CN110907155A - 一种水轮机转动轴故障监测方法 - Google Patents

一种水轮机转动轴故障监测方法 Download PDF

Info

Publication number
CN110907155A
CN110907155A CN201911213202.3A CN201911213202A CN110907155A CN 110907155 A CN110907155 A CN 110907155A CN 201911213202 A CN201911213202 A CN 201911213202A CN 110907155 A CN110907155 A CN 110907155A
Authority
CN
China
Prior art keywords
fault
rotating shaft
water turbine
monitoring method
fcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911213202.3A
Other languages
English (en)
Inventor
黄德福
刘跃
王环东
孙清璞
杨金雨
孙义臣
王永春
刘欣
刘治宇
何旭
夏春芬
丛学飞
王立光
叶倩倩
史东旭
李成舜
马春风
韩玮琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GRID XINYUAN HYDROPOWER CO Ltd
JILIN SONGJIANGHE HYDROPOWER Co Ltd
State Grid Corp of China SGCC
Original Assignee
STATE GRID XINYUAN HYDROPOWER CO Ltd
JILIN SONGJIANGHE HYDROPOWER Co Ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GRID XINYUAN HYDROPOWER CO Ltd, JILIN SONGJIANGHE HYDROPOWER Co Ltd, State Grid Corp of China SGCC filed Critical STATE GRID XINYUAN HYDROPOWER CO Ltd
Priority to CN201911213202.3A priority Critical patent/CN110907155A/zh
Publication of CN110907155A publication Critical patent/CN110907155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种水轮机转动轴故障监测方法。该方法包括:采集水轮机在正常和故障状态下的振动信号,采用FVMD对水轮机振动进行分解,计算多尺度排列熵;将反响学习策略方法OBLBSA引入故障监测方法中,采用OBLBSA对FCM进行优化,并与传统的FCM作对比,比较预测准确率。本发明的方法可以有效地对水轮机转动轴故障进行监测,故障特征明显,结果简单,可操性强,识别率明显提高,且其效果优于传统FCM。

Description

一种水轮机转动轴故障监测方法
技术领域
本发明涉及水轮机转动轴故障监测技术领域,具体涉及基于FVMD的多尺度排列熵和OBLBSA-FCM模糊聚类的水轮机转动轴故障监测方法。
背景技术
随着工业化生产逐渐扩大,各个行业对能源需求(尤其是对电力需求)日趋旺盛,水力发电作为一种可再生能源而得到迅速发展。水力发电最主要的机器设备是水轮机。随着水电工程建设的高速发展,水轮机组容量和尺寸在逐步增大,转速也相应提高,机组运行的自动化程度越来越高。无人值班、少人值守、远程控制的水电厂日益增多,使得机组运行稳定性的研究得到各国的广泛关注。由于机组的长期振动而导致机组部件的材料疲劳甚至遭到破坏,严重影响机组的安全运行和发电效益。机组运行时流体力、机械力及电磁力三者是相互影响的,而水力为机组的直接动力源,对机组振动具有非常大的影响。水轮机组在某些工况下运行时,因水流力作用会引起转轮、叶片、尾水管、管道等振动并生成噪音。所以,确定水力如何影响水电机组振动十分重要。
目前,振动信号处理技术不断发展,若将目前先进的测试技术及信号分析方法用于滚动轴承、齿轮等易损零部件的故障诊断及水轮机运行状态监测将具有非常重要的意义。已有的振动信号分析方法有小波奇异性检测、自组织映射法、EMD和小波包等。这些方法大多是基于线性理论。然而,研究表明,轴承切换过程中的振动信号表现出明显的非线性。因此,将振动信号假设为平稳或分段平稳信号进行时频分析的方法,其分析效果不是很明显。此外,现有技术中的水轮机转动轴故障监测方法,还存在诊断分析复杂,占用处理资源较多,并且识别率不高的缺陷。因此迫切需要有效的方法来对水轮机转动轴故障进行监测、诊断和分析。
发明内容
为解决现有技术中的不足,本发明提出了一种水轮机转动轴故障监测方法,该方法故障特征明显,结果简单,可操性强。
具体而言,针对现有技术中水轮机转动轴故障监测方法的缺点,本发明提出一种基于FVMD(Fast variational mode decomposition,FVMD)的多尺度排列熵和OBLBSA-FCM模糊聚类的水轮机转动轴故障监测方法,同时针对传统BSA(Bird Swarm Algorithm)容易陷入局部最优的缺陷,将反响学习策略方法引入故障监测方法中,该方法被称为OBLBSA(Opposition-based learning Bird Swarm Algorithm)。首先,利用方法在保留VMD算法中拉格朗日乘法算子λ更新的同时,通过引入迭代算子对λ进行二次更新。将多尺度排列熵作为特征量,并将其作为OBLBSA-FCM输入,与传统FCM做对比。结果表明,本发明的方法能够有效地提取水轮机转动轴故障特征。
为了实现上述目标,本发明采用如下技术方案:
一种水轮机转动轴故障监测方法,其特征在于:包括以下步骤:
(1)通过加速度传感器对水轮机转动轴正常状态下的振动信号、故障状态下的振动信号进行采集和载入,并对采集和载入的振动信号做预处理;
(2)针对采集、载入和预处理的水轮机的信号,采用FVMD进行分解,首先进行VMD,然后在VMD基础上引入快速迭代;
(3)获得多尺度排列熵;
(4)利用OBLBSA对FCM的初始聚类中心进行优化,其中利用OBLBSA-FCM确定已知故障样本的标准聚类中心,基于上述步骤产生的并且经提取的多尺度排列熵,由择近原则计算待识别故障样本与标准聚类中心的距离,判定水轮机转动轴的故障状态。
根据本发明的一个实施例,步骤(2)进一步包括:VMD使每个模态的估计带宽之和最小,其产生的约束变分如下:
Figure BDA0002298728800000021
式中,uk={u1,u2,…,uK}为各模态函数集;ωk={ω12,…,ωK}为各中心频率集;
Figure BDA0002298728800000022
是对函数求时间t的偏导数;δ(t)为单位脉冲函数;j为虚数单位;*表示卷积;K表示模态分量个数。寻求K个估计带宽之和最小的模态函数uk(t),模态之和为输入信号f(t);
为了解决上述约束最优化问题,引入拉格朗日函数λ;
Figure BDA0002298728800000031
根据本发明的一个实施例,步骤(2)进一步包括:
通过交替方向乘数法迭代更新得uk、ωk及λ,得到变分模型的最优解,从而将信号分解为预先设定的K个模态分量,FVMD的具体步骤如下所示:
(a)初始化
Figure BDA0002298728800000032
和n=0,t0=1;
(b)在频域内中迭代更新
Figure BDA0002298728800000033
Figure BDA0002298728800000034
其中α为二次惩罚因子;
(c)迭代更新ωk
Figure BDA0002298728800000035
(d)根据下式第一次更新参数
Figure BDA0002298728800000036
Figure BDA0002298728800000037
式中,τ为噪声容量参数,
Figure BDA0002298728800000038
为拉格朗日乘法算子λ在频域内的第n次迭代;
(e)根据下式更新迭代算子tn+1
Figure BDA0002298728800000039
式中,tn为第n次迭代算子;
(f)采用下式二次迭代
Figure BDA00022987288000000310
Figure BDA00022987288000000311
式中,
Figure BDA0002298728800000041
为迭代步长;
(g)若满足以下迭代停止条件:
Figure BDA0002298728800000042
执行步骤(h),否则执行步骤(b);其中ε为判别精度并且ε>0;
(h)输出分解结果。
根据本发明的一个实施例,步骤(3)中获得多尺度排列熵的步骤包括:
(a)对时间序列[x(i),i=1,2,…,N]进行粗粒化处理,得到粗粒化序列
Figure BDA0002298728800000043
Figure BDA0002298728800000044
式中,s为尺度因子,N为时间序列长度,[N/s]表示对[N/s]取整;
(b)对每个粗粒化序列进行相空间重构:
Figure BDA0002298728800000045
式中l为重构分量的序号,其中l=1,2,…,N-(m-1)τ;m为嵌入维数,τ为延迟时间;
(c)将重构分量按升序排列,可得到符号序列S(r)=(j1,j2,…,jm);其中,r=1,2,…,R,且R≤m!,r表示重构分量的个数;计算每一种符号序列出现的概率Pr
(d)根据下式计算每个粗粒化序列的排列熵并进行归一化处理,进而得到多尺度排列熵值:
Figure BDA0002298728800000046
通常将Hp(m)进行归一化处理,即:
Figure BDA0002298728800000047
Hp值的大小表示时间序列x(i),i=1,2,…,N的随机程度。
根据本发明的一个实施例,步骤(4)进一步包括:计算待识别故障样本T和第i个状态Ci的海明贴近度N(C,T),海明贴近度的计算如下所示:
Figure BDA0002298728800000051
其中贴近度大于第一阈值为第一类,小于第一阈值为故障。
根据本发明的一个实施例,步骤(4)中,所述第一类为正常,所述第二类为故障。
根据本发明的一个实施例,步骤(4)中,贴近度大于第一阈值为第一类;小于第一阈值且不小于0.01时为故障;贴近度小于0.01时,为无法识别或错分。
根据本发明的一个实施例,步骤(4)替代地为:取分类得到的2个聚类中心作为标准聚类中心,通过计算待识别样本的特征矢量与标准聚类中心的欧几里德贴近度判断故障类型。
根据本发明的一个实施例,所述故障为滚动体故障。
本发明能够获得如下有益技术效果:
1.本发明采用基于FVMD的多尺度排列熵和OBLBSA-FCM模糊聚类的水轮机转动轴故障监测方法,相比较与其他方法,该方法简便易行,算法简单;
2.本发明在水轮机方面转转动轴方面的应用,相较于传统FCM,识别率明显提高。
附图说明
图1是根据本发明一种水轮机转动轴故障监测方法的流程图。
图2是根据本发明的基于OBLBSA的监测方法性能与其他方法的对比图。
具体实施方式
下面结合附图对本发明做进一步描述。以下实施案例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
图1是根据本发明一种水轮机转动轴故障监测方法的流程图,所述的水轮机转动轴故障监测方法包括以下步骤:
载入水轮机转动轴的原始信号;
初始化参数;
进行FVMD信号分解;
计算多尺度排列熵特征量;
将特征量带入OBLBSA-FCM标准化聚类中心;
根据贴近度特征量分类计算水轮机转动轴故障类精度。
作为优选实施例,本发明的水轮机转动轴故障监测方法具体步骤如下:
(1)通过加速度传感器对水轮机转动轴正常状态下的振动信号、故障状态下的振动信号进行采集和载入,并对采集和载入的振动信号做预处理;
(2)针对采集、载入和预处理的水轮机的信号,采用FVMD进行分解,首先进行VMD,然后在VMD基础上引入快速迭代;其中VMD使每个模态的估计带宽之和最小,其产生的约束变分如下:
Figure BDA0002298728800000061
式中,uk={u1,u2,…,uK}为各模态函数集;ωk={ω12,…,ωK}为各中心频率集;
Figure BDA0002298728800000062
是对函数求时间t的偏导数;δ(t)为单位脉冲函数;j为虚数单位;*表示卷积;K表示模态分量个数。寻求K个估计带宽之和最小的模态函数uk(t),模态之和为输入信号f(t)。
为了解决上述约束最优化问题,引入拉格朗日函数λ。
Figure BDA0002298728800000063
通过交替方向乘数法迭代更新得uk、ωk及λ,得到变分模型的最优解,从而将信号分解为预先设定的K个模态分量,FVMD的具体步骤如下所示:
(a)初始化
Figure BDA0002298728800000064
和n=0,t0=1;
(b)在频域内中迭代更新
Figure BDA0002298728800000065
Figure BDA0002298728800000066
其中α为二次惩罚因子;
(c)迭代更新ωk
Figure BDA0002298728800000071
(d)根据下式第一次更新参数
Figure BDA0002298728800000072
Figure BDA0002298728800000073
式中,τ为噪声容量参数,
Figure BDA0002298728800000074
为拉格朗日乘法算子λ在频域内的第n次迭代;(e)根据下式更新迭代算子tn+1
Figure BDA0002298728800000075
式中,tn为第n次迭代算子;
(f)采用下式二次迭代
Figure BDA0002298728800000076
Figure BDA0002298728800000077
式中,
Figure BDA0002298728800000078
为迭代步长;
(g)若满足以下迭代停止条件:
Figure BDA0002298728800000079
执行步骤(h),否则执行步骤(b);其中ε为判别精度并且ε>0;
(h)输出分解结果;
(3)多尺度排列熵的具体步骤如下所示:
(a)对时间序列[x(i),i=1,2,…,N]进行粗粒化处理,得到粗粒化序列
Figure BDA00022987288000000710
Figure BDA00022987288000000711
式中,s为尺度因子,N为时间序列长度,[N/s]表示对[N/s]取整;
(b)对每个粗粒化序列进行相空间重构:
Figure BDA0002298728800000081
式中l为重构分量的序号,其中l=1,2,…,N-(m-1)τ;m为嵌入维数,τ为延迟时间;
(c)将重构分量按升序排列,可得到符号序列S(r)=(j1,j2,…,jm);其中,r=1,2,…,R,且R≤m!,r表示重构分量的个数;计算每一种符号序列出现的概率Pr
(d)根据下式计算每个粗粒化序列的排列熵并进行归一化处理,进而得到多尺度排列熵值:
Figure BDA0002298728800000082
通常将Hp(m)进行归一化处理,即:
Figure BDA0002298728800000083
Hp值的大小表示时间序列x(i),i=1,2,…,N的随机程度;
(4)利用OBLBSA对FCM(Fuzzy C-means)的初始聚类中心进行优化,其中利用OBLBSA-FCM确定已知故障样本的标准聚类中心,基于上述步骤产生的并且经提取的多尺度排列熵,由择近原则计算待识别故障样本与标准聚类中心的距离,将正常的设置为1,滚动体故障为2。
其中计算待识别故障样本T和第i个状态Ci的海明贴近度N(C,T),海明贴近度的计算如下所示:
Figure BDA0002298728800000084
其中贴近度大于第一阈值为第一类,小于第一阈值为故障。
优选的,所述第一类为正常,所述第二类为故障。
优选的,贴近度大于第一阈值为第一类;小于第一阈值且不小于0.01时为故障;贴近度小于0.01时,为无法识别或错分。
作为替代实施例,取分类得到的2个聚类中心作为标准聚类中心,通过计算待识别样本的特征矢量与标准聚类中心的欧几里德贴近度判断故障类型。
图2是根据本发明的基于OBLBSA的监测方法性能与传统的其他方法的对比图。从中可以看出,不同故障类型之间区分明显,说明本发明的故障诊断方法具有很好的分类识别效果。
本发明的方法中,其中在步骤(4)中采用分类成功率V进行评价,如下式所示:
Figure BDA0002298728800000091
式中,AC表示运行10次标准FCM,成功得到聚类中心的次数。如果落在上述得到的2个标准聚类中心,则说明是成功的,反之是失败。
根据本发明的优选实施例,其中在步骤(4)中,OBLBSA对FCM的初始聚类中心操作之前,按照实验次数提取样本进行训练,其中80%作为训练样本,另外20%作为测试样本。
根据本发明的一个具体实施例,对某水电站的水轮机进行故障诊断。对正常和转动轴故障进行监测,抽取滚动轴承的正常、动体故障2种状态下,各40组数据,其中,每组数据截取2048个采样点,前20组数据作为已知故障样本,求取已知故障的标准聚类中心,后20组数据作为待识别样本,通过贴近度计算进行故障识别,由表1中可以看出,基于OBLBSA-FCM优化FCM,可以有效地识别出故障类型。
表1
工况 OBLBSA-FCM 传统的其它FCM
水轮机转动轴正常 100% 70.54%
水轮机转动轴故障 98.5% 70.2%
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种水轮机转动轴故障监测方法,其特征在于,所述水轮机转动轴故障监测方法包括以下内容:
载入水轮机转动轴的原始信号;
初始化参数;
进行FVMD信号分解;
计算多尺度排列熵特征量;
将特征量带入OBLBSA-FCM标准化聚类中心;
根据贴近度特征量分类计算水轮机转动轴故障类精度。
2.根据权利要求1所述的水轮机转动轴故障监测方法,其特征在于,具体包括以下步骤:
(1)通过加速度传感器对水轮机转动轴正常状态下的振动信号、故障状态下的振动信号进行采集和载入,并对采集和载入的振动信号做预处理;
(2)针对采集、载入和预处理的水轮机的信号,采用FVMD进行分解,首先进行VMD,然后在VMD基础上引入快速迭代;
(3)获得多尺度排列熵;
(4)利用OBLBSA对FCM的初始聚类中心进行优化,其中利用OBLBSA-FCM确定已知故障样本的标准聚类中心,基于上述步骤产生的并且经提取的多尺度排列熵,由择近原则计算待识别故障样本与标准聚类中心的距离,判定水轮机转动轴的故障状态。
3.根据权利要求2所述的水轮机转动轴故障监测方法,其特征在于:
步骤(2)进一步包括:VMD使每个模态的估计带宽之和最小,其产生的约束变分如下:
Figure FDA0002298728790000011
式中,uk={u1,u2,···,uK}为各模态函数集;ωk={ω12,···,ωK}为各中心频率集;
Figure FDA0002298728790000012
是对函数求时间t的偏导数;δ(t)为单位脉冲函数;j为虚数单位;*表示卷积;K表示模态分量个数。寻求K个估计带宽之和最小的模态函数uk(t),模态之和为输入信号f(t);
为了解决上述约束最优化问题,引入拉格朗日函数λ;
Figure FDA0002298728790000021
4.根据权利要求3所述的水轮机转动轴故障监测方法,其特征在于:
步骤(2)进一步包括:
通过交替方向乘数法迭代更新得uk、ωk及λ,得到变分模型的最优解,从而将信号分解为预先设定的K个模态分量,FVMD的具体步骤如下所示:
(a)初始化
Figure FDA0002298728790000022
和n=0,t0=1;
(b)在频域内中迭代更新
Figure FDA0002298728790000023
Figure FDA0002298728790000024
其中α为二次惩罚因子;
(c)迭代更新ωk
Figure FDA0002298728790000025
(d)根据下式第一次更新参数
Figure FDA0002298728790000026
Figure FDA0002298728790000027
式中,τ为噪声容量参数,
Figure FDA0002298728790000028
为拉格朗日乘法算子λ在频域内的第n次迭代;
(e)根据下式更新迭代算子tn+1
Figure FDA0002298728790000029
式中,tn为第n次迭代算子;
(f)采用下式二次迭代
Figure FDA0002298728790000031
Figure FDA0002298728790000032
式中,
Figure FDA0002298728790000033
为迭代步长;
(g)若满足以下迭代停止条件:
Figure FDA0002298728790000034
执行步骤(h),否则执行步骤(b);其中ε为判别精度并且ε>0;
(h)输出分解结果。
5.根据权利要求4所述的水轮机转动轴故障监测方法,其特征在于:
步骤(3)中获得多尺度排列熵的步骤包括:
(a)对时间序列[x(i),i=1,2,…,N]进行粗粒化处理,得到粗粒化序列
Figure FDA0002298728790000035
Figure FDA0002298728790000036
式中,s为尺度因子,N为时间序列长度,[N/s]表示对[N/s]取整;
(b)对每个粗粒化序列进行相空间重构:
Figure FDA0002298728790000037
式中l为重构分量的序号,其中l=1,2,…,N-(m-1)τ;m为嵌入维数,τ为延迟时间;
(c)将重构分量按升序排列,可得到符号序列S(r)=(j1,j2,…,jm);其中,r=1,2,…,R,且R≤m!,r表示重构分量的个数;计算每一种符号序列出现的概率Pr
(d)根据下式计算每个粗粒化序列的排列熵并进行归一化处理,进而得到多尺度排列熵值:
Figure FDA0002298728790000038
通常将Hp(m)进行归一化处理,即:
Figure FDA0002298728790000041
Hp值的大小表示时间序列x(i),i=1,2,…,N的随机程度。
6.根据权利要求5所述的水轮机转动轴故障监测方法,其特征在于:
步骤(4)进一步包括:计算待识别故障样本T和第i个状态Ci的海明贴近度N(C,T),海明贴近度的计算如下所示:
Figure FDA0002298728790000042
其中贴近度大于第一阈值为第一类,小于第一阈值为故障。
7.根据权利要求6所述的水轮机转动轴故障监测方法,其特征在于:
步骤(4)中,所述第一类为正常,所述第二类为故障。
8.根据权利要求6所述的水轮机转动轴故障监测方法,其特征在于:
步骤(4)中,贴近度大于第一阈值为第一类;小于第一阈值且不小于0.01时为故障;贴近度小于0.01时,为无法识别或错分。
9.根据权利要求2所述的水轮机转动轴故障监测方法,其特征在于:
步骤(4)替代地为:取分类得到的2个聚类中心作为标准聚类中心,通过计算待识别样本的特征矢量与标准聚类中心的欧几里德贴近度判断故障类型。
10.根据权利要求8或9所述的水轮机转动轴故障监测方法,其特征在于:所述故障为滚动体故障。
CN201911213202.3A 2019-12-02 2019-12-02 一种水轮机转动轴故障监测方法 Pending CN110907155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911213202.3A CN110907155A (zh) 2019-12-02 2019-12-02 一种水轮机转动轴故障监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911213202.3A CN110907155A (zh) 2019-12-02 2019-12-02 一种水轮机转动轴故障监测方法

Publications (1)

Publication Number Publication Date
CN110907155A true CN110907155A (zh) 2020-03-24

Family

ID=69821185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911213202.3A Pending CN110907155A (zh) 2019-12-02 2019-12-02 一种水轮机转动轴故障监测方法

Country Status (1)

Country Link
CN (1) CN110907155A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090125270A1 (en) * 2007-11-07 2009-05-14 O'shea Robert D Method and Apparatus for Generating a Test Plan Using a Statistical Test Approach
CN103257360A (zh) * 2013-04-25 2013-08-21 刘立峰 基于模糊c均值聚类的碳酸盐岩流体识别方法
JP2014517288A (ja) * 2011-05-20 2014-07-17 ロマックス テクノロジー リミテッド ドライブトレイン、ギアボックス、発電機などの回転機械の損傷と残存耐用年数を測定
CN103968937A (zh) * 2014-05-09 2014-08-06 国网福建晋江市供电有限公司 一种基于emd样本熵和fcm的配电开关机械状态诊断方法
CN106022367A (zh) * 2016-05-13 2016-10-12 广东电网有限责任公司惠州供电局 故障分类方法和系统
US20170131184A1 (en) * 2015-11-06 2017-05-11 Aktiebolaget Skf Method and device for handling dynamic characteristics of a vibrating machine component
CN106769053A (zh) * 2016-12-07 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机故障诊断系统及方法
CN107656154A (zh) * 2017-09-18 2018-02-02 杭州安脉盛智能技术有限公司 基于改进模糊c均值聚类算法的变压器故障诊断方法
CN107991077A (zh) * 2017-11-28 2018-05-04 南瑞集团有限公司 一种水轮机调速器主配压阀故障诊断方法
CN109187025A (zh) * 2018-09-19 2019-01-11 哈尔滨理工大学 一种集成kelm的滚动轴承剩余使用寿命预测方法
CN109613399A (zh) * 2018-12-13 2019-04-12 西安理工大学 一种基于vmd能量相对熵的线路故障选线方法
CN109711640A (zh) * 2019-01-23 2019-05-03 北京工业大学 一种基于模糊c均值交通流量聚类以及误差反馈卷积神经网络的短时交通流预测方法
CN110044602A (zh) * 2019-03-15 2019-07-23 昆明理工大学 一种基于振动信号分析的高压隔膜泵单向阀故障诊断方法
CN110110680A (zh) * 2019-05-14 2019-08-09 中国人民解放军陆军装甲兵学院 基于dwt-lpp的行星变速箱故障信号分类方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090125270A1 (en) * 2007-11-07 2009-05-14 O'shea Robert D Method and Apparatus for Generating a Test Plan Using a Statistical Test Approach
JP2014517288A (ja) * 2011-05-20 2014-07-17 ロマックス テクノロジー リミテッド ドライブトレイン、ギアボックス、発電機などの回転機械の損傷と残存耐用年数を測定
CN103257360A (zh) * 2013-04-25 2013-08-21 刘立峰 基于模糊c均值聚类的碳酸盐岩流体识别方法
CN103968937A (zh) * 2014-05-09 2014-08-06 国网福建晋江市供电有限公司 一种基于emd样本熵和fcm的配电开关机械状态诊断方法
US20170131184A1 (en) * 2015-11-06 2017-05-11 Aktiebolaget Skf Method and device for handling dynamic characteristics of a vibrating machine component
CN106022367A (zh) * 2016-05-13 2016-10-12 广东电网有限责任公司惠州供电局 故障分类方法和系统
CN106769053A (zh) * 2016-12-07 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机故障诊断系统及方法
CN107656154A (zh) * 2017-09-18 2018-02-02 杭州安脉盛智能技术有限公司 基于改进模糊c均值聚类算法的变压器故障诊断方法
CN107991077A (zh) * 2017-11-28 2018-05-04 南瑞集团有限公司 一种水轮机调速器主配压阀故障诊断方法
CN109187025A (zh) * 2018-09-19 2019-01-11 哈尔滨理工大学 一种集成kelm的滚动轴承剩余使用寿命预测方法
CN109613399A (zh) * 2018-12-13 2019-04-12 西安理工大学 一种基于vmd能量相对熵的线路故障选线方法
CN109711640A (zh) * 2019-01-23 2019-05-03 北京工业大学 一种基于模糊c均值交通流量聚类以及误差反馈卷积神经网络的短时交通流预测方法
CN110044602A (zh) * 2019-03-15 2019-07-23 昆明理工大学 一种基于振动信号分析的高压隔膜泵单向阀故障诊断方法
CN110110680A (zh) * 2019-05-14 2019-08-09 中国人民解放军陆军装甲兵学院 基于dwt-lpp的行星变速箱故障信号分类方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUOZHENG LI 等: "Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》 *
周成江 等: "二次VMD筛选-MPE和FCM相结合的故障诊断方法", 《机械科学与技术》 *
贾伟 等: "基于改进粒子群优化的移动界面模式聚类算法", 《计算机科学》 *
陈东宁 等: "基于FVMD多尺度排列熵和GK模糊聚类的故障诊断", 《机械工程学报》 *
陈东宁 等: "基于参数优化MPE与FCM的滚动轴承故障诊断", 《轴承》 *

Similar Documents

Publication Publication Date Title
CN112629863B (zh) 变工况下动态联合分布对齐网络的轴承故障诊断方法
Chen et al. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM
CN111651937A (zh) 变工况下类内自适应轴承故障诊断方法
CN111562108A (zh) 一种基于cnn和fcmc的滚动轴承智能故障诊断方法
Chen et al. A meta-learning method for electric machine bearing fault diagnosis under varying working conditions with limited data
Peng et al. Fault feature extractor based on bootstrap your own latent and data augmentation algorithm for unlabeled vibration signals
Lu et al. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
CN109000921B (zh) 一种风电机组主轴故障的诊断方法
CN116226646B (zh) 轴承健康状态及剩余寿命的预测方法、系统、设备及介质
Yu et al. Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive Bayesian classifier
Wang et al. Intelligent diagnosis method for a centrifugal pump using features of vibration signals
CN113607415A (zh) 一种变转速下基于短时随机共振的轴承故障诊断方法
Zhang et al. An intelligent fault diagnosis for rolling bearing based on adversarial semi-supervised method
Song et al. Intelligent diagnosis method for machinery by sequential auto-reorganization of histogram
Guo et al. An improved deep convolution neural network for predicting the remaining useful life of rolling bearings
CN111881848A (zh) 基于变分模态分解与改进粒子群的电机故障信号提取方法
CN114861349A (zh) 一种基于模型迁移和维纳过程的滚动轴承rul预测方法
Chen et al. Gear compound fault detection method based on improved multiscale permutation entropy and local mean decomposition
CN111046790A (zh) 一种泵轴承故障诊断方法
Fa-jun et al. Compound fault diagnosis of gearbox based on wavelet packet transform and sparse representation classification
Liu et al. Fault diagnosis method of rolling bearing based on the multiple features of LMD and random forest
CN117093938A (zh) 一种基于深度学习的风机轴承的故障检测方法和系统
CN112067298A (zh) 一种基于层次全局模糊熵的滚动轴承故障诊断方法
Abbasi et al. Condition based maintenance of oil and gas equipment: A review
Cao et al. A novel method for detection of wind turbine blade imbalance based on multi-variable spectrum imaging and convolutional neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200324

RJ01 Rejection of invention patent application after publication