CN110912426B - Rectifier circuit and DC power generation circuit - Google Patents

Rectifier circuit and DC power generation circuit Download PDF

Info

Publication number
CN110912426B
CN110912426B CN201910679119.9A CN201910679119A CN110912426B CN 110912426 B CN110912426 B CN 110912426B CN 201910679119 A CN201910679119 A CN 201910679119A CN 110912426 B CN110912426 B CN 110912426B
Authority
CN
China
Prior art keywords
signals
active switches
coupled
output terminal
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910679119.9A
Other languages
Chinese (zh)
Other versions
CN110912426A (en
Inventor
田瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Autoflight Co Ltd
Original Assignee
Shanghai Autoflight Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Autoflight Co Ltd filed Critical Shanghai Autoflight Co Ltd
Publication of CN110912426A publication Critical patent/CN110912426A/en
Application granted granted Critical
Publication of CN110912426B publication Critical patent/CN110912426B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement

Abstract

A rectifier circuit and associated DC power generation circuit, the rectifier circuit includes N input terminals, a pair of output terminals, N first active switches, N second active switches, and a control circuit. The N input terminals are configured to receive N Alternating Current (AC) voltage signals having different phases, respectively. N is an integer greater than 1. The pair of output terminals has a first output terminal and a second output terminal configured to output a Direct Current (DC) voltage signal. The N first active switches are configured to selectively couple the first output terminal to the N input terminals, respectively, according to N first control signals. The N second active switches are configured to selectively couple the second output terminals to the N input terminals, respectively, according to N second control signals. The control circuit generates the N first control signals and the N second control signals according to the N AC voltage signals.

Description

Rectifier circuit and direct current power generation circuit
Technical Field
The present disclosure relates to power rectification, and more particularly, to a rectifier circuit and associated DC power generation circuit that utilizes active switches for direct-current (DC) conversion.
Background
Conventional rectifier circuits use diodes to convert Alternating Current (AC) to Direct Current (DC). However, these diodes require cooling during operation of the rectifier circuit, since each conducting diode has a voltage drop, which results in switching losses and generates a large amount of heat. For example, the voltage drop of a conducting diode in a high power vehicle is 1-1.2V, and since both diodes conduct at the same time, the losses of the whole system are 2-2.4V. In the case of a high-power vehicle with a generator power of 1KW (83a, 12v), the power consumption of the two diodes ranges from 166 to 200W, the maximum efficiency is 84%, and approximately one fifth of the power supplied by the generator is wasted.
Disclosure of Invention
Some embodiments of the present disclosure may include a rectifier circuit having N input terminals, a pair of output terminals, N first active switches, N second active switches, and a control circuit. The N input terminals are respectively arranged to receive N Alternating Current (AC) voltage signals having different phases, where N is a positive integer greater than 1. A pair of output terminals having a first output terminal and a second output terminal is configured to output a Direct Current (DC) voltage signal. The N first active switches are configured to receive the N first control signals, respectively, and to selectively couple the first output terminals to the N input terminals, respectively, according to the N first control signals. The N second active switches are configured to receive the N second control signals, respectively, and to selectively couple the second output terminals to the N input terminals, respectively, according to the N second control signals. The control circuit is coupled with the N first active switches and the N second active switches and configured to generate N first control signals and N second control signals from the N AC voltage signals.
Some embodiments of the present disclosure may include a Direct Current (DC) power generation circuit having a generator and a rectification circuit. The generator is configured to provide N Alternating Current (AC) voltage signals, where N is a positive integer greater than 1, the N AC voltage signals each having a different phase. The rectification circuit is coupled with the generator and configured to convert the N AC voltage signals generated by the generator into DC voltage signals. The rectifier circuit includes N input terminals, a pair of output terminals, N first active switches, N second active switches, and a control circuit. The N input terminals are arranged to receive N AC voltage signals. The pair of output terminals has a first output terminal and a second output terminal, and is configured to output a DC voltage signal. The N first active switches are configured to receive the N first control signals, respectively, and selectively couple the first output terminals to the N input terminals, respectively, according to the N first control signals, and the N second active switches are configured to receive the N second control signals, respectively, and selectively couple the second output terminals to the N input terminals, respectively, according to the N second control signals. The control circuit is coupled with the N first active switches and the N second active switches and configured to generate N first control signals and N second control signals from the N AC voltage signals.
Drawings
Various aspects of the disclosure will be readily understood by the following detailed description when read in conjunction with the accompanying drawings. It is noted that, in accordance with industry standard practice, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.
Fig. 1 is a schematic diagram illustrating an exemplary rectification circuit, according to some embodiments.
Fig. 2 is a schematic diagram illustrating an exemplary switching operation of the rectifier circuit shown in fig. 1, in accordance with some embodiments.
FIG. 3 is a schematic diagram illustrating an exemplary vehicle drive system, according to some embodiments.
Fig. 4 is a timing diagram illustrating relative times of the AC voltage signal and the control signal shown in fig. 3 according to some embodiments.
FIG. 5 illustrates an exemplary implementation of the control circuit shown in FIG. 3, in accordance with some embodiments.
Detailed Description
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, i.e., the first and second features may not be in direct contact. Further, the present disclosure may repeat reference numerals and/or letter abbreviations for the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The present disclosure describes exemplary rectification circuits (or Alternating Current (AC) to Direct Current (DC) converters) that use active switches for rectification, and describes exemplary DC power generation circuits that include these rectification circuits. In some cases, the active switches may be controlled by signal information relating to the AC voltage signals input to the rectifier circuits, whereby one output terminal of the exemplary rectifier circuit is coupled to one AC voltage signal through one active switch and the other output terminal of the exemplary rectifier circuit is coupled to the other AC voltage signal through the other active switch. In some cases, the AC voltage signal input to the exemplary rectification circuit is generated by the generator, and the active switches of the rectification circuit may be controlled according to the rotor position of the generator.
Fig. 1 is a schematic diagram illustrating an exemplary rectifier circuit, according to an embodiment of the present disclosure. The rectifier circuit 102 may be used for various applications, such as a vehicle drive system or other type of power system, and may include N input terminals IP 1 –IP N A pair of output terminals, N first active switches SW 11 –SW N1 N second active switches SW 12 –SW N2 And a control circuit 110, where N is a positive integer greater than 1. N input terminals IP 1 –IP N Is arranged to receive N AC voltage signals VI, respectively 1 –VI N In which N AC voltage signals VI 1 –VI N With different phases. In some cases, the AC voltage signal VI 1 –VI N Possibly provided by a generator or an N-phase generator/alternator (not shown in fig. 1). In some cases, N AC voltage signals VI 1 –VI N May be the same, but the phase difference between successive phases is 360/N. However, those skilled in the art will appreciate that the N AC voltage signals VI may be used without departing from the spirit and scope of the present disclosure 1 –VI N Can be provided by other types of power supplies, N AC voltage signals VI 1 –VI N May have different amplitudes and/or the phase difference between successive phases may be different.
The pair of output terminals includes an output terminal OP 1 And an output terminal OP 2 Which is arranged to output a DC voltage signal VO. In some cases, the DC voltage signal VO may be used to charge a battery. In some cases, the DC voltage signal VO may be used as a source voltage to drive electronics and/or mechanical devices (e.g., a motor of a vehicle).
In the embodiment shown in fig. 1, N first active switches SW 11 –SW N1 Configured to receive N control signals CS respectively 11 –CS N1 And according to N control signals CS 11 –CS N1 Will output terminal OP 1 Are selectively coupled to N input terminals IP respectively 1 –IP N . For example, a first active switch SW 11 Is configured to be dependent on a control signal CS 11 Will output terminal OP 1 Selectively coupled to input terminals at IP 1 First active switch SW 12 Is configured to be dependent on a control signal CS 12 Will output terminal OP 1 Selectively coupled to input terminals at IP 2 And so on. Similarly, N second active switches SW 12 –SW N2 Configured to receive N control signals CS respectively 12 –CS N2 And according to N control signals CS 12 –CS N2 Will output terminal OP 2 Are selectively coupled to N input terminals IP respectively 1 –IP N . For example, a second active switch SW 12 Is configured to be dependent on the control signal CS 12 Will output terminal OP 2 Selectively coupled to input terminals IP 1 Second active switch SW 22 Is configured to be dependent on a control signal CS 22 Will output terminal OP 2 Selectively coupled to input terminals IP 2 And so on.
In some embodiments, N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 Is a transistor switch. For example, but not limited to, N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 At least one of which may be implemented by a field-effect transistor (FET), a metal-oxide-semiconductor field-effect transistor (MOSFET), an Insulated Gate Bipolar Transistor (IGBT), other types of transistors, or a combination thereof.
The control circuit 110 is coupled to the N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 And configured to control the N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 The respective switch state. In the embodiment shown in fig. 1, the control circuit 110 is configured to derive the N AC voltage signals VI 1 –VI N Generating N control signals CS 11 – CS N1 And N control signals CS 12 –CS N2 . In some cases, the control circuit 110 may be configured to determine whether a signal level of the AC voltage signal received at the input terminal is greater than a first preset threshold, wherein when the signal level of the AC voltage signal is greater than the first preset threshold, the control circuit 110 may be configured to turn on a first active switch coupled to the input terminal such that the input terminal may be coupled to the output terminal OP 1 . For example, when AC voltage signal VI 1 May be greater than a first predetermined threshold, the control circuit 110 may turn on the first active switch SW 11 To input terminal IP 1 Coupled to the output terminal OP 1
Additionally, or alternatively, the control circuit 110 may be configured to determine whether a signal level of the AC voltage signal received at the input terminal is less than a second preset threshold, wherein when the signal level of the AC voltage signal is less than the second preset threshold, the control circuit 110 may be configured to turn on a second active switch coupled to the input terminal, such that the input terminal may be coupled to the output terminal OP 2 . For example, when AC voltage signal VI 2 May be less than a second predetermined threshold, the control circuit 110 may turn on the second active switch SW 22 To input terminal IP 2 Coupled to the output terminal OP 2 . In some embodiments, the second preset threshold may be less than the first preset threshold.
In some embodiments, the control circuit 110 may be configured to turn on the N first active switches SW simultaneously 11 –SW N1 One of them and N second active switches SW 12 –SW N2 One of which is arranged so that a pair of output terminals can be coupled to the N input terminals IP 1 –IP N Thereby outputting a rectified voltage (DC voltage signal VO). Referring to fig. 2, fig. 2 is a schematic diagram illustrating an exemplary switching operation of the rectifier circuit shown in fig. 1 according to an embodiment of the present disclosureFigure (a). As shown in fig. 2, a first active switch SW 11 According to a control signal CS 11 On, the second active switch SW 22 According to a control signal CS 22 Is turned on so that a current I O Can be switched on and off by the first active switch SW 11 Slave output terminal OP 1 Flows out to be coupled at an output terminal OP 1 And an output terminal OP 2 A load (e.g. a battery to be charged, not shown in fig. 2) in between, and through a second active switch SW 22 Flow to input terminal IP 2 . The rectified voltage (DC voltage signal VO) may be output from a pair of output terminals accordingly. For example, in some cases, when AC voltage signal VI 1 Is sufficiently high (e.g. greater than the above-mentioned first preset threshold) and the AC voltage signal VI 2 Is sufficiently low (e.g., less than the second predetermined threshold), the control circuit 110 may turn on the first active switch SW 11 And a second active switch SW 22
However, this is for illustrative purposes only and is not meant to limit the present disclosure. In some cases, the control circuit 110 may be configured to determine the N AC voltage signals VI 1 –VI N Whether the signal level of the middle AC voltage signal is greater than N AC voltage signals VI 1 –VI N And correspondingly simultaneously turns on the N first active switches SW 11 –SW N1 One of them and N second active switches SW 12 –SW N2 One of them. For example, when AC voltage signal VI 1 Signal level ratio of the AC voltage signal VI 2 When the signal level is higher than the preset threshold, the control circuit 110 may turn on the first active switch SW 11 Thereby inputting the terminal IP 1 Coupled to the output terminal OP 1 And turn on the second active switch SW 22 To input terminal IP 2 Is coupled to the output terminal OP 2 . Additionally, or alternatively, when the AC voltage signal VI 2 Signal level ratio AC voltage signal VI 1 Is higher than the preset threshold, the control circuit 110 may turn on the first active switch SW 21 To input terminal IP 2 Is coupled to the output terminal OP 1 And turns on the second active switch SW 12 To input terminal IP 1 Coupled to the output terminal OP 2
It should be noted that the control circuit 110 may be configured to detect the N AC voltage signals VI directly or indirectly by 1 –VI N Respective signal levels for controlling the N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 The respective switch state. In some embodiments, the control circuit 110 may be configured to receive the N AC voltage signals VI 1 –VI N To directly detect their respective signal levels to control the N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 The respective switch state. In some embodiments, the control circuit 110 may be configured to receive the N AC voltage signals VI 1 –VI N To detect their respective phases and thereby determine the N AC voltage signals VI 1 –VI N The respective signal levels. In some embodiments, control circuit 110 may be configured to detect operation of a power supply (not shown in fig. 2) that provides N AC voltage signals VI 1 –VI N Thereby indirectly detecting the N AC voltage signals VI 1 –VI N The respective signal level. For example, but not limiting of, in some cases, N AC voltage signals VI 1 –VI N Provided by a generator (e.g., an alternator), the control circuit 110 may be configured to detect a rotor position of the generator to determine the N AC voltage signals VI 1 –VI N The respective signal level (or the respective phase). Those skilled in the art will recognize that such equivalent constructions do not depart from the spirit and scope of the disclosure.
By using active switches in the power rectification rather than passive components (e.g., diodes), the rectifier circuit 100 may have high power efficiency. For example, in some cases, the rectifier circuit 100 is applied to a high power vehicle, and the generator of the high power vehicle has 1kW (12V, 83A) power when the N first active switches SW 11 –SW N1 And N second active switches SW 12 –SW N2 When implemented using transistor switches with an on-state voltage drop of less than 0.1V, the associated power consumption is about 8W (i.e., a rectification efficiency of 99%). Power losses can be greatly reduced.
FIG. 3 is a schematic diagram illustrating an exemplary vehicle drive system according to an embodiment of the present disclosure. The vehicle drive system 300 may include, but is not limited to, a DC power generation circuit 301, a conversion circuit 306, and an engine 308. The DC power generation circuit 301 is configured to output a DC voltage signal VD to the conversion circuit 306, and the conversion circuit 306 is configured to convert the DC voltage signal VD into a plurality of AC voltage signals VM of different phases 1 –VM 3 . The motor 308 may be an electric motor or an engine, such as an internal combustion engine (not shown in FIG. 3), and is configured to operate according to the AC voltage signal VM 1 –VM 3 And (4) operating.
In the embodiment shown in fig. 3, the DC power generation circuit 301 may include a rectification circuit 302 and a generator 304. The rectifier circuit 302 may represent the exemplary embodiment of the rectifier circuit 102 shown in fig. 1 described above. Thus, a plurality of transistor switches T 11 –T 31 May represent the first active switch SW shown in fig. 1 described above 11 –SW N1 In the exemplary embodiment of (i.e., N equals 3 in this embodiment), a plurality of transistor switches T 12 –T 32 May represent the second active switch SW shown in fig. 1 described above 12 –SW N2 And control circuit 310 represents the exemplary embodiment of control circuit 110 shown in fig. 1 described above. The control circuit 310 may be configured to be dependent on a plurality of AC voltage signals VE 1 –VE 3 Generating a plurality of control signals CG 11 –CG 31 And a plurality of control signals CG 12 –CG 32 Thereby controlling the transistor switch T 11 –T 31 And a transistor switch T 12 –T 32 The respective switch state.
The generator 304 may be configured to generate an AC voltage signal VE 1 –VE 3 In which the AC voltage signal VE 1 –VE 3 The respective phases are different. In the embodiment shown in fig. 3, the generator 304 may be implemented as a three-phase permanent magnet brushless generator. However, the skill in the artThe skilled artisan will appreciate that the generator 304 may be implemented by other types of alternators, generators, or brushless generators without departing from the spirit and scope of the present disclosure.
Refer to fig. 4 and 3. FIG. 4 illustrates the AC voltage signal VE shown in FIG. 3 according to an embodiment of the present disclosure 1 –VE 3 Control signal CG 11 –CG 31 And a control signal CG 12 –CG 32 Timing diagram of relative time. For illustrative purposes, in the present embodiment, the AC voltage signal VE 1 –VE 3 The phase difference between consecutive phases with the same amplitude is 120. This is not a limitation on the scope of the disclosure.
In the exemplary embodiment shown in fig. 4, when the AC voltage signal (AC voltage signal VE) 1 – VE 3 One of them), the control circuit 310 shown in fig. 3 may be configured to switch the transistor T on and off when the signal level is greater than the preset threshold VT1 11 –T 31 One of them is turned on to connect the input terminal (input terminal IP) 1 –IP 3 A corresponding one of) is coupled to the output terminal OP 1 (ii) a When a the signal level of the C voltage signal is less than the preset threshold VT2, the control circuit 310 shown in fig. 3 may be configured to switch the transistor T on and off 12 –T 32 One of which is turned on to couple the input terminal to the output terminal OP 2
For example, when the voltage signal VE 1 Is greater than a preset threshold VT1, is coupled to the input terminal IP 1 Transistor switch T of 11 According to the control signal CG 11 (at time point T8) on; when the voltage signal VE 2 Is greater than a predetermined threshold VT1, is coupled to the input terminal IP 2 Transistor switch T of 21 According to the control signal CG 21 (at time point T1) on; when the voltage signal VE 3 Is greater than a predetermined threshold value VT1, is coupled to the input terminal IP 3 Transistor switch T of 31 According to control signals CG 31 Is switched on (at time point T4). In addition, when the voltage signal VE 1 Is less than a predetermined threshold value VT2, is coupled to the input terminalSub IP 1 Transistor switch T of 12 According to control signals CG 12 (at time point T2) on; when the voltage signal VE 2 Is less than a preset threshold VT2, is coupled to the input terminal IP 2 Transistor switch T of 22 According to the control signal CG 22 Switched on (at time point T6); when the voltage signal VE 3 Is less than a preset threshold VT2, is coupled to the input terminal IP 3 Transistor switch T of 32 According to control signals CG 32 Is switched on (at time point T10).
In some cases, when the AC voltage signal (AC voltage signal VE) 1 –VE 3 One of them), the control circuit 310 shown in fig. 3 may be configured to switch the corresponding transistor (transistor switch T) to be less than the preset threshold VT1 11 –T 31 One of them) is disconnected to connect the input terminal (input terminal IP) 1 –IP 3 Corresponding one) and the output terminal OP 1 Decoupling; when the signal level of the AC voltage signal is greater than the preset threshold VT2, the control circuit 310 shown in fig. 3 may be configured to switch the corresponding transistor (transistor switch T) 12 –T 32 One of) is disconnected to connect the input terminal and the output terminal OP 2 And (4) decoupling.
For example, when the voltage signal VE 1 Is less than a predetermined threshold value VT1, is coupled to the input terminal IP 1 Transistor switch T of 11 According to the control signal CG 11 (at time point T11) open; when the voltage signal VE 2 Is less than a predetermined threshold value VT1, is coupled to the input terminal IP 2 Transistor switch T of 21 According to control signals CG 21 (at time point T3) disconnect; when the voltage signal VE 3 Is less than a preset threshold VT1, is coupled to the input terminal IP 3 Transistor switch T of 31 According to control signals CG 31 (at time point T7) is disconnected. In addition, when the voltage signal VE 1 Is greater than a predetermined threshold value VT2, is coupled to the input terminal IP 1 Transistor switch T of 12 According to control signals CG 12 (at time point T5) open; when the voltage signal VE 2 Is greater than a predetermined threshold value VT2, is coupled to the input terminal IP 2 Transistor switch T of 22 According to the control signal CG 22 (at time point T9) open; when the voltage signal VE 3 Is greater than a preset threshold VT2, is coupled to the input terminal IP 3 Transistor switch T of 32 According to control signals CG 32 (at time point T12) is disconnected.
In the exemplary embodiment shown in fig. 4, the respective sizes of the preset threshold VT1 and the preset threshold VT2 may be the same or substantially the same. However, those skilled in the art will appreciate that the magnitude of the preset threshold VT1 and the magnitude of the preset threshold VT2 may be set according to design requirements without departing from the spirit and scope of the present disclosure.
In some embodiments, the control circuit 310 shown in fig. 3 may be configured to determine the AC voltage signal VE 1 –VE 3 Whether the difference between two respective signal levels (and/or respective phases) thereof meets a turn-on criterion and controls the transistor switch T accordingly 11 –T 31 And a transistor switch T 12 –T 32 The respective switch state. For example, but not limited to, when AC voltage signal VE 1 Signal level ratio AC voltage signal VE 2 Is higher than a preset threshold (e.g., between time point T7 and time point T9), the control circuit 310 may determine that the turn-on criterion is met, thus turning on the transistor switch T 11 To IP input terminal 1 Coupled to the output terminal OP 1 And turning on the transistor switch T 22 IP input terminal 2 Coupled to the output terminal OP 2 . Additionally, or alternatively, when said AC voltage signal VE 2 Is higher than the AC voltage signal VE 1 Is higher than the above-mentioned preset threshold (e.g., between time point T2 and time point T4), the control circuit 310 may determine that the turn-on criterion is met, and thus turn on the transistor switch T 21 To IP input terminal 2 Coupled to the output terminal OP 1 And turning on the transistor switch T 12 To input terminal IP 1 Coupled to the output terminal OP 2
In some embodiments, the control circuit 310 may detect the phase of the AC voltage signal to determine whether the turn-on criterion is met. For example, but not limited to, when AC voltage signal VE 2 Is within a first predetermined range (e.g., between time point T1 and time point T3), the control circuit 310 may determine that a turn-on criterion is met, thereby turning on the transistor switch T 21 To IP the input terminal 2 Coupled to the output terminal OP 1 . Additionally, or alternatively, when the AC voltage signal VE 2 Is within a second predetermined range (e.g., between time T6 and time T9), the control circuit 310 may determine that the turn-on criterion is met, thereby turning on the transistor switch T 22 To IP input terminal 2 Is coupled to the output terminal OP 2
In other embodiments, the control circuit 310 may detect operation of the generator 304 as shown in FIG. 3 to determine whether the turn-on criteria are met. Refer to fig. 5 and 3. Fig. 5 illustrates an exemplary implementation of the control circuit 310 shown in fig. 3 according to an embodiment of the present disclosure. In the embodiment shown in FIG. 5, control circuitry 310 may include, but is not limited to, a position sensing device 512 and a controller 514. Position sensing device 512 is coupled to generator 304 and is configured to detect a rotor position of generator 304 to produce a detection result DR, wherein the rotor position of generator 304 may be used to determine various AC voltage signals (such as AC voltage signal VE shown in FIG. 3) generated by generator 304 1 –VE 3 ) The phase of (c).
In some cases, the position sensing device 512 may include a plurality of hall effect sensors to detect the rotor position of the generator 304. For example, and without limitation, in certain examples, when generator 304 is implemented as a three-phase brushless generator, position sensing device 512 may include three hall effect sensors, which may be disposed on a stator of the three-phase brushless generator. However, those skilled in the art will appreciate that other position sensing techniques/devices may be used to detect the rotor position of the generator 304 without departing from the spirit and scope of the present disclosure. For example, the control circuit 310 may be configured to measure a current level and a voltage level associated with an AC voltage signal to detect a phase angle of the AC voltage signal, wherein the position sensing device 512 may be omitted.
The controller 514 is coupled to the position sensing device 512 and is configured to generate a control signal CG based on the Detection Result (DR) 11 –CG 31 And CG 12 –CG 32 . In some embodiments, the controller 514 may turn on the transistor switch T when the detection result DR indicates that the rotor position is within an angular range 11 -T 31 One of the input terminal and the output terminal OP 1 Coupling; when the detection result DR indicates that the rotor position is within another angular range, the controller 514 may turn on the transistor switch T 12 -T 32 The input terminal and the output terminal OP 2 And (4) coupling. For example, when the detection result DR indicates that the rotor position is within an angular range (e.g., between time T1 and time T3 shown in fig. 4), the controller 514 may turn on the transistor switch T 21 To input terminal IP 2 And an output terminal OP 1 Coupling; when the detection result DR indicates that the rotor position is within another angular range (e.g., between time T6 and time T9 shown in fig. 4), the controller 514 may turn on the transistor switch T 22 To input terminal IP 2 And an output terminal OP 2 And (4) coupling.
In some embodiments, the controller 514 may be configured to simultaneously turn on the transistor switches T 11 -T 31 One of them and a transistor switch T 12 -T 32 One of them. For example, in some cases, the controller 514 may turn on the transistor switch T when the detection result DR indicates that the rotor position is within the first angular range 11 -T 31 One of them, to connect the first input terminal (input terminal IP) 1 –IP 3 One of them) is coupled to the output terminal OP 1 And turning on the transistor switch T 12 -T 32 One of them, to connect the second input terminal (input terminal IP) 1 –IP 3 The other of them) is coupled to an output terminal OP 2 . Additionally, or alternatively, when the detection result DR indicates that the rotor position is at a second angle range different from the first angle rangeIn the two-angle range, the controller 514 can turn on the transistor switch T 11 -T 31 To couple the second input terminal to the output terminal OP 1 And turning on the transistor switch T 12 -T 32 To couple the first input terminal to the output terminal OP 2 . In some examples of these cases, IP is included for the input terminal 1 And IP 2 When the detection result DR indicates that the rotor position is within an angular range, the controller 514 may turn on the transistor switch T 11 To input terminal IP 1 And an output terminal OP 1 Coupling and turning on the transistor switch T 22 To input terminal IP 2 And an output terminal OP 2 Coupling; when the detection result DR indicates that the rotor position is within another angular range, the controller 514 may turn on the transistor switch T 21 To IP input terminal 2 And an output terminal OP 1 Coupling and turning on the transistor switch T 12 Will input terminal IP 1 And an output terminal OP 2 And (4) coupling.
Referring again to FIG. 3, starting of the engine 308 may be controlled by the control circuit 310. For example, and without limitation, control circuit 310 may detect a rotor position of motor 308 to control conversion circuit 306 (e.g., using Pulse Width Modulation (PWM) control) to generate AC voltage signal VM 1 –VM 3 . After engine 308 (e.g., an internal combustion engine; not shown in FIG. 3) is started, engine 308 may be in an idle state. When the engine 308 heats up, the generator 304 may be loaded without active rectification. First, a current starts to flow to the output terminal OP coupled thereto 1 And OP 2 A battery in between. Active rectification may be initiated when the amount of current flowing reaches a predetermined amount. The control circuit 310 may immediately stop active rectification if the current decreases or the motor 308 stalls.
By using active switches in power rectification rather than passive components (e.g., diodes), the exemplary active rectification circuit and associated dc generation circuit can greatly reduce power losses and have high power efficiency. Further, the control of active commutation and engine start may be addressed within the control circuit/unit.
Some embodiments described herein may include a rectifier circuit having N input terminals, a pair of output terminals, N first active switches, N second active switches, and a control circuit. The N input terminals are respectively arranged to receive N Alternating Current (AC) voltage signals having different phases, where N is a positive integer greater than 1. A pair of output terminals having a first output terminal and a second output terminal is configured to output a Direct Current (DC) voltage signal. The N first active switches are configured to receive the N first control signals, respectively, and to selectively couple the first output terminals to the N input terminals, respectively, according to the N first control signals. The N second active switches are configured to receive the N second control signals, respectively, and to selectively couple the second output terminals to the N input terminals, respectively, according to the N second control signals. The control circuit is coupled with the N first active switches and the N second active switches and configured to generate N first control signals and N second control signals from the N AC voltage signals.
Some embodiments described herein may include a Direct Current (DC) power generation circuit having a generator and a rectification circuit. The generator is configured to provide N Alternating Current (AC) voltage signals, where N is a positive integer greater than 1, the N AC voltage signals each having a different phase. The rectification circuit is coupled with the generator and configured to convert the N AC voltage signals generated by the generator into DC voltage signals. The rectifier circuit includes N input terminals, a pair of output terminals, N first active switches, N second active switches, and a control circuit. The N input terminals are arranged to receive N AC voltage signals. The pair of output terminals has a first output terminal and a second output terminal, and is configured to output a DC voltage signal. The N first active switches are configured to receive the N first control signals, respectively, and selectively couple the first output terminals to the N input terminals, respectively, according to the N first control signals, and the N second active switches are configured to receive the N second control signals, respectively, and selectively couple the second output terminals to the N input terminals, respectively, according to the N second control signals. The control circuit is coupled with the N first active switches and the N second active switches and configured to generate N first control signals and N second control signals from the N AC voltage signals.
The foregoing outlines features of some embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (7)

1. A rectifier circuit, comprising:
n input terminals (IP) 1 –IP N ) For receiving N alternating current AC voltage signals (VI) having different phases, respectively 1 –VI N ) Wherein N is a positive integer greater than 1;
a pair of output terminals having a first output terminal and a second output terminal, the pair of output terminals being configured to output a direct current DC voltage signal VO;
n first active Switches (SW) 11 –SW N1 ) For receiving N first Control Signals (CS) respectively 11 –CS N1 ) And according to said N first Control Signals (CS) 11 –CS N1 ) Connecting the first output terminal (OP) 1 ) Respectively selectively coupled to the N input terminals (IP) 1 –IP N );
N second active Switches (SW) 12 –SW N2 ) For receiving N second Control Signals (CS) respectively 12 –CS N2 ) And according to said N second Control Signals (CS) 12 –CS N2 ) Coupling the second output terminal (OP) 2 ) Respectively selectively coupled to the N input terminals (IP) 1 –IP N );
Control circuit, and the N first active Switches (SW) 11 –SW N1 ) And said N second active Switches (SW) 12 –SW N2 ) A coupling, the control circuit being configured to depend on the N AC voltage signals (VI) 1 –VI N ) Generating the N first Control Signals (CS) 11 –CS N1 ) And said N second Control Signals (CS) 12 –CS N2 );
Wherein an input terminal of the N input terminals is configured to receive an AC voltage signal of the N AC voltage signals and is coupled with one of the N first active switches and one of the N second active switches; when the N AC voltage signals (VI) 1 -VI N ) When the phase of one of the voltage signals is within a first predetermined range, the control circuit switches on the first active Switch (SW) 11 -SW N1 ) To connect the input terminal (IP) 1 -IP N ) And said first output terminal (OP) 1 ) Coupled when said N AC voltage signals (VI) 1 -VI N ) When the phase of the one voltage signal is within a second preset range, the control circuit turns on the second active Switch (SW) 12 -SW N2 ) To connect the input terminal (IP) 1 -IP N ) And said second output terminal (OP) 2 ) Coupling;
wherein the N AC voltage signals are generated by a generator and a phase of each of the N AC voltage signals is determined from a rotor position of the generator;
the control circuit includes:
a position sensing device coupled to the generator, the position sensing device configured to detect the rotor position of the generator to generate a detection result; and
a controller coupled to the position sensing device, the controller configured to generate the N first control signals and the N second control signals according to the detection result.
2. The rectification circuit of claim 1, wherein the position sensing device comprises a plurality of hall effect sensors.
3. The rectifier circuit of claim 1, wherein at least one of the N first active switches and the N second active switches is a transistor switch.
4. A direct current, DC, power generation circuit comprising:
a generator configured to provide N alternating AC voltage signals, where N is a positive integer greater than 1 and the N AC voltage signals are each different in phase; and
a rectification circuit coupled with the generator, the rectification circuit configured to convert the N AC voltage signals generated by the generator into DC voltage signals; wherein the rectifier circuit includes:
n input terminals for receiving the N AC voltage signals;
a pair of output terminals having a first output terminal and a second output terminal, the pair of output terminals being arranged to output the DC voltage signal;
n first active switches for respectively receiving N first control signals and selectively coupling the first output terminals to the N input terminals according to the N first control signals;
n second active switches for respectively receiving N second control signals and selectively coupling the second output terminal to the N input terminals, respectively, according to the N second control signals;
a control circuit coupled with the N first active switches and the N second active switches, the control circuit configured to generate the N first control signals and the N second control signals from the N AC voltage signals;
wherein an input terminal of the N input terminals is configured to receive an AC voltage signal of the N AC voltage signals and is coupled with one of the N first active switches and one of the N second active switches; when the N AC voltage signals(VI 1 -VI N ) When the phase of one of the voltage signals is within a first predetermined range, the control circuit switches on the first active Switch (SW) 11 -SW N1 ) To connect the input terminal (IP) 1 -IP N ) And said first output terminal (OP) 1 ) Coupled when said N AC voltage signals (VI) 1 -VI N ) When the phase of the one voltage signal is within a second preset range, the control circuit turns on the second active Switch (SW) 12 -SW N2 ) To connect the input terminal (IP) 1 -IP N ) And said second output terminal (OP) 2 ) Coupling;
wherein the phase of each of the N AC voltage signals is determined from the rotor position of the generator;
the control circuit includes:
a position sensing device coupled to the generator, the position sensing device configured to detect the rotor position of the generator to generate a detection result; and
a controller coupled to the position sensing device, the controller configured to generate the N first control signals and the N second control signals according to the detection result.
5. The DC power generation circuit of claim 4 wherein the generator is a brushless generator.
6. The DC power generation circuit of claim 4, wherein the position sensing device comprises a plurality of Hall effect sensors.
7. The DC power generation circuit of claim 4 wherein at least one of the N first active switches and the N second active switches is a transistor switch.
CN201910679119.9A 2018-09-18 2019-07-25 Rectifier circuit and DC power generation circuit Active CN110912426B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201816134861A 2018-09-18 2018-09-18
US16/134,861 2018-09-18

Publications (2)

Publication Number Publication Date
CN110912426A CN110912426A (en) 2020-03-24
CN110912426B true CN110912426B (en) 2023-04-07

Family

ID=69814439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679119.9A Active CN110912426B (en) 2018-09-18 2019-07-25 Rectifier circuit and DC power generation circuit

Country Status (1)

Country Link
CN (1) CN110912426B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246405A (en) * 2008-08-20 2011-11-16 电方便有限公司 Generalized AC-DC synchronous rectification techniques for single- and multi-phase systems
CN105359396A (en) * 2013-07-15 2016-02-24 罗伯特·博世有限公司 Overvoltage protection for active rectifiers in the event of load shedding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537896B1 (en) * 2014-03-14 2015-07-20 성균관대학교산학협력단 Active rectifier for reducing reverse leakage current and wireless power receiver using the same
CN104617794A (en) * 2015-02-13 2015-05-13 深圳欧陆通电子有限公司 Switch power supply and rectifying circuit
CN106972767A (en) * 2017-05-05 2017-07-21 中南大学 The V2G converters and its control method of a kind of active third-harmonic zero-sequence voltage
CN207664888U (en) * 2018-01-05 2018-07-27 浙江海洋大学 High efficiency full bridge rectifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246405A (en) * 2008-08-20 2011-11-16 电方便有限公司 Generalized AC-DC synchronous rectification techniques for single- and multi-phase systems
CN105359396A (en) * 2013-07-15 2016-02-24 罗伯特·博世有限公司 Overvoltage protection for active rectifiers in the event of load shedding

Also Published As

Publication number Publication date
CN110912426A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
US10084444B2 (en) Gate-driving apparatus for providing negative voltage to gate of switch
US9281776B2 (en) Power conversion apparatus including different voltage-type bridge circuits
EP2413489A1 (en) Highly efficient half-bridge DCAC converter
US10511218B2 (en) Gate drive circuit, that supplies power to a gate of a semiconductor switching element, and carries out a driving on and off of the gate
US20100079192A1 (en) Drive for a half-bridge circuit
US9584046B2 (en) Gate drive circuit and a method for controlling a power transistor
US20090302678A1 (en) On-Vehicle Charging Generator and Rectifier Unit Thereof
JP6671045B2 (en) Power conversion system
KR101853600B1 (en) Charger common inverter
WO2015072098A1 (en) Gate driver circuit and power conversion apparatus using same
JP5916201B2 (en) Switched reluctance motor controller
US11368111B2 (en) Method to reduce the commutation loss in a motor inverter
CN110752739B (en) Power equipment driving device
CN110912426B (en) Rectifier circuit and DC power generation circuit
JP5527187B2 (en) Semiconductor device
Nguyen et al. Compact, isolated and simple to implement gate driver using high frequency transformer
JP4321444B2 (en) Motor drive device with MOS FET, MOS FET, and motor with MOS FET
US20210384824A1 (en) Power electronics device and method for supplying electrical voltage to a driver circuit of a power semiconductor switch
JP2007244183A (en) Single phase double voltage rectifier circuit and inverter device
JP7035407B2 (en) Power converter
WO2018225548A1 (en) Inverter device and electrically driven device using same
US9553444B2 (en) Method and device for suppressing high-voltage electricity
EP4335026A1 (en) Power inverter and method for controlling a power inverter
KR101227461B1 (en) Gate driver device for driving moter
JP2024043382A (en) Electronic circuits, power converters and inverters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200708

Address after: No.288, Jinge Road, Jinshan District, Shanghai B2

Applicant after: Shanghai Fengfei Aviation Technology Co.,Ltd.

Address before: Causeway Bay

Applicant before: Tian Yu

CB02 Change of applicant information
CB02 Change of applicant information

Address after: B2, 218 Jinge Road, Jinshan District, Shanghai 201500

Applicant after: Shanghai Fengfei Aviation Technology Co.,Ltd.

Address before: 201500 B2, No.288, Jinge Road, Jinshan District, Shanghai

Applicant before: Shanghai Fengfei Aviation Technology Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant