CN110907873B - 一种基于线圈灵敏度相位约束的运动伪影消除方法 - Google Patents

一种基于线圈灵敏度相位约束的运动伪影消除方法 Download PDF

Info

Publication number
CN110907873B
CN110907873B CN201911286130.5A CN201911286130A CN110907873B CN 110907873 B CN110907873 B CN 110907873B CN 201911286130 A CN201911286130 A CN 201911286130A CN 110907873 B CN110907873 B CN 110907873B
Authority
CN
China
Prior art keywords
image
channel
artifact
calculating
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911286130.5A
Other languages
English (en)
Other versions
CN110907873A (zh
Inventor
罗海
朱高杰
陈梅泞
彭非
王世杰
吕蓓
侯文魁
王伟谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLTECH MEDICAL SYSTEMS LLC
Original Assignee
ALLTECH MEDICAL SYSTEMS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALLTECH MEDICAL SYSTEMS LLC filed Critical ALLTECH MEDICAL SYSTEMS LLC
Priority to CN201911286130.5A priority Critical patent/CN110907873B/zh
Publication of CN110907873A publication Critical patent/CN110907873A/zh
Application granted granted Critical
Publication of CN110907873B publication Critical patent/CN110907873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开一种基于线圈灵敏度相位约束的运动伪影消除方法,基于线圈灵敏度约束生成一个合成图像,计算该合成图像与原图像的残差,由该残差进一步估计运动导致的K空间相位误差,并修正原有K空间数据。该方法不需要专门的硬件支持,不增加扫描时间,能有效消除多种运动伪影。

Description

一种基于线圈灵敏度相位约束的运动伪影消除方法
技术领域
本发明涉及核磁影像处理领域,尤其涉及一种基于线圈灵敏度相位约束的运动伪影消除方法。
背景技术
在磁共振扫描成像过程中,由于检测时间比较长,病人往往会有自主的或无意识的运动。这种运动会造成图像变模糊,更严重的是产生伪影,影响医生对病人的诊断。消除运动伪影是磁共振成像领域研究的重点和技术难题之一。
为了规避、矫正或者消除运动引起的图像质量下降,基本上有两种主要策略:一)前瞻性运动矫正技术,通过使用专门的硬件,例如导航回波、呼吸触发、心电触发等,实时的监控成像部位的空间位置和运动状态,并实时的改变脉冲序列控制,尽可能的规避物体运动导致到图像误差。前瞻性运动矫正方法需要专门的硬件支持,会增加扫描时间,其仅对周期性运动有效。二)回顾性运动矫正技术,不需要在扫描过程中改变脉冲序列控制,而是按预定脉冲序列采集数据,在采集完数据后经过一定的技术手段估计运动信息并校正运动引起的图像误差。回顾性运动矫正技术中,主要又分为数据过采样和常规采样两类。数据过采样技术,可以通过冗余信息估计并校正运动,其代表技术为PROPELLER (PeriodicallyRotated Overlapping Parallel Lines with Enhanced Reconstruction) 技术,运用非常广泛。但该类技术会增加扫描时间。另一类技术在常规采样的基础上,通过特定的技术校正运动,例如COCOA (Data convolution and combination operation)和PANDA(ParallelAcquisition with Non-prolonged Deghosting Algorithm)技术是利用了数据一致性原理,通过K-空间中心区域数据拟合出数据一致性核函数,利用该核函数去检测并修正数据。该类方法对随机非刚性运动,例如肠胃蠕动、血管搏动等有极好的效果,但对相关性较强的鬼影(Ghost artifacts),例如刚性平移运动造成的鬼影,则不能校正。
随着磁共振技术的发展,多通道相控阵线圈广泛应用于磁共振设备中,用于提升图像性噪比和成像速度。为了提升成像速度,多通道相控阵线圈都经过特殊优化,其灵敏度图在空间中表现为相位和模值都快速变化。运动导致的鬼影在图像中会被快速变化的灵敏度图进行调制。从而利用灵敏度信息进行约束,可以求解出图像中的伪影成分,进而可以通过一定的技术手段消除伪影。
发明内容
本发明旨在提供一种基于线圈灵敏度相位约束的运动伪影消除方法,不需要专门的硬件支持,不增加扫描时间,能有效消除多种运动伪影。
为达到上述目的,本发明是采用以下技术方案实现的:
本发明公开一种基于线圈灵敏度相位约束的运动伪影消除方法,包括:
S100、使用多通道相控阵线圈进行采样,获得成像信号和系统噪声数据,
其中多通道相控阵线圈在1.5T以及更高场强磁共振系统中已经普遍使用,为常规配件。因此,既不需要特殊硬件,也不需要修改扫描控制序列;
S200、由系统噪声数据通过以下公式计算得到多通道噪声相关系数
Figure 791149DEST_PATH_IMAGE001
Figure 162087DEST_PATH_IMAGE002
其中,
Figure 908327DEST_PATH_IMAGE003
表示第j通道的噪声,
Figure 856560DEST_PATH_IMAGE004
分别表示第k通道的噪声,*表示复数共轭,I为噪声样本的总数量;
S300、计算得到各个通道的线圈的灵敏度图
Figure 979237DEST_PATH_IMAGE005
S400、重建伪影图像
Figure 939102DEST_PATH_IMAGE006
S500、由伪影图像
Figure 997188DEST_PATH_IMAGE007
和灵敏度图
Figure 308084DEST_PATH_IMAGE008
计算得到单通道的合成图像
Figure 968872DEST_PATH_IMAGE009
,其中
Figure 907878DEST_PATH_IMAGE010
其中,
Figure 261499DEST_PATH_IMAGE011
表示像素位置,*表示复数共轭运算,N为通道总数目。该公式即为用线圈灵敏度图对伪影成分约束的过程。利用该公式,真实图像成分会保持不变,而被灵敏度图调制的伪影成分在很大概率上存在相位抵消,即伪影成分降低;
S600、计算原始图像
Figure 59691DEST_PATH_IMAGE006
与合成图像
Figure 399537DEST_PATH_IMAGE012
的残差图
Figure 68415DEST_PATH_IMAGE013
Figure 592938DEST_PATH_IMAGE014
S700、由S600残差图
Figure 3059DEST_PATH_IMAGE013
计算得到相位误差
Figure 5650DEST_PATH_IMAGE015
Figure 794615DEST_PATH_IMAGE016
其中
Figure 490038DEST_PATH_IMAGE017
为傅里叶变换算子,
Figure 607030DEST_PATH_IMAGE018
为取相位算子;
S800、以信号模值为权重,将各个通道的相位误差
Figure 678891DEST_PATH_IMAGE019
合成为
Figure 587941DEST_PATH_IMAGE020
Figure 313321DEST_PATH_IMAGE021
其中N为通道总数目,
Figure 307822DEST_PATH_IMAGE022
为与信号模值权重相关的因子;
S900、将上述
Figure 652215DEST_PATH_IMAGE020
应用到K空间数据中,进行相位校正,
Figure 415772DEST_PATH_IMAGE023
其中
Figure 328364DEST_PATH_IMAGE024
为进行第n轮迭代校正后的K空间数据;
S1000、将
Figure 810161DEST_PATH_IMAGE025
变换到图像域,
如未满足迭代终止条件,则返回步骤S400进行下一步迭代,
如满足迭代终止条件,则迭代结束,得到的图像即为抑制运动伪影后的图像。
优选的,步骤S400中,利用傅里叶逆变换重建伪影图像。
优选的,步骤S1000中,利用傅里叶逆变换将
Figure 958246DEST_PATH_IMAGE026
变换到图像域。
本发明的有益效果:
本发明提出了一种基于线圈灵敏度相位约束的运动伪影消除技术。首先基于线圈灵敏度约束生成一个合成图像,计算该合成图像与原图像的残差,由该残差进一步估计运动导致的K空间相位误差,并修正原有K空间数据。通过仿真实验和志愿者实验,表明该技术能有效消除多种运动伪影,不需要专门的硬件支持,同时不增加扫描时间,能有效减轻多种运动形式导致的运动伪影。
附图说明
图1为本发明的结流程示意图;
图2为运动伪影校正仿真实验的示意图;
图3为志愿者头部成像运动伪影校正实例;
图4为志愿者腹部成像运动伪影校正实例。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
图2中,(a):加入线性相位误差模拟刚性平移运动的伪影图像,
(b):(a)的校正结果,
(c):(a)去除的伪影成分,
(d):加入随机相位误差模拟随机运动的伪影图像,
(e):(d)的校正结果,
(f):(d)去除的伪影成分。
图3中,左图为原始图像,中图为校正结果,右图为去除的伪影成分。
图4中,左图为原始图像,中图为校正结果,右图为去除的伪影成分。
在头部扫描过程中,病人有一定的概率会晃动头部,导致伪影。该实施例以T2 FSE序列为例,回波链长度为16,采用多通道头部专用相控阵线圈。本发明技术能很好的印制该类型的运动伪影,具体实施方式如图1~4所示,包括如下步骤。
第1步:
常规扫描T2 FSE序列,采集原始K空间数据,并采集多通道噪声数据。
第2步:噪声数据计算多通道噪声相关系数
Figure 700943DEST_PATH_IMAGE027
Figure 174649DEST_PATH_IMAGE002
其中,
Figure 878163DEST_PATH_IMAGE003
表示第j通道的噪声,
Figure 439726DEST_PATH_IMAGE004
分别表示第k通道的噪声,*表示复数共轭,I为噪声样本的总数量。
第3步:将K空间数据的中心部分(24x24)用于计算线圈灵敏度图,采用ESPIRiT算法,计算得到各个通道的线圈灵敏度图
Figure 177875DEST_PATH_IMAGE005
ESPIRiT算法记载在Uecker M, Lai P, Murphy M J, et al. ESPIRiT—aneigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magnetic resonance in medicine, 2014, 71(3): 990-1001中。
第4步:由傅里叶逆变换重建出伪影图像
Figure 291324DEST_PATH_IMAGE006
第5步:由线圈灵敏度图进行约束,计算得到单通道的合成图像
Figure 482134DEST_PATH_IMAGE012
Figure 362234DEST_PATH_IMAGE028
第6步:计算原始图像与合成图像的残差图
Figure 954889DEST_PATH_IMAGE013
Figure 504820DEST_PATH_IMAGE014
第7步:由第6步残差图计算得到相位误差
Figure 58292DEST_PATH_IMAGE015
Figure 86291DEST_PATH_IMAGE030
其中
Figure 799032DEST_PATH_IMAGE017
为傅里叶变换算子,
Figure 644497DEST_PATH_IMAGE018
为取相位算子。
第8步:以信号模值为权重,将各个通道的相位误差
Figure 809899DEST_PATH_IMAGE015
合成为一个通道
Figure 641589DEST_PATH_IMAGE021
Figure 943257DEST_PATH_IMAGE022
为与信号模值权重相关的因子,按如下方法计算
Figure 710356DEST_PATH_IMAGE032
其中N为通道总数目,
Figure DEST_PATH_IMAGE033
第i通道K空间数据;
对通道合成后的
Figure 894213DEST_PATH_IMAGE020
,沿频率编码方向,即与K空间数据频率编码方向对应,进行一维去噪滤波,
Figure DEST_PATH_IMAGE035
其中
Figure 654227DEST_PATH_IMAGE036
为一个窗宽为7的一维中值滤波器。
第9步:将上述
Figure 341560DEST_PATH_IMAGE020
应用到K空间数据中,进行相位校正
Figure 279560DEST_PATH_IMAGE038
其中
Figure 153976DEST_PATH_IMAGE024
为进行第n轮迭代校正后的K空间数据。
第10步,利用傅里叶逆变换将
Figure 593047DEST_PATH_IMAGE025
变换到图像域,如未满足迭代终止条件,则返回第4步进行下一步迭代。在该实施例中,第10次迭代后结束,得到的图像即为抑制运动伪影后的图像。实验结果见图3,由于病人头部晃动导致的伪影,很大程度上被抑制。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (3)

1.一种基于线圈灵敏度相位约束的运动伪影消除方法,其特征在于包括:
S100、使用多通道相控阵线圈进行采样,获得成像信号和系统噪声数据;
S200、由系统噪声数据通过以下公式计算得到多通道噪声相关系数
Figure 289761DEST_PATH_IMAGE001
Figure DEST_PATH_IMAGE002
其中,
Figure 472480DEST_PATH_IMAGE003
表示第j通道的噪声,
Figure DEST_PATH_IMAGE004
分别表示第k通道的噪声,*表示复数共轭,I为噪声样本的总数量;
S300、计算得到各个通道的线圈的灵敏度图
Figure 65267DEST_PATH_IMAGE005
S400、重建伪影图像
Figure DEST_PATH_IMAGE006
S500、由伪影图像
Figure 522793DEST_PATH_IMAGE007
和灵敏度图
Figure 681373DEST_PATH_IMAGE005
计算得到单通道的合成图像
Figure DEST_PATH_IMAGE008
,其中
Figure 238256DEST_PATH_IMAGE009
其中,
Figure DEST_PATH_IMAGE010
表示像素位置,*表示复数共轭运算,N为通道总数目;
S600、计算伪影图像
Figure 567607DEST_PATH_IMAGE006
与合成图像
Figure 110714DEST_PATH_IMAGE011
的残差图
Figure DEST_PATH_IMAGE012
Figure 841910DEST_PATH_IMAGE013
S700、由S600残差图
Figure 304115DEST_PATH_IMAGE012
计算得到相位误差
Figure DEST_PATH_IMAGE014
Figure 868564DEST_PATH_IMAGE015
其中
Figure DEST_PATH_IMAGE016
为傅里叶变换算子,
Figure DEST_PATH_IMAGE017
为取相位算子;
S800、以信号模值为权重,将各个通道的相位误差
Figure DEST_PATH_IMAGE018
合成为
Figure 480942DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE020
其中N为通道总数目,
Figure 66645DEST_PATH_IMAGE021
为与信号模值权重相关的因子;
S900、将上述
Figure 840697DEST_PATH_IMAGE019
相位误差应用到K空间数据中,进行相位校正,
Figure DEST_PATH_IMAGE022
其中
Figure DEST_PATH_IMAGE023
为进行第n轮迭代校正后的K空间数据;
S1000、将
Figure DEST_PATH_IMAGE024
变换到图像域,
如未满足迭代终止条件,则返回步骤S400进行下一步迭代,
如满足迭代终止条件,则迭代结束,得到的图像即为抑制运动伪影后的图像。
2.根据权利要求1所述的运动伪影消除方法,其特征在于:步骤S400中,利用傅里叶逆变换重建伪影图像。
3.根据权利要求1所述的运动伪影消除方法,其特征在于:步骤S1000中,利用傅里叶逆变换将
Figure 957688DEST_PATH_IMAGE024
变换到图像域。
CN201911286130.5A 2019-12-13 2019-12-13 一种基于线圈灵敏度相位约束的运动伪影消除方法 Active CN110907873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911286130.5A CN110907873B (zh) 2019-12-13 2019-12-13 一种基于线圈灵敏度相位约束的运动伪影消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911286130.5A CN110907873B (zh) 2019-12-13 2019-12-13 一种基于线圈灵敏度相位约束的运动伪影消除方法

Publications (2)

Publication Number Publication Date
CN110907873A CN110907873A (zh) 2020-03-24
CN110907873B true CN110907873B (zh) 2021-11-05

Family

ID=69825567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911286130.5A Active CN110907873B (zh) 2019-12-13 2019-12-13 一种基于线圈灵敏度相位约束的运动伪影消除方法

Country Status (1)

Country Link
CN (1) CN110907873B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114972562B (zh) * 2022-05-20 2024-06-07 厦门大学 联合线圈灵敏度估计与图像重建的快速磁共振成像方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749538A (zh) * 2015-04-30 2015-07-01 郑州轻工业学院 一种并行磁共振成像相位处理方法
CN108594146A (zh) * 2018-04-24 2018-09-28 朱高杰 一种基于深度学习和凸集投影的磁共振弥散加权成像方法
CN110687490A (zh) * 2019-10-10 2020-01-14 上海东软医疗科技有限公司 并行成像方法、装置、存储介质及医疗设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396240C (zh) * 2005-02-28 2008-06-25 西门子(中国)有限公司 频域灵敏度编码磁共振并行成像方法
JP6590736B2 (ja) * 2016-03-04 2019-10-16 株式会社日立製作所 高周波コイル及びそれを用いた磁気共鳴撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749538A (zh) * 2015-04-30 2015-07-01 郑州轻工业学院 一种并行磁共振成像相位处理方法
CN108594146A (zh) * 2018-04-24 2018-09-28 朱高杰 一种基于深度学习和凸集投影的磁共振弥散加权成像方法
CN110687490A (zh) * 2019-10-10 2020-01-14 上海东软医疗科技有限公司 并行成像方法、装置、存储介质及医疗设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A Maximum Likelihood Approach to Parallel;Ashish Raj,Yi Wang,Ramin Zabih;《IEEE TRANSACTIONS ON MEDICAL IMAGING》;20070831;1046-1057 *
Nonlinear Coil Sensitivity Estimation for Parallel Magnetic;Sheng Fang and Hua Guo;《35th Annual International Conference of the IEEE EMBS》;20130731;1096-1099 *
一种消除伪影的并行磁共振图像重建新算法;翁卓等;《中国生物医学工程学会成立30周年纪念大会暨2010中国生物医学工程学会学术大会壁报展示论文》;20101231;179-185 *
基于多通道并行采集磁共振成像技术的伪影消除方法研究;黄鑫;《中国博士学位论文全文数据库医药卫生科技辑》;20090531;全文 *
基于部分K空间数据的并行磁共振图像重建算法研究;聂荣;《中国优秀硕士学位论文全文数据库信息科技辑》;20160831;全文 *

Also Published As

Publication number Publication date
CN110907873A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN111081354B (zh) 用于通过深度学习网络对医疗图像进行去噪的系统和方法
US6853191B1 (en) Method of removing dynamic nonlinear phase errors from MRI data
US20190257905A1 (en) Highly-scalable image reconstruction using deep convolutional neural networks with bandpass filtering
US7348776B1 (en) Motion corrected magnetic resonance imaging
JP4861821B2 (ja) 磁気共鳴イメージング装置および画像データ補正装置
CN1327809C (zh) 在t1加权磁共振成像中用propeller采样方式消除运动伪影的方法
KR101310825B1 (ko) 자기 공명 영상 생성 방법 및 그에 따른 자기 공명 영상 생성 장치
CN110133556B (zh) 一种磁共振图像处理方法、装置、设备及存储介质
US6903551B2 (en) Variable-density parallel magnetic resonance imaging
CN108776318B (zh) 磁共振多对比度图像重建
US11002815B2 (en) System and method for reducing artifacts in echo planar magnetic resonance imaging
EP2773985A1 (en) Method for calibration-free locally low-rank encouraging reconstruction of magnetic resonance images
US20090129648A1 (en) Method of reducing imaging time in propeller-MRI by under-sampling and iterative image reconstruction
CN112526423B (zh) 基于共轭和层间信息的并行磁共振成像算法
KR101105352B1 (ko) 적응적 셀프 캘리브레이션이 가능한 병렬 자기 공명 영상 장치, 그 영상 방법 및 그 기록 매체
Li et al. An adaptive directional Haar framelet-based reconstruction algorithm for parallel magnetic resonance imaging
CN110907873B (zh) 一种基于线圈灵敏度相位约束的运动伪影消除方法
US9165353B2 (en) System and method for joint degradation estimation and image reconstruction in magnetic resonance imaging
US20230380714A1 (en) Method and system for low-field mri denoising with a deep complex-valued convolutional neural network
US10884086B1 (en) Systems and methods for accelerated multi-contrast propeller
WO2005084540A1 (ja) 磁気共鳴イメージング装置
CN112557981B (zh) 一种并行磁共振成像的改进算法
JP2023069890A (ja) 磁気共鳴イメージング装置、画像処理装置、及び、画像処理方法
JPH06327649A (ja) 核磁気共鳴イメージング装置における画像再構成方法
KR100636012B1 (ko) 감도부호화를 이용한 에코평면영상에서의 유령인공물을줄이는 방법, 이를 실행하기 위한 프로그램을 기록한컴퓨터로 읽을 수 있는 기록매체.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20230905

Granted publication date: 20211105

PP01 Preservation of patent right
PD01 Discharge of preservation of patent

Date of cancellation: 20231117

Granted publication date: 20211105

PD01 Discharge of preservation of patent