CN110918978B - 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用 - Google Patents

用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用 Download PDF

Info

Publication number
CN110918978B
CN110918978B CN201911295162.1A CN201911295162A CN110918978B CN 110918978 B CN110918978 B CN 110918978B CN 201911295162 A CN201911295162 A CN 201911295162A CN 110918978 B CN110918978 B CN 110918978B
Authority
CN
China
Prior art keywords
phase
functional layer
powder
reinforced
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911295162.1A
Other languages
English (en)
Other versions
CN110918978A (zh
Inventor
崔秀芳
李大燕
金国
温鑫
房永超
张丹
石磊
李健
万思敏
张学润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201911295162.1A priority Critical patent/CN110918978B/zh
Publication of CN110918978A publication Critical patent/CN110918978A/zh
Application granted granted Critical
Publication of CN110918978B publication Critical patent/CN110918978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用,本发明属于复合材料领域,它要解决现有纳米粒子混粉的方式容易发生团聚,使其形核效应降低的问题。本发明所述的具有功能层的增强相强化复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层的石墨烯材料作为掺杂相组成。所述的具有功能层的增强相的制备方法:将非金属纳米粒子加入到含有镍盐的混合溶液中,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中进行反应。本发明在合金粉中通过增强相的介质作用引入纳米颗粒,非金属纳米颗粒与合金粉具有较好的相容性,能均匀分散在合金粉中。

Description

用于熔凝技术具有功能层的增强相强化的复合粉末及其制备 方法和应用
技术领域
本发明属于复合材料领域,具体涉及一种具有功能层结构的增强相强化复合粉末及其制备方法和应用。
背景技术
在激光、电子束或等离子熔凝过程中,熔化和凝固动力学易导致其组织具有较大的柱状晶粒和周期性裂纹的微观结构。已有研究表明,可以通过在增材制造过程中引入控制固化的成核纳米颗粒来解决此类问题。所以,如何在合金粉中引入纳米颗粒,成了一个亟待解决的问题。现有的方法大多采用混粉的方式在合金粉中直接加入纳米粒子,此方法虽操作简便,但同时存在很大的弊端。纳米粒子由于尺寸过小,易发生团聚,使其形核效应大大降低。同时,纳米粒子作为非金属掺杂相,与合金粉的相容性较差的问题也十分突出,无法实现在合金粉中均匀分散。
近几年,石墨烯基于良好的综合性能已广泛的应用于储能领域、光电器件领域以及生物医药领域。比如,石墨烯因具有较大的比表面积在催化剂、微波吸收材料中得到了广泛应用。在材料科学和工程领域,石墨烯作为一种新型的二维碳纳米材料,因具有较高的强度和韧性而被作为理想的增强相应用于提高金属基复合材料的硬度、抗拉强度、延性、耐腐蚀性和耐磨性等研究。申请号CN201210489612.2的专利中提出一种采用水热法制备石墨烯加载金属氧化物纳米材料,此方法需要较高的温度条件且制备周期较长。申请号201710710696.0的专利中介绍了一种石墨烯与二氧化钛纳米颗粒复合材料的制备方法,但是此方法需要在250-800℃下进行热处理,工艺条件较为复杂。另外,该方法可实现引入的纳米粒子种类较少。且上述两种方法仅实现了石墨烯上纳米粒子的复合,可用于低中温条件下的应用,如催化剂、吸波材料等。在熔凝技术过程中,由于石墨烯作为一种碳材料具有自身抗氧化性差,易烧损,活性高易与金属基体之间发生反应等缺点,并且石墨烯自身质量轻,易团聚,与合金粉相容性差,难以实现在合金粉中均匀分散,所以仅实现石墨烯与纳米粒子复合并不适用于高温下金属基复合材料的制备。
发明内容
本发明要解决现有纳米粒子混粉的方式容易发生团聚,使其形核效应降低的问题,而提供一种用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用。
本发明用于熔凝技术具有功能层的增强相强化的复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层的增强相作为掺杂相组成,其中增强相为片径是微米级的石墨烯纳米片或氧化石墨烯片;
所述的具有功能层结构的增强相的制备方法按照下列步骤实现:
将非金属纳米粒子加入到含有镍盐的混合溶液中,超声分散均匀,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中,超声搅拌反应,经洗涤、干燥后得到具有功能层的增强相;
所述的反应溶液中含有25-30g/L的镍盐,20-30g/L的还原剂,15-25g/L的络合剂,4-8g/L的缓冲剂和稳定剂。
本发明用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法按照下列步骤实现:
一、增强相的表面前处理:
a、将增强相加入到硝酸与硫酸的混合酸中,在40-60℃条件下超声搅拌,然后将增强相洗涤至中性,抽滤,得到酸化的增强相;
b、将酸化的增强相加入到含有质量百分数为1%-3%氯化亚锡,体积百分数为2%-4%盐酸的酸性溶液中,在40-60℃条件下超声搅拌,将增强相洗涤至中性,抽滤,得到氯化亚锡处理后的增强相;
c、将氯化亚锡处理后的增强相加入到含有质量百分数为0.1%-0.3%氯化钯,体积百分数为2%-4%盐酸的酸溶液中,在40-60℃条件下超声搅拌,得到氯化钯处理后的增强相;
二、具有功能层结构的增强相制备:
将非金属纳米粒子加入到含有镍盐的混合溶液中,超声分散均匀,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中,超声搅拌反应,经洗涤、干燥后得到具有功能层的增强相;
所述的反应溶液中含有25-30g/L的镍盐,20-30g/L的还原剂,15-25g/L的络合剂,4-8g/L的缓冲剂和稳定剂;
三、增强相强化复合粉末制备:
将具有功能层的增强相加入到金属基粉末中,然后移至球磨罐中,在不添加陶瓷球的情况下利用球磨机球磨处理,得到混合均匀的具有功能层的增强相强化复合粉末。
本发明应用具有功能层的增强相强化复合粉末制备涂层的方法按以下步骤实现:
一、将金属基体的表面打磨光滑,清洗后得到洁净的金属基体;
二、将具有功能层的增强相强化复合粉末预涂在洁净的金属基体上,得到预涂有合金粉的金属基体;
三、将预涂有合金粉的金属基体置于充氩舱内,采用熔凝工艺制备金属基涂层。
本发明用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法中以具有功能层结构的增强相作为掺杂相,该掺杂相的功能层实现在合金粉中均匀引入功能性非金属纳米颗粒的同时实现对增强相抗氧化性能的提高。在合金粉中通过增强相的介质作用引入纳米颗粒,非金属纳米颗粒与合金粉具有较好的相容性,能均匀分散在合金粉中。该功能层制备方法扩大了可沉积功能性纳米颗粒的种类,获得的复合粉末适用于激光或等离子熔凝技术制备金属基材料,在引入了非金属纳米颗粒实现材料性能提高和起到弥散强化、细晶强化作用的同时又实现了高温下对增强相的保护增重作用,使其保留自身特殊结构起到良性的载荷传递。二者共同作用提高材料的硬度和耐磨性作用。因此,该复合粉末所制备的金属基材料可具有良好的综合性能。
附图说明
图1为增强相功能层构建原理示意图;
图2为实施例一具有CeO2细晶强化功能层的石墨烯NiTi基复合粉末的SEM图;
图3为实施例一具有CeO2细晶强化功能层的石墨烯NiTi基复合粉末EDS图;
图4为实施例一具有CeO2细晶强化功能层的石墨烯NiTi基涂层金相组织图宏观图;
图5为实施例一具有CeO2细晶强化功能层的石墨烯NiTi基涂层晶粒金相图;
图6为实施例一具有CeO2细晶强化功能层的石墨烯NiTi基涂层树状枝晶组织金相图;
图7为实施例一TC4基体与具有CeO2细晶强化功能层的石墨烯NiTi基涂层摩擦系数对比图,其中1为基体TC4摩擦系数,2为涂层摩擦系数;
图8为实施例一TC4基体与具有CeO2细晶强化功能层的石墨烯NiTi基涂层硬度对比图;
图9为实施例一TC4基体与具有CeO2细晶强化功能层的石墨烯NiTi基涂层磨痕对比图;左图为基体TC4磨痕,右图为涂层磨痕。
具体实施方式
具体实施方式一:本实施方式用于熔凝技术具有功能层的增强相强化的复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层结构的增强相作为掺杂相组成,其中增强相为片径是微米级的石墨烯纳米片或氧化石墨烯片;
所述的具有功能层结构的增强相的制备方法按照下列步骤实现:
将非金属纳米粒子加入到含有镍盐的混合溶液中,超声分散均匀,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中,超声搅拌反应,经洗涤、干燥后得到具有功能层结构的增强相;
所述的反应溶液中含有25-30g/L的镍盐,20-30g/L的还原剂,15-25g/L的络合剂,4-8g/L的缓冲剂和稳定剂。
本实施方式通过微米级增强相的介质作用构建功能层,在合金粉中引入纳米粒子,解决纳米粒子易团聚的问题,同时将增强相金属化,提高与合金粉的相容性。
本实施方式用于熔凝技术具有功能层的增强相强化的复合粉末,石墨烯功能层实现了在合金粉中均匀的引入功能性纳米颗粒,提高了石墨烯与合金粉具有良好的相容性。该复合粉末应用于防护性涂层中,纳米颗粒和石墨烯的引入可以起到复合强化的作用,实现良性的载荷传递,提高材料的硬度和耐磨性。
具体实施方式二:本实施方式与具体实施方式一不同的是金属基粉末为粒径100-300目的球形金属基粉末。
具体实施方式三:本实施方式与具体实施方式一或二不同的是所述的金属基粉末为钛基合金粉末、镍基合金粉、钴基合金粉、铁基合金粉、铜基合金粉末、铝基合金粉末中的一种或混合粉末。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是增强相上的功能层是采用溶液中金属离子沉积带动纳米粒子沉积的方式形成非金属纳米颗粒与镍颗粒所组成厚度为100-500nm的功能层。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是所述的非金属纳米粒子为纳米金属氧化物颗粒、纳米陶瓷颗粒或纳米稀土氧化物颗粒,所述的纳米金属氧化物颗粒的材质为Al2O3、ZrO2、TiO2或SiO2;所述的纳米陶瓷颗粒的材质为CaF2、SiC、TiC、WC或TiN,纳米稀土氧化物颗粒的材质为CeO2
本实施方式非金属颗粒依据所获性能的不同选择不溶于水的尺寸小于100nm的粒子。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是非金属纳米粒子在混合溶液中的装载量为1-3g/L。
具体实施方式七:本实施方式用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法按照下列步骤实施:
一、增强相的表面前处理:
a、将增强相加入到硝酸与硫酸的混合酸中,在40-60℃条件下超声搅拌,然后将增强相洗涤至中性,抽滤,得到酸化的增强相;
b、将酸化的增强相加入到含有质量百分数为1%-3%氯化亚锡,体积百分数为2%-4%盐酸的酸性溶液中,在40-60℃条件下超声搅拌,将增强相洗涤至中性,抽滤,得到氯化亚锡处理后的增强相;
c、将氯化亚锡处理后的增强相加入到含有质量百分数为0.1%-0.3%氯化钯,体积百分数为2%-4%盐酸的酸溶液中,在40-60℃条件下超声搅拌,得到氯化钯处理后的增强相;
二、具有功能层结构的增强相制备:
将非金属纳米粒子加入到含有镍盐的混合溶液中,超声分散均匀,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中,超声搅拌反应,经洗涤、干燥后得到具有功能层结构的增强相;
所述的反应溶液中含有25-30g/L的镍盐,20-30g/L的还原剂,15-25g/L的络合剂,4-8g/L的缓冲剂和稳定剂;
三、增强相强化复合粉末制备:
将具有功能层结构的增强相加入到金属基粉末中,然后移至球磨罐中,在不添加陶瓷球的情况下利用球磨机球磨处理,得到混合均匀的具有功能层结构的增强相强化复合粉末。
具体实施方式八:本实施方式与具体实施方式七不同的是步骤a中混合酸中硝酸与硫酸的体积比为1:3。
具体实施方式九:本实施方式与具体实施方式七或八不同的是步骤二中反应溶液中的镍盐为硫酸镍或氯化镍,还原剂为次亚磷酸钠,络合剂为柠檬酸、乳酸或复合型络合剂,缓冲剂为乙酸钠,稳定剂为硫脲或碘酸钾。
具体实施方式十:本实施方式与具体实施方式九不同的是当稳定剂为硫脲时,稳定剂在反应溶液中的浓度为0.2-0.4mg/L;当稳定剂为碘酸钾时,稳定剂在反应溶液中的浓度为1-2mg/L。
本实施方式调节反应溶液体系的pH为4.5-5.5。
具体实施方式十一:本实施方式与具体实施方式七至十之一不同的是步骤三在不添加陶瓷球的情况下利用球磨机球磨处理20-30min,球磨速率为200-300转/min。
具体实施方式十二:本实施方式应用具有功能层的增强相强化的复合粉末制备涂层的方法按以下步骤实施:
一、将金属基体的表面打磨光滑,清洗后得到洁净的金属基体;
二、将具有功能层结构的增强相强化复合粉末预涂在洁净的金属基体上,得到预涂有合金粉的金属基体;
三、将预涂有合金粉的金属基体置于充氩舱内,采用熔凝工艺制备金属基涂层。
具体实施方式十三:本实施方式与具体实施方式十二不同的是步骤二具有功能层结构的增强相强化复合粉末预涂的厚度为1-2mm。
具体实施方式十四:本实施方式与具体实施方式十二不同的是步骤三所述的熔凝工艺为激光熔凝、等离子熔凝、电子束熔凝或者热喷涂方法。
实施例一:本实施例用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法按照下列步骤实现:
一、增强相的表面前处理:
a、将片径为5-10μm的片状石墨烯加入到5ml硝酸和15ml硫酸组成的混合酸中,在50℃条件下超声搅拌10min,去除增强相表面污渍,通过酸溶液刻蚀,增加增强相表面粗糙度,并使增强相表面具有一些亲水基团,增加增强相的亲水性,然后将石墨烯洗涤至中性,抽滤,得到酸化的增强相;
b、将氯化亚锡溶于盐酸中,加去离子水配成氯化亚锡质量分数为1%,盐酸体积百分数为2%的溶液,将酸化的增强相加入到氯化亚锡溶液中,在50℃条件下超声搅拌15min,使增强相表面吸附Sn2+,形成一层还原性膜,将增强相洗涤至中性,抽滤,得到氯化亚锡处理后的增强相;
c、将氯化钯溶于盐酸中,添加去离子水配成氯化钯质量百分数为0.1%,盐酸体积百分数为1%的溶液,然后加入氯化亚锡处理后的增强相,在50℃条件下超声搅拌20min,在增强相表面将钯元素还原为金属颗粒,使增强相表面具有催化活性,得到氯化钯处理后的增强相;
二、具有功能层结构的增强相制备:
将纳米CeO2加入到含有镍盐的混合溶液(CeO2 2g/L)中,超声分散30min,得到反应溶液,将氯化钯处理后的石墨烯加入到反应溶液中,在65℃下超声搅拌20min,完成增强相功能层构建,经洗涤、干燥后得到具有CeO2细晶强化层的石墨烯;
所述的反应溶液中含有硫酸镍25g/L,次亚磷酸钠20/L,乳酸15ml/L,柠檬酸15g/L,丁二酸8g/L,乙酸钠5g/L和硫脲0.3mg/L;反应溶液采用氢氧化钠水溶液将pH调节到5;
三、增强相强化复合粉末制备:
将具有CeO2细晶强化功能层石墨烯加入到NiTi合金粉末中,具有CeO2细晶强化功能层石墨烯的加入量为4wt.%,然后移至球磨罐中,在不添加陶瓷球的情况下利用球磨机球磨处理20min,球磨速率为300转/min,得到混合均匀的具有CeO2细晶强化功能层的石墨烯NiTi基复合粉末。
应用实施例一:本实施例应用具有功能层的增强相强化的复合粉末制备涂层的方法按以下步骤实施:
一、将TC4基板的表面打磨光滑,清洗后得到洁净的金属基体;
二、将具有CeO2细晶强化功能层的石墨烯NiTi基复合粉末预涂在洁净的金属基体上,得到预涂有合金粉的金属基体;
三、将预涂有合金粉的金属基体置于充氩舱内,采用激光熔覆工艺制备金属基涂层。
由图2与图3可知,具有CeO2功能层的石墨烯混合于NiTi基粉末中,能较好的保持石墨烯二维片状结构。图4与图5显示涂层的平均厚度在740μm左右,平均晶粒粒度约为6μm,且晶粒大小较为均匀。图6表明涂层具有柱状树枝晶组织。图7中,TC4基体与涂层的摩擦系数分别为0.50和0.471。图8中,TC4基体与NiTi基涂层的的维氏硬度分别为317.8HV0.3和818.0HV0.3。由图9可以看出,TC4基体与NiTi基涂层的磨痕宽度分别为2345μm和1547μm,且NiTi基涂层的磨痕深度明显变浅,磨损程度大大减弱,磨损表面可观察到明显的犁沟,说明涂层的主要磨损形式为磨粒磨损。综上可知,具有CeO2功能层的石墨烯增强NiTi基涂层的硬度和耐磨性均优于TC4基体,而CeO2的加入在一定程度上具有细晶强化的作用。
实施例二:本实施例用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法按照下列步骤实现:
一、增强相的表面前处理:
a、将片径为5-10μm的片状石墨烯加入到5ml硝酸和15ml硫酸组成的混合酸中,在50℃条件下超声搅拌10min,去除增强相表面污渍,通过酸溶液刻蚀,增加增强相表面粗糙度,并使增强相表面具有一些亲水基团,增加增强相的亲水性,然后将石墨烯洗涤至中性,抽滤,得到酸化的增强相;
b、将氯化亚锡溶于盐酸中,加去离子水配成氯化亚锡质量分数为1%,盐酸体积百分数为2%的溶液,将酸化的增强相加入到氯化亚锡溶液中,在50℃条件下超声搅拌15min,使增强相表面吸附Sn2+,形成一层还原性膜,将增强相洗涤至中性,抽滤,得到氯化亚锡处理后的增强相;
c、将氯化钯溶于盐酸中,添加去离子水配成氯化钯质量百分数为0.1%,盐酸体积百分数为1%的溶液,然后加入氯化亚锡处理后的增强相,在50℃条件下超声搅拌20min,在增强相表面将钯元素还原为金属颗粒,使增强相表面具有催化活性,得到氯化钯处理后的增强相;
二、具有功能层结构的增强相制备:
将纳米Al2O3加入到含有镍盐的混合溶液(Al2O3的浓度为2g/L)中,超声分散30min,得到反应溶液,将氯化钯处理后的石墨烯加入到反应溶液中,在65℃下超声搅拌20min,完成增强相功能层构建,经洗涤、干燥后得到具有Al2O3耐磨功能层的石墨烯粉末;
所述的反应溶液中含有硫酸镍25g/L,次亚磷酸钠20/L,乳酸15ml/L,柠檬酸15g/L,丁二酸8g/L,乙酸钠5g/L和硫脲0.3mg/L;反应溶液采用氢氧化钠水溶液将pH调节到5;
三、增强相强化复合粉末制备:
将具有Al2O3耐磨功能层石墨烯加入到NiTi合金粉末中,具有Al2O3耐磨功能层石墨烯的加入量为4wt.%,然后移至球磨罐中,在不添加陶瓷球的情况下利用球磨机球磨处理20min,球磨速率为300转/min,得到混合均匀的具有Al2O3耐磨功能层的石墨烯NiTi基复合粉末。
应用实施例二:本实施例应用具有功能层的增强相强化的复合粉末制备涂层的方法按以下步骤实施:
一、将TC4基板的表面打磨光滑,清洗后得到洁净的金属基体;
二、将具有Al2O3耐磨功能层的石墨烯NiTi基复合粉末预涂在洁净的金属基体上,得到预涂有合金粉的金属基体;
三、将预涂有合金粉的金属基体置于充氩舱内,采用激光熔覆工艺制备金属基涂层。

Claims (9)

1.用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于该制备方法按照下列步骤实现:
一、增强相的表面前处理:
a、将增强相加入到硝酸与硫酸的混合酸中,在40-60℃条件下超声搅拌,然后将增强相洗涤至中性,抽滤,得到酸化的增强相;
b、将酸化的增强相加入到含有质量百分数为1%-3%氯化亚锡,体积百分数为2%-4%盐酸的酸性溶液中,在40-60℃条件下超声搅拌,将增强相洗涤至中性,抽滤,得到氯化亚锡处理后的增强相;
c、将氯化亚锡处理后的增强相加入到含有质量百分数为0.1%-0.3%氯化钯,体积百分数为2%-4%盐酸的酸溶液中,在40-60℃条件下超声搅拌,得到氯化钯处理后的增强相;
二、具有功能层的增强相制备:
将非金属纳米粒子加入到含有镍盐的混合溶液中,超声分散均匀,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中,超声搅拌反应,经洗涤、干燥后得到具有功能层的增强相;
所述的反应溶液中含有25-30g/L的镍盐,20-30g/L的还原剂,15-25g/L的络合剂,4-8g/L的缓冲剂和稳定剂;
三、增强相强化复合粉末制备:
将具有功能层的增强相加入到金属基粉末中,然后移至球磨罐中,在不添加陶瓷球的情况下利用球磨机球磨处理,得到混合均匀的具有功能层的增强相强化复合粉末;
其中步骤二中反应溶液中的镍盐为硫酸镍或氯化镍,还原剂为次亚磷酸钠,络合剂为柠檬酸、乳酸或复合型络合剂,缓冲剂为乙酸钠,稳定剂为硫脲或碘酸钾;调节反应溶液体系的pH为4.5-5.5。
2.根据权利要求1所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于步骤三在不添加陶瓷球的情况下利用球磨机球磨处理20-30min,球磨速率为200-300转/min。
3.根据权利要求1所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于具有功能层的增强相强化复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层的增强相作为掺杂相组成,其中增强相为片径是微米级的石墨烯纳米片或氧化石墨烯片。
4.根据权利要求3所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于金属基粉末为粒径100-300目的球形金属基粉末。
5.根据权利要求3所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于所述的金属基粉末为钛基合金粉末、镍基合金粉、钴基合金粉、铁基合金粉、铜基合金粉末、铝基合金粉末中的一种或混合粉末。
6.根据权利要求1所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于所述的非金属纳米粒子为纳米金属氧化物颗粒、纳米陶瓷颗粒或纳米稀土氧化物颗粒,所述的纳米金属氧化物颗粒的材质为Al2O3、ZrO2、TiO2或SiO2;所述的纳米陶瓷颗粒的材质为CaF2、SiC、TiC、WC或TiN,纳米稀土氧化物颗粒的材质为CeO2
7.根据权利要求1所述的用于熔凝技术具有功能层的增强相强化的复合粉末的制备方法,其特征在于步骤二中非金属纳米粒子在混合溶液中的装载量为1-3g/L。
8.应用如权利要求1所述的 制备得到具有功能层的增强相强化的复合粉末制备涂层的方法,其特征在于该制备涂层的方法按以下步骤实施:
一、将金属基体的表面打磨光滑,清洗后得到洁净的金属基体;
二、将具有功能层的增强相强化复合粉末预涂在洁净的金属基体上,得到预涂有合金粉的金属基体;
三、将预涂有合金粉的金属基体置于充氩舱内,采用熔凝工艺制备金属基涂层。
9.根据权利要求8所述的制备涂层的方法,其特征在于步骤三所述的熔凝工艺为激光熔凝、等离子熔凝、电子束熔凝或者热喷涂方法。
CN201911295162.1A 2019-12-16 2019-12-16 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用 Active CN110918978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911295162.1A CN110918978B (zh) 2019-12-16 2019-12-16 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911295162.1A CN110918978B (zh) 2019-12-16 2019-12-16 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110918978A CN110918978A (zh) 2020-03-27
CN110918978B true CN110918978B (zh) 2022-04-19

Family

ID=69863773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911295162.1A Active CN110918978B (zh) 2019-12-16 2019-12-16 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110918978B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626454B (zh) * 2020-12-16 2023-03-31 哈尔滨工程大学 具有自扩散特征的三维层状结构的复合涂层及其制备方法
CN113718244A (zh) * 2021-07-20 2021-11-30 江西昌河航空工业有限公司 提高直升机桨叶金属衬套耐蚀性的熔覆方法
CN114717552B (zh) * 2022-05-11 2022-08-12 中南大学湘雅医院 一种涂层材料及其在医疗器械领域的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451227A (zh) * 2014-12-10 2015-03-25 济南大学 镀铜石墨烯增强金属基复合材料的制备方法
CN105624446A (zh) * 2016-03-22 2016-06-01 北京工业大学 石墨烯增强镁、铝基复合材料及其制备方法
CN106834776A (zh) * 2016-12-16 2017-06-13 天津大学 Ni‑石墨烯杂聚体增强6061合金基复合材料的制备方法
CN106914611A (zh) * 2015-12-25 2017-07-04 北京有色金属研究总院 一种石墨烯与金属铝粉复合粉末制备方法
EP3312142A1 (en) * 2013-12-31 2018-04-25 Shenzhen Cantonnet Energy Services Co. , Ltd. A preparation method of graphene from graphene oxide based on mixed acid system
CN108580893A (zh) * 2018-04-28 2018-09-28 中南大学 一种铜/石墨烯复合材料的制备方法
CN108707773A (zh) * 2018-05-31 2018-10-26 上海交通大学 一种石墨烯增强铝基复合材料及制备方法
CN109439964A (zh) * 2018-09-08 2019-03-08 天津大学 碳纳米管-石墨烯协同增强铝基复合材料力学性能的制备方法
CN109680176A (zh) * 2019-03-01 2019-04-26 北京工业大学 一种石墨烯增强镁基复合材料及其制备方法
CN110331318A (zh) * 2019-08-27 2019-10-15 黑龙江科技大学 一种石墨烯及碳纳米管增强铝基复合材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
BR102014012295A2 (pt) * 2014-05-21 2018-08-07 Univ Minas Gerais método fotoquímico para obtenção de nanoestruturas híbridas de metais e nanomateriais de carbono e suas aplicações e usos
CN106702193B (zh) * 2016-12-02 2018-03-06 昆明理工大学 一种石墨烯/铝复合材料的制备方法
CN107723500B (zh) * 2017-09-29 2019-02-12 江西理工大学 一种石墨烯-氧化铝混杂增强铜基复合材料及其制备方法
CN108031837B (zh) * 2017-11-23 2019-10-25 西安理工大学 一种制备镀铬石墨烯/铜复合粉末的方法
CN108130531A (zh) * 2017-12-25 2018-06-08 上海万泽精密铸造有限公司 激光反应熔覆Cr7C3陶瓷增强铁基复合材料及其制备方法
KR102029232B1 (ko) * 2017-12-27 2019-10-07 이화여자대학교 산학협력단 플라즈모닉 나노소재와 결합된 전기촉매 구조체 및 그 제조방법
CN108330506B (zh) * 2018-01-16 2019-06-21 嘉兴学院 纳米铜合金/氮掺杂类石墨烯复合催化剂及其制备方法
CN108330312B (zh) * 2018-03-06 2021-07-23 昆明理工大学 一种金属包覆的石墨烯增强金属基复合材料的制备方法
US20190292671A1 (en) * 2018-03-26 2019-09-26 Nanotek Instruments, Inc. Metal matrix nanocomposite containing oriented graphene sheets and production process
CN108796306A (zh) * 2018-07-05 2018-11-13 重庆大学 一种氧化石墨烯增强钛基复合材料及其制备方法
CN110015746A (zh) * 2019-05-13 2019-07-16 上海大学 一种石墨烯多元金属复合材料的制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312142A1 (en) * 2013-12-31 2018-04-25 Shenzhen Cantonnet Energy Services Co. , Ltd. A preparation method of graphene from graphene oxide based on mixed acid system
CN104451227A (zh) * 2014-12-10 2015-03-25 济南大学 镀铜石墨烯增强金属基复合材料的制备方法
CN106914611A (zh) * 2015-12-25 2017-07-04 北京有色金属研究总院 一种石墨烯与金属铝粉复合粉末制备方法
CN105624446A (zh) * 2016-03-22 2016-06-01 北京工业大学 石墨烯增强镁、铝基复合材料及其制备方法
CN106834776A (zh) * 2016-12-16 2017-06-13 天津大学 Ni‑石墨烯杂聚体增强6061合金基复合材料的制备方法
CN108580893A (zh) * 2018-04-28 2018-09-28 中南大学 一种铜/石墨烯复合材料的制备方法
CN108707773A (zh) * 2018-05-31 2018-10-26 上海交通大学 一种石墨烯增强铝基复合材料及制备方法
CN109439964A (zh) * 2018-09-08 2019-03-08 天津大学 碳纳米管-石墨烯协同增强铝基复合材料力学性能的制备方法
CN109680176A (zh) * 2019-03-01 2019-04-26 北京工业大学 一种石墨烯增强镁基复合材料及其制备方法
CN110331318A (zh) * 2019-08-27 2019-10-15 黑龙江科技大学 一种石墨烯及碳纳米管增强铝基复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microstructure depositon mechanism and tribological performance of graphene oxide reinforced Fe composite coatings by electro-brush plating technique;Guo Jin;《Journal of Alloys and Compounds》;20190915;40-48 *
镀液中石墨烯添加量对镍-石墨烯复合电镀层微观结构和耐磨性的影响;徐思默;《电镀与涂饰》;20180930;745-748 *

Also Published As

Publication number Publication date
CN110918978A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110918978B (zh) 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用
Maqbool et al. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites
Wang et al. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings
KR101746240B1 (ko) 기재 상에 금속-세라믹 코팅을 생성시키기 위한 도금 또는 코팅 방법
CN104630532B (zh) 一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法
Zhang et al. Laser cladding of manganese oxide doped aluminum oxide granules on titanium alloy for biomedical applications
Matik Structural and wear properties of heat-treated electroless Ni-P alloy and Ni-P-Si3N4 composite coatings on iron based PM compacts
Sabzi et al. Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni-P nanocomposite coating enhanced by zirconia nanoparticles
JP2018513919A (ja) グラフェン/銀複合材料及びその調製方法
CN108889959B (zh) 一种rGO/Cu复合材料及其制备方法
Uysal et al. Tribological properties of Ni–W–TiO2–GO composites produced by ultrasonically–assisted pulse electro co–deposition
Pal et al. Characterization of the interface between ceramics reinforcement and lead-free solder matrix
CN112719274B (zh) 一种高熵合金复合粉末及其制备方法和应用
Jiang et al. Effect of heat treatment on structures and mechanical properties of electroless Ni–P–GO composite coatings
KR101763989B1 (ko) 무전해 도금조 조성물 및 입자상 물질 도금 방법
CN102251130B (zh) 一种超细晶粒硬质合金的制备方法
Kashyap et al. Ageing kinetics in Carbon nanotube reinforced Aluminium alloy AA6063
Boroujerdnia et al. Electroplating of Ni/Co–pumice multilayer nanocomposite coatings: Effect of current density on crystal texture transformations and corrosion behavior
Dong et al. Fabrication and thermal stability of Ni-P coated diamond powder using electroless plating
Mayanglambam et al. Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni-P/fly ash and Ni-P/SiO2-Al2O3)
Barakat et al. Effect of Al2O3 coated Cu nanoparticles on properties of Al/Al2O3 composites
US8974719B2 (en) Composite materials formed with anchored nanostructures
Chee et al. Preparation and characterization of copper/copper coated silicon carbide composites
CN1631589A (zh) 高振实密度超微球形金属镍粉的湿法制造方法
Hou et al. Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant