figure BDA0002350295710000077
方向上的分量;
Δδn:接触点位移在局部坐标系
Figure BDA0002350295710000078
方向上的分量;
△δs:接触点位移在局部坐标系
Figure BDA0002350295710000079
方向上的分量;
△δt:接触点位移在局部坐标系
Figure BDA00023502957100000710
方向上的分量;
kn:接触点法向刚度;
ks:接触点切向刚度;
V:颗粒1集合体总体积,;
Mv:颗粒1总接触数;
σ112233:σ11、σ22和σ33分别为坐标轴x1、x2和x3方向的平均正应力;
σ122331213213:分别为平均剪应力;
ε112233:这里ε11、ε22和ε33分别为坐标轴x1、x2和x3方向的平均正应变;
ε122331213213:分别为平均剪应变;
[B]:矩阵
Figure BDA00023502957100000711
[H]:矩阵[H]为[B]的逆矩阵;
E:杨氏模量;
G:剪切模量。
包括如下步骤:
步骤1:建立碳化硅颗粒1接触点局部坐标系:设两个接触的颗粒1分别为颗粒A和B,两个颗粒1的球心在坐标轴xi上的坐标分别为
Figure BDA0002350295710000081
Figure BDA0002350295710000082
坐标轴x1和x2为水平向,坐标轴x3为竖向,接触点的法线为
Figure BDA0002350295710000083
法线
Figure BDA0002350295710000084
的长度为L,法线
Figure BDA0002350295710000085
的单位向量为
Figure BDA0002350295710000086
这里ni表示法线
Figure BDA0002350295710000087
与坐标轴xi夹角的余弦,然后在接触点上选两个相互垂直的单位向量
Figure BDA0002350295710000088
Figure BDA0002350295710000089
Figure BDA00023502957100000810
Figure BDA00023502957100000811
这里si和ti分别为
Figure BDA00023502957100000812
Figure BDA00023502957100000813
对坐标轴xi夹角的余弦;由单位向量
Figure BDA00023502957100000814
Figure BDA00023502957100000815
建立局部坐标系;
Figure BDA00023502957100000816
这里0≤γ≤π,0≤β≤2π;
Figure BDA00023502957100000817
Figure BDA00023502957100000818
步骤2:在局部坐标系
Figure BDA00023502957100000819
Figure BDA00023502957100000820
的方向上,设接触力的分量分别为△fn,△fs和△ft,接触点位移的分量分别为△δn,△δs和△δt,kn和ks分别为法向和切向接触刚度,有如下关系:△fn=kn△δn,△f=ks△δs,△ft=ks△δt
步骤3:测试颗粒1接触参数:对两个颗粒1的接触点以及颗粒与反应器壁面接触点进行法向受力和切向受力测试,在局部坐标系
Figure BDA00023502957100000821
Figure BDA00023502957100000822
的方向上,设测得接触力的分量分别为fn,fs和ft,接触点位移的分量分别为δns和δt,设测得的法向kn和ks分别为:kn=fnn,ks=fss
步骤4:在全局坐标系上,取颗粒1集合体总体积为V,颗粒1总接触数为Mv,颗粒1集合体的平均应力为σ11、σ22、σ33、σ12、σ23、σ31、σ21、σ32和σ13,这里σ11、σ22和σ33分别为坐标轴x1、x2和x3方向的平均正应力,这里σ12、σ23、σ31、σ21、σ32和σ13分别为平均剪应力;颗粒1集合体的平均应变为ε11、ε22、ε33、ε12、ε23、ε31、ε21、ε32和ε13,这里ε11、ε22和ε33分别为坐标轴x1、x2和x3方向的平均正应变,ε12、ε23、ε31、ε21、ε32和ε13为平均剪应变;
首先计算矩阵[B]:
Figure BDA0002350295710000091
然后计算矩阵[B]的逆矩阵[H]:
[H]=[B]-1   (2)
最后有如下应力应变关系:
Figure BDA0002350295710000092
步骤5:计算杨氏模量和剪切模量:式(3)表明任意一个应变εij(i,j=1,2,3)可表示为应力分量σ11、σ22、σ33、σ12、σ23、σ31、σ21、σ32和σ13的函数,最后由式(3)中应变对应力的偏导数,计算杨氏模量E和剪切模量G:
Figure BDA0002350295710000101
Figure BDA0002350295710000102
Figure BDA0002350295710000103
Figure BDA0002350295710000104
Figure BDA0002350295710000105
Figure BDA0002350295710000106
步骤3中,测量接触参数的方法为:(1)测量接触参数kn时,如图3(a)所示,将两个颗粒1上下放置,下部颗粒1用底板6固定,用压杆在上部颗粒1顶点由上至下施加竖向力fn,压杆3由电机4驱动,在压杆3横截面上安放压电陶瓷片5,实时记录压电陶瓷片5电压,由压电陶瓷片5受到的压力和电压的关系实时监测fn的大小,在两个颗粒1上各画第一标记点9和第二标记点10,实时拍摄第一标记点9和第二标记点1的照片,通过比较不同时刻照片上第一标记点9和第二标记点1竖向距离的变化,得到法向位移δn,然后计算kn=fnn;(2)测量接触参数fs时,如图3(b)所示,将两个颗粒1上下放置,下部颗粒1用底板6固定,用固定构件7将两个颗粒1在竖直方向预压紧,固定构件7和上部颗粒1固定连接,在水平方向上固定构件7在底板6上自由滑动,固定构件7和底板6在竖直方向限制住竖向相对位移,用压杆3在上部颗粒1侧边施加水平力fs,压杆3由电机4驱动,在压杆3横截面上安放压电陶瓷片5,实时记录压电陶瓷片5电压,由压电陶瓷片5受到的压力和电压的关系实时监测fs的大小,在两个颗粒上各画第一标记点9和第二标记点10,实时拍摄第一标记点9和第二标记点10的照片,通过比较不同时刻照片上第一标记点9和第二标记点10水平方向投影的距离变化,得到无滑动状态时弹性变形产生的切向位移δs,然后计算ks=fss
步骤4的式(3)中总接触数Mv用离散元数值模拟方法进行预估:首先基于离散元法,如图1所示,在空间数值建模颗粒捕集器外壳2,然后在颗粒捕集器外壳2包含的空间内随机数值生成球颗粒,球颗粒的半径和碳化硅颗粒1半径相同,且球颗粒的接触参数和碳化硅颗粒1相同,然后数值模型中施加重力,使数值模型中的小球达到平衡状态,最后在离散元模拟的碳化硅颗粒1中统计总接触数Mv

Claims (7)

1.一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述方法包括以下步骤:
步骤1:建立碳化硅颗粒接触点局部坐标系,通过两个碳化硅颗粒之间的法向压缩受力分析和切向受力分析得到颗粒之间的接触参数;
步骤2:对于颗粒捕集器中随机填充的碳化硅颗粒,基于颗粒在颗粒捕集器容器中随机均匀分布和颗粒接触参数得到联系填充颗粒整体平均应力和平均应变的矩阵表达式,包括以下步骤:
步骤2.1:在全局坐标系上,取颗粒集合体总体积为V,颗粒总接触数为Mv,颗粒集合体的平均应力为σ11、σ22、σ33、σ12、σ23、σ31、σ21、σ32和σ13,这里σ11、σ22和σ33分别为坐标轴x1、x2和x3方向的平均正应力,这里σ12、σ23、σ31、σ21、σ32和σ13分别为平均剪应力;颗粒集合体的平均应变为ε11、ε22、ε33、ε12、ε23、ε31、ε21、ε32和ε13,这里ε11、ε22和ε33分别为坐标轴x1、x2和x3方向的平均正应变,ε12、ε23、ε31、ε21、ε32和ε13为平均剪应变;
步骤2.2:计算矩阵[B],
Figure FDA0004117419470000011
计算矩阵[B]的逆矩阵[H],[H]=[B]-1;L为接触点的法线
Figure FDA0004117419470000012
的长度,法线
Figure FDA0004117419470000013
的单位向量为
Figure FDA0004117419470000014
这里ni表示法线
Figure FDA0004117419470000015
与坐标轴xi夹角的余弦,然后在接触点上选两个相互垂直的单位向量
Figure FDA0004117419470000016
Figure FDA0004117419470000017
Figure FDA0004117419470000018
Figure FDA0004117419470000019
Figure FDA00041174194700000110
这里si和ti分别为
Figure FDA00041174194700000111
Figure FDA00041174194700000112
对坐标轴xi夹角的余弦;
步骤2.3:得到应力应变关系:
Figure FDA0004117419470000021
在局部坐标系
Figure FDA0004117419470000022
Figure FDA0004117419470000023
Figure FDA0004117419470000024
的方向上,设测得接触力的分量分别为fn,fs和ft,接触点位移的分量分别为δns和δt,设测得的法向接触刚度kn和切向接触刚度ks分别为:kn=fnn,ks=fss;γ为向量
Figure FDA0004117419470000025
与坐标轴x1的夹角,以全局坐标系的原点为o,向量
Figure FDA0004117419470000026
在x2-o-x3平面上的投影与坐标轴x2的夹角为β,0≤γ≤π,0≤β≤2π;
步骤3:基于矩阵表达式计算填充碳化硅颗粒整体的弹性杨氏模量和剪切模量。
2.根据权利要求1所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤1包括以下步骤:
步骤1.1:设两个接触的颗粒分别为颗粒A和B,两个颗粒的球心在坐标轴xi上的坐标分别为
Figure FDA0004117419470000027
Figure FDA0004117419470000028
坐标轴x1和x2为水平向,坐标轴x3为竖向,接触点的法线为
Figure FDA0004117419470000029
Figure FDA00041174194700000210
由单位向量
Figure FDA00041174194700000211
Figure FDA00041174194700000212
建立局部坐标系;
步骤1.2:在局部坐标系
Figure FDA00041174194700000213
Figure FDA00041174194700000214
的方向上,设接触力的分量分别为△fn,△fs和△ft,接触点位移的分量分别为△δn,△δs和△δt,kn和ks分别为法向接触刚度和切向接触刚度,有如下关系:
△fn=kn△δn,△f=ks△δs,△ft=ks△δt
步骤1.3:对两个颗粒间的接触点以及颗粒与颗粒捕集器壁面间的接触点进行法向受力和切向受力测试。
3.根据权利要求2所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤1.1中,
Figure FDA0004117419470000031
Figure FDA0004117419470000032
Figure FDA0004117419470000033
4.根据权利要求2所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤1.3中,测量法向接触刚度kn的方法为:将两个颗粒上下放置,下部颗粒固定,用压杆在上部颗粒顶点由上至下施加竖向力fn,压杆由电机驱动,在压杆横截面上安放压电陶瓷片,实时记录压电陶瓷片电压,由压电陶瓷受到的压力和电压的关系实时监测fn的大小,在两个颗粒上各画一个标记点,实时拍摄两个颗粒标记点的照片,通过比较不同时刻照片上两个颗粒标记点竖向距离的变化,得到法向位移
δn,然后计算kn=fnn
5.根据权利要求2所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤1.3中,测量切向接触刚度ks的方法为:将两个颗粒上下放置,下部颗粒用底板固定,用固定构件将两个颗粒在竖直方向预压紧,固定构件和上部颗粒固定连接,固定构件在水平方向和底板自由滑动,固定构件和底板在竖直方向限制住竖向相对位移,用压杆在上部颗粒侧边施加水平力fs,压杆由电机驱动,在压杆横截面上安放压电陶瓷片,实时记录压电陶瓷片电压,由压电陶瓷受到的压力和电压的关系实时监测fs的大小,在两个颗粒上各画一个标记点,实时拍摄两个颗粒标记点的照片,通过比较不同时刻照片上两个颗粒标记点水平方向投影的距离变化,得到无滑动状态时弹性变形产生的切向位移δs,然后计算ks=fss
6.根据权利要求1所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤2.3中,总接触数Mv用离散元数值模拟方法进行预估,包括以下步骤:
步骤2.3.1:基于离散元法,数值建模颗粒捕集器外壳;
步骤2.3.2:在颗粒捕集器外壳包含的空间内随机数值生成球颗粒,球颗粒的半径和碳化硅颗粒半径相同,且球颗粒的接触参数和碳化硅颗粒相同;
步骤2.3.3:在数值模型中施加重力,使数值模型中的球颗粒达到平衡状态;
步骤2.3.4:在离散元模拟的碳化硅颗粒中统计总接触数Mv
7.根据权利要求1所述的一种柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法,其特征在于:所述步骤3中,由应变对应力的偏导数计算杨氏模量E和剪切模量G:
Figure FDA0004117419470000041
Figure FDA0004117419470000042
Figure FDA0004117419470000043
Figure FDA0004117419470000051
Figure FDA0004117419470000052
Figure FDA0004117419470000053
CN201911412306.7A 2019-12-31 2019-12-31 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法 Active CN110929430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911412306.7A CN110929430B (zh) 2019-12-31 2019-12-31 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911412306.7A CN110929430B (zh) 2019-12-31 2019-12-31 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法

Publications (2)

Publication Number Publication Date
CN110929430A CN110929430A (zh) 2020-03-27
CN110929430B true CN110929430B (zh) 2023-04-11

Family

ID=69854514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911412306.7A Active CN110929430B (zh) 2019-12-31 2019-12-31 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法

Country Status (1)

Country Link
CN (1) CN110929430B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111932498B (zh) * 2020-07-09 2022-06-24 西南交通大学 无规则形状颗粒堆积体系中接触数定量表征方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995495A1 (en) * 1998-10-20 2000-04-26 The Boc Group, Inc. Electrostatic control for contact between gases and solid particles
CN104239277A (zh) * 2014-08-15 2014-12-24 南京大学 适用于gpu纯矩阵运算的快速离散元数值计算方法
CN106980723A (zh) * 2017-03-24 2017-07-25 浙江科技学院(浙江中德科技促进中心) 地震中重力式挡土墙抗滑分析的离散颗粒‑sph耦合模拟方法
CN107420174A (zh) * 2017-07-25 2017-12-01 浙江交通职业技术学院 具有开裂实时监测的壁流式颗粒捕集器及监测方法
CN109376454A (zh) * 2018-11-12 2019-02-22 湘潭大学 一种基于超椭圆方程的随机孔洞缺陷材料离散元建模方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11341294B2 (en) * 2017-01-18 2022-05-24 California Institute Of Technology Systems and methods for level set discrete element method particle simulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995495A1 (en) * 1998-10-20 2000-04-26 The Boc Group, Inc. Electrostatic control for contact between gases and solid particles
CN104239277A (zh) * 2014-08-15 2014-12-24 南京大学 适用于gpu纯矩阵运算的快速离散元数值计算方法
CN106980723A (zh) * 2017-03-24 2017-07-25 浙江科技学院(浙江中德科技促进中心) 地震中重力式挡土墙抗滑分析的离散颗粒‑sph耦合模拟方法
CN107420174A (zh) * 2017-07-25 2017-12-01 浙江交通职业技术学院 具有开裂实时监测的壁流式颗粒捕集器及监测方法
CN109376454A (zh) * 2018-11-12 2019-02-22 湘潭大学 一种基于超椭圆方程的随机孔洞缺陷材料离散元建模方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Pi-qiang Tan.Modeling and simulation of SCR system for diesel engines.《IEEE》.2011,全文. *
曹宇春 ; 周健 ; .软土地基上填土土坡滑动颗粒流模拟.浙江科技学院学报.2006,(第01期),全文. *
金炜枫.纳米线增强作用下纳米硅颗粒渗流加固钙质砂的强度研究.《中国土木工程学会2019年学术年会论文集》.2019,全文. *
阮帅帅.低碳背景下车辆颗粒物排放的控制现状及对策研究.《汽车实用技术》.2016,全文. *

Also Published As

Publication number Publication date
CN110929430A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
Sun et al. Contact forces generated by hailstone impact
Konstandopoulos Particle sticking/rebound criteria at oblique impact
Hooper et al. Multi-axis vibration durability testing of lithium ion 18650 NCA cylindrical cells
US11150747B2 (en) Method of determining spatial configurations of a plurality of transducers relative to a target object
CN107887669B (zh) 一种金属散热动力电池包结构设计方法及电池包
CN110929430B (zh) 柴油机颗粒捕集器中随机填充碳化硅颗粒的模量计算方法
Chaudhry et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects
Linder et al. 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis
CN112036065A (zh) 带包材的电池包跌落仿真分析方法
Yang et al. Numerical simulations of highly nonlinear steady and unsteady free surface flows
CN111735565A (zh) 推力发动机的推力参数测量方法和装置
Jiang et al. Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle
CN106055733A (zh) 多功能结构的动力学参数确定方法
CN114139414A (zh) 车辆电池托架总成性能测试方法、装置、设备和介质
CN110807283B (zh) 基于有限元计算模型的多载荷应变测量点获取方法及系统
Robinson et al. Short duration force measurements in impulse facilities
He et al. Numerical simulation of interactions among air, water, and rigid/flexible solid bodies
CN111159905B (zh) 介质阻挡放电处理尾气反应器中填充颗粒的模量计算方法
Tang et al. Fluid analysis and improved structure of an ATEG heat exchanger based on computational fluid dynamics
Sumelka et al. Viscoplasticity
Nowak Vibration of collecting electrodes in electrostatic precipitators–Modelling, measurements and simulation tests
Varga et al. Metal Foam Analysis Based on CT Layers
Roughen et al. Estimation of unsteady loading for sting mounted wind tunnel models
Rossikhin et al. Vibrations of viscoelastic rods, Fractional operator models
Li et al. Assessment of force models on finite-sized particles at finite Reynolds numbers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant