CN110921669B - 一种中空碳化钨纳米材料的制备及其应用 - Google Patents

一种中空碳化钨纳米材料的制备及其应用 Download PDF

Info

Publication number
CN110921669B
CN110921669B CN201911261589.XA CN201911261589A CN110921669B CN 110921669 B CN110921669 B CN 110921669B CN 201911261589 A CN201911261589 A CN 201911261589A CN 110921669 B CN110921669 B CN 110921669B
Authority
CN
China
Prior art keywords
sio
tungsten carbide
hollow
nano
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911261589.XA
Other languages
English (en)
Other versions
CN110921669A (zh
Inventor
陈宪
陈勇领
李诗华
杨黄浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201911261589.XA priority Critical patent/CN110921669B/zh
Publication of CN110921669A publication Critical patent/CN110921669A/zh
Application granted granted Critical
Publication of CN110921669B publication Critical patent/CN110921669B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种中空碳化钨(WC)纳米材料的制备方法,其是将SiO2纳米粒子经表面氨基修饰后,利用静电吸附作用在其表面包覆盐酸多巴胺及磷钨酸,以形成SiO2@PTA/DA,再将其经高温煅烧,氟化氢铵处理去除SiO2后,得到尺寸均一的中空碳化钨纳米粒子,将所得中空WC纳米粒子进行表面透明质酸(HA)修饰,可使其具有良好的生物相容性和靶向肿瘤细胞的功能。本发明合成步骤简单、可操作性及可控性强,同时拥有良好的重复性,并克服了传统碳化钨纳米材料高温合成过程中易团聚烧结的问题,所得透明质酸修饰的中空碳化钨纳米粒子可作为良好的纳米载体有效搭载成像及药物小分子等,有望在肿瘤靶向治疗及生物传感、成像中发挥重要作用。

Description

一种中空碳化钨纳米材料的制备及其应用
技术领域
本发明属于纳米材料制备领域,具体涉及一种中空碳化钨纳米材料及其制备方法。
背景技术
在过去几年中,纳米材料因其多样化的生物医学应用而受到极大的关注,包括诊断、成像和治疗等。纳米材料具有尺寸小、易表面功能化修饰等特点,使其在作为药物载体进行良好的细胞内药物输送、体内靶向运输等方面具有独特的优势。本发明利用静电吸附作用,以多巴胺作为碳源,磷钨酸作为钨源,将其聚合在SiO2纳米颗粒表面,得到SiO2@PTA/DA前体纳米粒子,再通过高温煅烧及SiO2模板的去除,得到尺寸均一的中空WC纳米颗粒。该方法相较于之前以碳纳米管或活性炭作载体以获得高表面积的碳化钨、合成局限于介孔分子筛SBA-15中孔的碳化钨等方法,可避免高温煅烧易烧结团聚导致尺寸不均、分散性差及二氧化硅难以除去等问题,同时具有较高的自组装性。
精准治疗一直是癌症治疗的重点与难点。不论是作为成像、治疗的纳米试剂,亦或是作为纳米运载体,纳米材料的靶向性及其生物安全性都起到了关键作用。因此,纳米材料的靶向递送在肿瘤的精准治疗中具有重要意义。此外,作为纳米运载体,良好的药物负载能力是其得以应用的重要前提。利用本发明方法制得的中空碳化钨纳米材料具有良好的生物相容性和肿瘤靶向能力以及高效的DOX负载能力,有望在肿瘤靶向治疗及生物传感、成像中发挥重要作用。
发明内容
本发明的目的在于提供一种具有中空结构的碳化钨纳米粒材料的制备方法及其应用。
为实现上述目的,本发明采用如下技术方案:
一种中空碳化钨(WC)纳米材料,其是将SiO2纳米粒子经表面氨基修饰后,利用静电吸附作用在其表面包覆盐酸多巴胺及磷钨酸,以形成SiO2@PTA/DA,再将其经高温煅烧、氟化氢铵处理后,得到的尺寸均一的中空碳化钨纳米粒子。其具体制备方法如下:
1)取200 mL乙醇、50 mL去离子水、11.2 mL NH3·H2O(25%)溶液混合,30 ℃下搅拌30 min,然后加入9 mL正硅酸乙酯(TEOS),继续搅拌反应12 h后,分离出沉淀,水洗,得到SiO2纳米粒子;将1.0 g所制得的SiO2纳米粒子分散到50 mL异丙醇中,加入300 μL的3-氨丙基三乙氧基硅烷(APTES),73-75 ℃回流24 h,再用无水乙醇洗涤三次,得到表面氨基修饰的SiO2纳米粒子(SiO2-NH2);
2)将50 mg步骤1)合成的表面氨基修饰的SiO2纳米粒子(SiO2-NH2)超声分散于5mL水中,加入到30 mL含100 mg磷钨酸的10 mM、pH=8.5的Tris-HCl溶液中,超声震动使其混合均匀,并继续超声反应2 h,所得产物离心分离后,再次分散于5 mL水中,超声震动下加入到50 mL、2 mg/mL新配制的盐酸多巴胺溶液(将100 mg多巴胺溶于50 mL、10 mM、pH=8.5的Tris-HCl缓冲液中制得)中,再超声反应1 h,所得产物离心分离后水洗三次,得到SiO2@PTA/DA;
3)将步骤2)制得的SiO2@PTA/DA在5 vol% H2+95 vol% Ar的氛围下,先400 ℃煅烧2 h(升温速率为1 ℃/min),再加热至800 ℃,继续煅烧3 h(升温速率为5 ℃/min),将煅烧后的SiO2@PTA/DA用4 mol/L的氟化氢铵(NH4HF2)溶液处理12 h,以除去模板SiO2,然后离心、水洗三次后,得到中空碳化钨纳米粒子;
4)将10 mg所得碳化钨纳米粒子与20 mL、1 mg/mL的透明质酸(HA)溶液混合,搅拌过夜,得到功能化修饰的的HA-WC纳米粒子。
本发明所得HA修饰的中空碳化钨纳米粒子,可作为载体用于负载成像或抗肿瘤的小分子药物,从而制得靶向制剂。
本发明的显著优点在于:
(1)本发明合成步骤简单、可操作性及可控性强,同时拥有良好的重复性,并克服了传统碳化钨纳米材料高温合成过程中易团聚烧结的问题;
(2)本发明合成的中空碳化钨纳米粒子具有高效的药物负载性能,可作为有效的纳米药物载体;
(3)将本发明所得中空碳化钨纳米粒子经表面透明质酸修饰后,具有良好的生物相容性及靶向肿瘤细胞的功能,可用于制备具有靶向功能的成像剂或抗癌药物。
附图说明
图1是本发明HA-WC纳米粒子的合成示意图;
图2是实施例1中制备得到的SiO2(A)和SiO2@PTA/DA(B)的TEM图;
图3是实施例1中制备得到的SiO2和SiO2@PTA/DA的DLS图;
图4是实施例1中制备得到的SiO2、SiO2-NH2、SiO2@PTA/DA与SiO2@PTA的Zeta电位对比图;
图5是实施例1中制备得到的中空WC纳米粒子的TEM图;
图6是实施例1中制备得到的中空WC纳米粒子的XRD图谱;
图7是实施例1中制备得到的中空WC纳米粒子的EDS图谱;
图8是实施例1中制备得到的中空WC纳米粒子和HA-WC纳米粒子的吸收光谱对比图;
图9是实施例1中制备得到的HA-WC纳米粒子的DLS图;
图10是实施例2中HA-WC纳米粒子在H2O、胎牛血清及细胞培养基中的分散情况图;
图11是实施例3中HA-WC纳米粒子负载DOX前后在水溶液中的分散情况图;
图12是实施例3中HA-WC纳米粒子对于DOX的释放性能曲线;
图13是实施例4中不同浓度的HA-WC纳米粒子处理HeLa细胞24 h后的细胞存活率图;
图14是实施例5中HeLa细胞对相同浓度的中空WC纳米粒子和HA-WC纳米粒子的细胞摄取量图;
图15是实施例6中不同浓度DOX处理HeLa细胞24 h后的细胞存活率图。
图16是实施例6中负载了不同浓度DOX的HA-WC纳米粒子处理HeLa细胞24 h后的细胞存活率图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
1)SiO2纳米粒子的合成:取200 mL乙醇、50 mL去离子水、11.2 mL NH3·H2O(25%)溶液混合,30 ℃下搅拌30 min,然后加入9 mL TEOS,继续搅拌反应12 h后,分离出沉淀,水洗,得到SiO2纳米粒子;
2)SiO2纳米粒子的表面氨基化修饰:将1.0 g所制得的SiO2纳米粒子分散到50 mL异丙醇中,加入300 μL APTES,73-75 ℃回流24 h,再用无水乙醇洗涤三次,得到表面氨基修饰的SiO2纳米粒子(SiO2-NH2);
3)SiO2@PTA/DA的制备:先取100 mg磷钨酸(PTA)溶于30 mL Tris-HCl (10 mM、pH8.5) 溶液中,得PTA溶液;然后取50 mg SiO2-NH2超声分散于5 mL水中,在超声下加入到PTA溶液中,继续超声、搅拌反应2 h,反应结束后将产物离心分离,再分散到5 mL水中,然后在超声震动下加入到50 mL、2 mg/mL新配制的盐酸多巴胺溶液(将100 mg多巴胺溶于50 mL、10 mM、pH=8.5的Tris-HCl缓冲液中制得)中,超声混合一段时间后,再反应1 h,最后离心、水洗三次,得到SiO2@PTA/DA;
4)SiO2@PTA/DA的高温焙烧:将制得的SiO2@PTA/DA在5% H2+95% Ar氛围下400 ℃碳化2 h(升温速率1 ℃/min)后,进一步加热至800 ℃处理3 h(升温速率5 ℃/min);
5)中空WC纳米粒子的制备:将高温焙烧过的SiO2@PTA/DA用4 mol/L的NH4HF2处理12 h,以除去模板SiO2,然后离心、水洗三次后,得到中空WC纳米粒子;
6)中空WC纳米粒子的表面HA修饰:将除去模板SiO2后得到的10 mg碳化钨纳米粒子与20 mL、1 mg/mL的透明质酸(HA)溶液混合,搅拌过夜,得到水溶性的HA-WC纳米粒子。
图2-4可证明本发明成功地在SiO2纳米粒子上包覆了磷钨酸及多巴胺;图5清楚的显示了WC纳米粒子的中空结构;图6、7证明了WC纳米粒子的成功合成;图8、9显示了HA成功地修饰到了WC纳米粒子表面,且所得HA-WC纳米粒子的粒径约为193.5±12.1 nm。
实施例2 HA-WC纳米粒子的稳定性测试
为了进一步考察HA-WC纳米粒子在不同介质中的稳定性,将其分别分散于水(H2O)、胎牛血清(FBS)和细胞培养基(RPMI-1640)中。如图10所示,这些HA-WC纳米粒子分散后的溶液即使在12天后也没有聚集或沉淀,表明其在不同介质中具有良好的分散性和稳定性。
实施例3 中空WC纳米粒子对于DOX的负载与释放
1)DOX的负载:配制不同浓度(50、100、250、500 μg/mL)的DOX水溶液,将其与50 μg/mL的HA-WC纳米粒子混合,避光搅拌24 h,离心处理,将沉淀水洗3次,再分散于水溶液中,得到HA-WC/DOX水溶液。通过检测离心所得上清液中DOX的含量,计算获得药物负载量。结果见表1。
表1 中空WC纳米粒子对不同浓度DOX的负载率
Figure DEST_PATH_IMAGE002
由表1可见,随着DOX浓度的增大,负载率逐渐升高,最高负载率可达282.3%。
为了进一步考察HA-WC负载DOX前后的稳定性,将HA-WC及HA-WC/DOX分散于H2O中,结果如图11所示,负载DOX后,HA-WC在水中仍然保持着良好的分散性能,未发生明显的聚集现象。
2)DOX的释放性能:取HA-WC/DOX(含DOX 100 μg/mL)溶液分别分散于pH=7.4和pH=5.5的PBS中,将溶液移入100 KD的超滤管中,置于装有相应PBS的烧杯内,放入37℃的摇床内缓慢摇晃,分别于不同时间取超滤管外的溶液,测定DOX的释放效率。
由图12可知,在pH=5.5的弱酸性环境下,DOX由于质子化作用可以得到有效地释放,释放率可达59.6%左右,为肿瘤微环境内的药物释放奠定了基础。
实施例4 HA-WC纳米粒子的细胞毒性测试
首先,将HeLa细胞培养在含有10%胎牛血清(FBS,Gibco)的RPMI-1640培养基(Gibco,USA)中,置于37℃、5% CO2的培养箱中培养。然后取HeLa细胞液接种在96孔板中并孵育过夜,加入100 μL含不同浓度HA-WC纳米粒子的新鲜培养液继续孵育24 h后,用CCK-8试剂盒测定细胞存活率。结果如图13所示。
由图13可见,当HA-WC纳米粒子的浓度达到200 μg/mL时,HeLa细胞仍有超过90%的存活率,说明中空HA-WC纳米粒子具有较好的细胞相容性,为后续细胞实验提供了可行性。
实施例5 HA-WC纳米粒子对肿瘤细胞的靶向能力
HA是一种能与癌细胞上过度表达的CD44受体结合的生物功能聚合物,因此被广泛应用于肿瘤靶向诊断和治疗中。首先,将HeLa细胞培养在含有10%胎牛血清(FBS,Gibco)的RPMI-1640培养基(Gibco,USA)中,置于37 ℃、5% CO2的培养箱中培养。然后取HeLa细胞液接种在6孔板中,孵育过夜后,分别用PBS(Control)、WC(200 μg/mL)和HA-WC(200 μg/mL)孵育4 h和8 h,然后将细胞完全消化并收集,之后用ICP-AES测量样品中钨元素的含量。结果如图14所示。
由图14可见,对于过度表达CD44受体的HeLa细胞,用HA-WC处理的细胞比PBS和WC处理后表现出更高的钨含量。并且随着时间的延长,HeLa细胞摄取的钨含量也随之增加。这一结果表明,HA-WC纳米粒子具有高效的肿瘤细胞靶向能力。
实施例6 HA-WC/DOX抑制肿瘤细胞及药物释放的能力
首先,将HeLa细胞培养在含有10%胎牛血清(FBS,Gibco)的RPMI-1640培养基(Gibco,USA)中,置于37 ℃、5% CO2的培养箱中培养。然后取HeLa细胞液接种在96孔板中并孵育过夜,分别加入100 μL含不同浓度DOX(0、1.25、2.5、5、10、20 μg/mL)的新鲜培养液及100 μL含不同浓度(0、2.5、5、10、20、40 μg/mL)HA-WC/DOX(其中负载的DOX浓度分别为0、2.5、5、10、20、40 μg/mL)的新鲜培养液继续孵育24 h后,用CCK-8试剂盒测定细胞存活率。结果如图15、16所示。
由图15可见,DOX本身具有良好的肿瘤细胞抑制能力,其IC50约为5 μg/mL;由图16可见,细胞存活率随着体系中HA-WC/DOX含量的增高而逐渐下降,并且当体系中HA-WC/DOX的含量达到40 μg/mL时,HeLa细胞的存活率已不足10%,说明HA-WC/DOX同样具有良好的肿瘤细胞抑制能力,并可用于提高肿瘤治疗的效率。同时,对比图15、16可以发现,采用HA-WC纳米粒子负载DOX,其药物释放效率达到50%以上,证明了其良好的药物释放能力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种中空碳化钨纳米材料的制备方法,其特征在于,将SiO2纳米粒子经表面氨基修饰后,利用静电吸附作用在其表面包覆盐酸多巴胺及磷钨酸,以形成SiO2@PTA/DA,再将其经高温煅烧、氟化氢铵处理后,得到尺寸均一的中空碳化钨纳米粒子;其具体包括如下步骤:
1)将1.0 g SiO2纳米粒子分散到50 mL异丙醇中,加入300 μL的3-氨丙基三乙氧基硅烷,73-75 ℃回流24 h,再用无水乙醇洗涤三次,得到表面氨基修饰的SiO2纳米粒子;
2)将50 mg步骤1)合成的表面氨基修饰的SiO2纳米粒子超声分散于5 mL水中,加入到30mL含100 mg磷钨酸的10 mM、pH=8.5的Tris-HCl溶液中,超声震动使其混合均匀,并继续超声反应2 h,所得产物离心分离后,再次分散于5 mL水中,超声震动下加入到50 mL、2 mg/mL的盐酸多巴胺溶液中,再超声反应1h,所得产物离心分离后水洗三次,得到SiO2@PTA/DA;
3)将步骤2)制得的SiO2@PTA/DA在5 vol% H2+95 vol% Ar的氛围下,先400 ℃煅烧2h,再加热至800 ℃,继续煅烧3 h,将煅烧后的SiO2@PTA/DA用4 mol/L的氟化氢铵溶液处理12 h,以除去模板SiO2,然后离心、水洗三次后,得到中空的碳化钨纳米粒子;
4)将10 mg所得碳化钨纳米粒子与20 mL、1 mg/mL的透明质酸溶液混合,搅拌过夜,得到水溶性的HA-WC纳米粒子。
2. 根据权利要求1所述的中空碳化钨纳米材料的制备方法,其特征在于,步骤2)中所述盐酸多巴胺溶液是将多巴胺溶于10 mM、pH=8.5的Tris-HCl缓冲液中制得。
3. 根据权利要求1所述的中空碳化钨纳米材料的制备方法,其特征在于,步骤3)中第一次煅烧时的升温速率为1 ℃/min,第二次煅烧时的升温速率为5 ℃/min。
4.一种如权利要求1所述方法制得的中空碳化钨纳米材料的应用,其特征在于,将所述中空碳化钨纳米材料作为载体,用于负载成像药物或抗肿瘤药物,而制得靶向制剂。
CN201911261589.XA 2019-12-10 2019-12-10 一种中空碳化钨纳米材料的制备及其应用 Expired - Fee Related CN110921669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911261589.XA CN110921669B (zh) 2019-12-10 2019-12-10 一种中空碳化钨纳米材料的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911261589.XA CN110921669B (zh) 2019-12-10 2019-12-10 一种中空碳化钨纳米材料的制备及其应用

Publications (2)

Publication Number Publication Date
CN110921669A CN110921669A (zh) 2020-03-27
CN110921669B true CN110921669B (zh) 2022-09-06

Family

ID=69858808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911261589.XA Expired - Fee Related CN110921669B (zh) 2019-12-10 2019-12-10 一种中空碳化钨纳米材料的制备及其应用

Country Status (1)

Country Link
CN (1) CN110921669B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636556B (zh) * 2021-07-22 2022-11-18 武汉大学 一种超小碳化钼@碳复合材料及其制备方法和应用
CN115094466B (zh) * 2022-06-06 2023-04-28 哈尔滨工业大学(深圳) 一种空心碳十二面体封装wc、w2c或双相wc/w2c纳米颗粒电催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843708A (zh) * 2015-04-20 2015-08-19 江苏大学 一种碳化钨空心半球的制备方法
CN105016341A (zh) * 2015-07-15 2015-11-04 浙江大学 一种高比表面积的碳化物纳米空心球及其制备方法
KR101704470B1 (ko) * 2015-09-22 2017-02-10 한국생산기술연구원 탄화텅스텐-탄소 복합입자, 탄화텅스텐-탄소 복합입자와 중공형 탄화텅스텐의 제조방법
CN107854449A (zh) * 2017-09-20 2018-03-30 中山大学 一种具有药物控释性能的纳米复合微球及其制备方法和应用
CN108963283A (zh) * 2018-07-17 2018-12-07 大连理工大学 高分散负载型核壳结构Pd@Ni/WC直接醇类燃料电池催化剂及其制备方法
CN110054188A (zh) * 2018-05-11 2019-07-26 南方科技大学 纳米碳化钨颗粒及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843708A (zh) * 2015-04-20 2015-08-19 江苏大学 一种碳化钨空心半球的制备方法
CN105016341A (zh) * 2015-07-15 2015-11-04 浙江大学 一种高比表面积的碳化物纳米空心球及其制备方法
KR101704470B1 (ko) * 2015-09-22 2017-02-10 한국생산기술연구원 탄화텅스텐-탄소 복합입자, 탄화텅스텐-탄소 복합입자와 중공형 탄화텅스텐의 제조방법
CN107854449A (zh) * 2017-09-20 2018-03-30 中山大学 一种具有药物控释性能的纳米复合微球及其制备方法和应用
CN110054188A (zh) * 2018-05-11 2019-07-26 南方科技大学 纳米碳化钨颗粒及其制备方法
CN108963283A (zh) * 2018-07-17 2018-12-07 大连理工大学 高分散负载型核壳结构Pd@Ni/WC直接醇类燃料电池催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness;Dai, CF et al.;《JOURNAL OF COLLOID AND INTERFACE SCIENCE》;20121129;第394卷;第36-43页 *
介孔结构空心球状WC粉体催化剂的制备与表征;马淳安等;《化学学报》;20051215;第63卷(第12期);第1151-1154页 *
氨基改性二氧化硅气凝胶的制备及其对镍离子的吸附性能;陈海锋等;《化工环保》;20191031;第9卷(第5期);第568-573页 *

Also Published As

Publication number Publication date
CN110921669A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
Yang et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity
Massaro et al. Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy
CN110921669B (zh) 一种中空碳化钨纳米材料的制备及其应用
EP2735543A2 (en) Volume production method for uniformly sized silica nanoparticles
JP2012528197A (ja) ナノダイヤモンド粒子複合体
JP2021509393A (ja) 粒子材料の製造方法
Markova et al. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots
Cheng et al. Graphene oxide complex as a pH-sensitive antitumor drug
Kumar et al. CPMV-induced synthesis of hollow mesoporous SiO 2 nanocapsules with excellent performance in drug delivery
WO2012051341A1 (en) Hydrothermal process for enhanced stability of mesoporous nanoparticles
Zhang et al. A redox and pH dual-triggered drug delivery platform based on chitosan grafted tubular mesoporous silica
CN104189917A (zh) 一种含阿霉素的氧化石墨烯载药复合材料的制备方法
Gessner et al. Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs
CN111100840A (zh) 特异性捕获和有效释放循环肿瘤细胞的磁性纳米复合物及其制备方法
Varghese et al. One-step dry synthesis of an iron based nano-biocomposite for controlled release of drugs
CN114394602A (zh) 一种锰掺杂的中空介孔二氧化硅纳米材料及其制备方法与应用
US11957789B2 (en) Hollow silica spheres with nested iron oxide particles
Tiwari et al. Dual drug loaded potassium-contained graphene oxide as a nanocarrier in cocktailed drug delivery for the treatment of human breast cancer
Cruz-Acuña et al. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins
CN110917172B (zh) 一种氧化钼纳米片封堵中空介孔硅纳米材料及其制备和应用
Cui et al. One-step synthesis of amine-coated ultra-small mesoporous silica nanoparticles
CN111514310A (zh) 一种微波辅助合成壳聚糖修饰的氧化石墨烯的制备方法、药物载体及其应用
KR20100097576A (ko) 자성 실리카 입자체 및 이의 제조방법
CN111620314A (zh) 一种苯硼酸修饰氮化碳量子点的制备方法及应用
Hao et al. One step green reduced and functionalized graphene oxide for highly efficient loading and effectively release of doxorubicin hydrochloride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220906