CN110903465B - 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用 - Google Patents

基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用 Download PDF

Info

Publication number
CN110903465B
CN110903465B CN201811077167.2A CN201811077167A CN110903465B CN 110903465 B CN110903465 B CN 110903465B CN 201811077167 A CN201811077167 A CN 201811077167A CN 110903465 B CN110903465 B CN 110903465B
Authority
CN
China
Prior art keywords
monomer
norbornene
block copolymer
reaction
benzyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811077167.2A
Other languages
English (en)
Other versions
CN110903465A (zh
Inventor
任丽霞
赵玉东
袁晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811077167.2A priority Critical patent/CN110903465B/zh
Publication of CN110903465A publication Critical patent/CN110903465A/zh
Application granted granted Critical
Publication of CN110903465B publication Critical patent/CN110903465B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • C08G2261/1432Side-chains containing nitrogen containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用,采用开环易位聚合合成聚(降冰片烯烷基单体‑r‑降冰片十二烷基甲基丙烯酰胺)‑b‑降冰片烯苄基单体,通过溶剂挥发自组装的方式在紫外灯的照射下得到一维光子晶体薄膜,用作检测不同醇类溶剂的光学响应性传感器,其通过颜色的变化来达到裸眼检测的效果。该方法具有成本低、制备简单、检测方法简便高效的优点。该聚合物在混合醇类和水醇混合物含量的测定等方面具有潜在的应用。

Description

基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和 应用
技术领域
本发明涉及一种基于树枝状单体的一维光子晶体及其合成方法和应用,具体涉及采用开环易位聚合(ROMP)合成聚(降冰片烯烷基单体-r-降冰片十二烷基甲基丙烯酰胺)-b-降冰片烯苄基单体(P(NAM-r-NDMA)-b-PNBM),通过溶剂挥发成膜形成一维光子晶体薄膜,用作传感器时具备醇类溶剂检测的效果。
背景技术
随着化石燃料的枯竭和环境保护的需要,这些年来生物质能的开发和利用受到了越来越多的关注。甲醇,乙醇,丙醇和丁醇等醇类被认为是最具潜力的液体生物燃料,具有易燃性,物理和化学性质稳定,高能量密度等突出特点,可用作燃料或燃料添加剂。为了安全和更好地使用这些液体生物燃料,有机溶剂检测在油品质量控制中具有重要意义。目前,已开发出许多不同的测量方法来检测有机溶剂,包括导电和共轭聚合物纳米纤维,电子鼻技术,溶剂化变色荧光探针,溶剂响应结构材料,石英晶体微天平和结构色光子晶体等,相比于色谱-质谱联用技术具有耗时短,成本低和简单易操作等特点被广泛的应用。
光子晶体是指由两种及以上具有不同折光指数的材料,在空间按照一定的周期顺序排列而成的有序结构材料,光子晶体具有类似于半导体的能带结构,因此电磁波在光子晶体中传播会呈现肉眼可见的结构色。目前大部分光子晶体的制备主要是基于平板印刷法/胶体自组装/蛋白石和反蛋白石结构模板法等,这些制备方法多为二维或三维光子晶体,合成较为复杂,而且易在任意位点产生晶格缺陷,改变光的传播方向,而关于一维光子晶体的研究并不常见。近年来,通过开环易位聚合得到的刷型嵌段共聚物自组装构成的一维光子晶体,由于其特有的高度可调节性而被广泛的应用于光学领域,而线性嵌段的种类及聚合度的差异导致其力学、热学及光学性质发生变化,使其具有了广泛的应用前景。
近年来,结构色光子晶体作为检测器已经引起了越来越多科研工作者的兴趣,在检测器方面相比于其他方法,光子晶体具有裸眼检测的巨大优势。目前许多文献中都报道了以光子晶体作为视觉检测的传感器使用。如基于响应性的有机/无机杂化的一维光子晶体在有机溶剂上的颜色检测(Z.Wang,J.Zhang,Z.Tian,Z.Wang,Y.Li,S.Liang,L.Cui,L.Zhang and B.Yang,Chemical communications,2010,46,8636-8638.)和有机/无机杂化的光子晶体水凝胶作为检测器来裸眼检测SCN-离子的浓度(Z.Wang,J.Zhang,Z.Tian,Z.Wang,Y.Li,S.Liang,L.Cui,L.Zhang,H.Zhang and B.Yang,Chemical communications,2010,46,8636-8638.)等。但是,直到目前为止,还未有人利用一维光子晶体来进行关于醇类溶剂的检测。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用。
本发明的技术目的通过下述技术方案予以实现。
基于树枝状单体的嵌段共聚物,由降冰片烯苄基单体(NBM)、降冰片烯烷基单体(NAM)和降冰片烯十二烷基甲基丙烯酰胺单体(NDMA)共聚而成,降冰片烯苄基单体(NBM)形成第一嵌段,降冰片烯烷基单体(NAM)和降冰片烯十二烷基甲基丙烯酰胺的无规聚合段,作为第二嵌段,降冰片烯烷基单体、降冰片烯苄基单体和降冰片烯十二烷基甲基丙烯酰胺单体的摩尔比为300:(230-280):(20-70),其中:
降冰片烯烷基单体(NAM)如下化学式所示:
Figure BDA0001801065030000021
降冰片烯苄基单体(NBM)如下化学式所示:
Figure BDA0001801065030000031
降冰片烯十二烷基甲基丙烯酰胺单体(NDMA)如下化学式所示:
Figure BDA0001801065030000032
在基于树枝状单体的嵌段共聚物中,降冰片烯烷基单体、降冰片烯苄基单体和降冰片烯十二烷基甲基丙烯酰胺单体的摩尔比为300:(250-280):(30-50)。
在基于树枝状单体的嵌段共聚物中,嵌段共聚物的分子量为200-300kDa(数均分子量),分散系数小于1.3。
在基于树枝状单体的嵌段共聚物中,降冰片烯十二烷基甲基丙烯酰胺作为交联剂,侧链中保留能够进一步交联的碳碳双键。
基于树枝状单体的嵌段共聚物(BCPs)的结构如下化学式所示,其中m,n,p分别为降冰片烯苄基单体、降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体的聚合度,由于采用活性聚合,三种单体的投料摩尔比即可被认为各自的聚合度,m为230-280,优选250-280;n为300;p为20-70,优选30-50。聚合物两端的苯基(Ph)和碳氧基团(O—CH2—CH3)分别来自催化剂Grubbs三代催化剂以及终止剂乙烯基乙醚。由于在制备中,首先进行降冰片烯苄基单体的活性聚合,所以首先形成降冰片烯苄基单体的嵌段聚合,式中标记为b(即block),再将降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体一起进行投料,此时降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体都参加活性聚合,两者形成无规共聚段,式中标记为r(即random)。就整个嵌段共聚物而言,降冰片烯苄基单体的聚合段与“降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体”无规共聚段,共同形成两个嵌段。
Figure BDA0001801065030000041
基于树枝状单体的嵌段共聚物的制备方法,按照下述步骤进行,如下化学式所示。
将降冰片烯苄基单体在Grubbs三代催化剂的催化下进行活性开环易位聚合,形成降冰片烯苄基单体的嵌段聚合;再将降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体一起进行投料,两者形成无规共聚段,终止反应后,得到基于树枝状单体的嵌段共聚物,即嵌段共聚物刷P(NAM-r-NDMA)-b-PNBM。
而且,采用二氯甲烷作为反应溶剂,并用二氯甲烷溶解分散Grubbs三代试剂、降冰片烯苄基单体、降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体。
而且,在室温20—25℃下进行活性开环易位聚合反应,降冰片烯苄基单体的聚合反应时间为10—30min,为提高转化率,可适当延长聚合反应时间,优选20—30min。
而且,在室温20—25℃下进行活性开环易位聚合反应,加入降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体之后,聚合反应时间为30—60min,为提高转化率,可适当延长聚合反应时间,优选40—60min。
而且,在活性开环易位聚合过程中,利用搅拌以使体系均匀参与反应。
而且,加入终止剂以终止活性开环易位聚合反应,如终止剂为乙烯基乙醚,加入终止剂终止聚合反应过程中,利用搅拌以使体系均匀停止反应,考虑到反应程度等影响因素,在加入终止剂后搅拌至少10min,优选5—10min,以终止聚合反应,使用甲醇/DCM沉淀三次提纯,真空35℃加热干燥得到嵌段共聚物刷P(NAM-r-NDMA)-b-PNBM。
而且,利用Grubbs三代试剂催化进行活性开环易位聚合,在整个活性聚合过程中,以实现聚合物的分子结构、分子量以及分子量分布的可控,制备的聚合物分子量的分散系数小于1.3。
而且,Grubbs三代催化剂和降冰片烯苄基单体的摩尔比为1:(230-280),优选1:(250-280)。
Figure BDA0001801065030000051
在本发明的聚合物制备过程中,使用的催化剂为Grubbs三代试剂,其具有化学结构如下化学式所示。由它催化的聚合是活性的聚合,其具有反应条件温和、反应高效快速等优点。该聚合得到的聚合物具有分子量可控,分散性窄(一般分散系数小于1.3)的特性。因此采取Grubbs三代试剂催化的开环易位聚合的方法,可实现对磁性聚合物的分子量和分子量分布的控制和调节。其中聚合物端基的苯环Ph来自于Grubbs三代试剂中的苯环Ph,而聚合物另一端基的基团则来源于聚合反应结束时所添加的终止剂,所用的终止剂是乙烯基乙醚,所以聚合物另一端基是乙醚的结构(参考文献AnitaLeitgeb,Julia Wappel,ChristianSlugovc,TheROMPtoolboxupgraded,Polymer51(2010)2927—2946)。
Figure BDA0001801065030000061
利用上述基于树枝状单体的嵌段共聚物的光子晶体,将嵌段共聚物溶解分散在溶剂中并加入光引发剂,引发作为交联剂的降冰片烯十二烷基甲基丙烯酰胺单体保留的碳碳双键进行交联自组装,伴随着溶剂挥发的自组装过程得到光子晶体,即为一维光子晶体薄膜。
而且,选择二氯甲烷为溶剂,嵌段共聚物质量(mg)和溶剂体积(ml)的比例为(10—15):1。
而且,光引发剂为2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮,用量为嵌段共聚物质量的1—3%。
而且,将得到的一维光子晶体薄膜浸入乙醚1—5min,在140—150℃下进行加热处理10—30min,以去除未反应物质、清洗薄膜和固定成型。
而且,制备的薄膜具有明显的层状结构,层间距为100—110nm。
本发明利用开环易位聚合来保证制备较窄分子量分布和较高分子量的嵌段共聚物刷,同时设计合成的树枝状小分子单体更容易组装形成规整排列的层状结构。而引入少量NDMA单体,在组装过程中产生化学交联,使薄膜在部分溶剂中不被溶解,使薄膜稳定性大幅度提高。同时由于两种嵌段在醇类溶剂中不同的溶胀度,为不同醇类溶剂的检测提供了一种新型、可行、高效的可视化检测方法,该方法相对于传统的检测方法如液相色谱等方法,大大提高了检测的简便性,节省了时间,降低了成本,而且可以定性和半定量的分析混合醇和醇水混合物的组成。
附图说明
图1为本发明实施例1中的中间产物2-2的核磁氢谱图。
图2为本发明实施例1中的单体NBM的核磁氢谱图。
图3为本发明实施例2中的中间产物3-1的核磁氢谱图。
图4为本发明实施例2中的单体NDMA的核磁氢谱图。
图5为本发明实施例3中各单体与嵌段聚合物P(NAM-r-NDMA)-b-PNBM的核磁氢谱图。
图6为本发明实施例4中薄膜的反射光谱图及其SEM照片。
图7为本发明实施例5中薄膜在不同醇类溶剂的反射光谱图和颜色显示照片。
图8为本发明实施例6中薄膜在不同异构醇中反射光谱图和颜色显示照片。
图9为本发明实施例7中薄膜在不同比例混合醇溶剂中的反射光谱图、拟合曲线和颜色显示照片。
图10为本发明实施例8中薄膜在不同比例醇水混合物中的反射光谱图、拟合曲线和颜色显示照片。
图11为本发明中间产物1-1的核磁氢谱图。
图12为本发明中间产物1-2的核磁氢谱图。
图13为本发明中间产物1-3的核磁氢谱图。
图14为本发明中间产物2-1的核磁氢谱图。
图15为本发明树枝状单体NAM的核磁氢谱图。
具体实施方式
通过下述实施例和附图进一步说明本发明,但并不限制本发明的权利范围。原料表格如下:
Figure BDA0001801065030000081
仪器表格如下:
名称 型号 厂商
液体核磁共振谱仪 AVANCE III,400MHz 德国Bruker公司
紫外可见近红外分光光度计 Lambda 750 美国Perkin Elmer公司
场发射扫描电子显微镜 Nanosem 430 美国FEI公司
三种基于降冰片烯衍生物的树枝状分子,降冰片烯烷基单体(NAM),降冰片烯十二烷基甲基丙烯酰胺(NDMA),降冰片烯苄基单体(NBM)的合成,其反应过程如下化学式所示。降冰片烯烷基单体NAM在中国发明专利申请“一种树枝状嵌段共聚物、合成方法及其自组装物、自组装方法”(申请号为2017107077953,申请日为2017年8月17日)已经进行使用并作为单体进行共聚,下面结合反应过程方程式说明NAM和中间产物的制备。
中间产物1-1合成步骤如下:在100mL支口烧瓶中,将3g降冰片烯二酸酐加入冰乙酸中,加热到120℃溶解,分5批次在30min内共加入3.32g 2-氨基对苯二甲酸,两个反应物质摩尔比1:1,保持温度并回流12小时,溶液变澄清后,将反应产物冷却至室温20—25摄氏度,加入冰水浴中,大力搅拌2h,有白色粉末沉淀析出,过滤120℃干燥脱水,产率75%,1HNMR(400MHz,CDCl3):δ=13.55(s,2H),8.23–7.71(m,3H),6.39(s,2H),3.24(d,J=27.4Hz,2H),2.88(d,J=18.5Hz,2H),2.52(s,2H),2.02(d,J=9.5Hz,1H),1.47(dd,J=68.4,8.7Hz,1H),如附图11所示。
中间产物1-2合成步骤如下:称取没食子酸甲酯(5g,27.15mmol),四丁基溴化铵(200mg,0.62mmol),碘化钾(50mg,0.30mmol)溶于200mL丙酮中,加入1-溴代癸烷(21.62g,78.41mmol)和无水碳酸钾(18.90g,136.75mmol)在500mL的圆底烧瓶中,在65℃下回流48h以上。反应结束后过滤旋干得到黄色液体,加入冰水中搅拌15min,用乙醚萃取三次,旋干过硅胶柱子,淋洗剂为乙酸乙酯/石油醚(20:1,v/v),将终产物真空干燥至恒重,产率92%,1HNMR(400MHz,CDCl3):δ=7.28(s,2H),4.03(td,J=6.4,2.6Hz,6H),3.91(s,3H),1.96–1.69(m,6H),1.60–1.19(m,42H),0.90(t,J=6.6Hz,9H),如附图12所示。
中间产物1-3的合成步骤如下:称取上述产物1-2(12g,19.84mmol)和新干燥的四氢呋喃(50mL)加入到250mL圆底烧瓶中,然后将氢化铝锂(1.13g,29.75mmol)的四氢呋喃悬浊液在冰水浴的条件下逐滴加入到烧瓶中,1h滴完,再常温20—25摄氏度搅拌24h。反应结束后,缓慢加入去离子水(1.2mL),10wt%质量百分数的氢氧化钠水溶液(1.2mL)和3.6mL的去离子水。然后向体系中加入无水硫酸钠,然后过滤再用硫酸钠干燥后浓缩烘干至恒重,产率93%,1H NMR(400MHz,CDCl3):δ=6.56(s,2H),4.59(s,2H),3.95(dt,J=15.1,6.6Hz,6H),1.76(dq,J=14.5,6.6Hz,6H),1.52–1.40(m,6H),1.29(d,J=12.3Hz,36H),0.88(t,J=6.9Hz,9H),如附图13所示。
中间产物2-1的合成如下:称取没食子酸甲酯(5g,27.15mmol),四丁基溴化铵(200mg,0.62mmol),KI(50mg,0.30mmol)溶于200mL丙酮中,加入无水碳酸钾(18.9g,136.75mmol),最后加入苄溴(16.1g,94.69mmol),在65℃下回流48h以上。反应结束后自然冷却至室温20—25摄氏度,过滤旋干,加入50mL冰水搅拌15min后抽滤,用水和石油醚多洗涤几次得到白色固体,50℃下烘干一天(24小时),产率86.6%,1H NMR(400MHz,CDCl3):δ=7.47(d,J=7.3Hz,4H),7.45–7.34(m,10H),7.28(dd,J=7.3,3.3Hz,3H),5.16(d,J=8.2Hz,6H),3.92(s,3H),如附图14所示。
树枝状单体NAM的合成步骤如下:称取合成的中间产物1-1(1.768g,5.40mmol)和1-3(7.49g,12.98mmol),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(2.882g,15.3mmol),4-二甲氨基吡啶(0.099g,0.8mmol)加入圆底烧瓶中,在氮气氛围中加入60mL二氯甲烷,室温20—25摄氏度下搅拌24h。分别用稀盐酸溶液(60mL,1M)和饱和碳酸氢钠水溶液(60mL)萃取一次,用饱和氯化钠清洗2次,取有机相用无水硫酸钠干燥,过硅胶柱,淋洗剂为乙酸乙酯/石油醚(5:1,v/v),将终产物放置于真空烘箱中干燥至恒重,产率52%。1H NMR(400MHz,CDCl3):δ=8.19(d,J=12.0Hz,2H),7.81(s,1H),6.67–6.44(m,4H),6.23(d,J=23.9Hz,2H),5.19(d,J=50.7Hz,4H),3.96(dd,J=13.6,7.1Hz,12H),3.31(s,2H),2.44(s,2H),1.88–1.65(m,12H),1.65–1.02(m,84H),0.88(t,J=6.7Hz,18H),如附图15所示。
Figure BDA0001801065030000101
实施例1—树枝状单体NBM的合成
Figure BDA0001801065030000111
(1)称取产物2-1(10g,22.00mmol),溶于50mL新干燥的四氢呋喃中,将氢化铝锂(1.3362g,35.21mmol)的四氢呋喃悬浊液通过恒压滴液漏斗缓慢加入其中,在氮气氛围中,60℃下回流1.5h。反应结束后,冷却至室温,缓慢加入去离子水(1.6mL),10%质量百分数的氢氧化钠水溶液(1.6mL)和4.8mL的去离子水,然后向体系中加入无水硫酸钠,然后过滤再用硫酸钠干燥后浓缩烘干至恒重,产率90%,得到中间产物2-2。1H NMR(400MHz,CDCl3):δ=7.46-7.33(m,15H),6.70(s,2H),5.14(s,4H),5.08(s,2H),4.61(s,2H),如附图1所示。
(2)称取1-1产物(1.046g,3.20mmol),2-2产物(3g,7.03mmol),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(1.50g,7.33mmol),4-二甲氨基吡啶(0.12g,1.00mmol)加入圆底烧瓶中,充放氮气3次,将40ml二氯甲烷用注射器注入圆底烧瓶中,将混合溶液在室温下氮气气氛里搅拌24h。反应结束后,将混合溶液用1M稀盐酸,饱和碳酸氢钠和饱和盐水洗涤,并用无水硫化钠干燥,将混合物溶液过滤并浓缩,残余物通过硅胶色谱法纯化,用乙酸乙酯/石油醚(3:2,v/v)作为洗脱剂,产率51%,即为NBM。1H NMR(400MHz,CDCl3):δ=8.12-7.97(s,2H),7.86(s,1H),7.45-7.28(m,30H),6.81-6.62(m,4H),6.26(s,2H),5.32-5.05(m,16H),3.33(s,2H),2.57(s,2H),2.44(m,2H),2.07-1.26(m,2H),如附图2所示。
实施例2—单体NDMA的合成
Figure BDA0001801065030000112
(1)用二氯甲烷各自溶解2g降冰片烯,7.32g二氨基十二胺,将极稀降冰片烯二酸酐滴加入极浓的1,12-二氨基十二胺溶液,搅拌过夜,旋干后烘箱中120℃闭环,溶于200mL二氯甲烷,溶解不彻底,用0.2M稀盐酸萃取(8×100mL),除去未反应的二氨基十二烷,用饱和食盐水洗涤两次,用无水MgSO4干燥过夜。过硅胶柱,以二氯甲烷:石油醚=10:1(体积比)除杂,以二氯甲烷除去双端,用甲醇洗出产物,真空干燥得到白色针状晶体,产率37%,得到中间产物3-1。1H NMR(400MHz,CDCl3):δ=8.14(s,2H),6.31(s,2H),3.50-3.43(m,2H),3.29(s,2H),3.00(s,2H),2.69(s,2H),1.78(dd,J=14.6,7.4Hz,2H),1.61-1.48(m,2H),1.45-1.1.8(m,18H),如附图3所示。
(2)称取Nor-NH2(中间产物3-1)(1.42g,4.21mmol)溶于20mL四氢呋喃中,加入0.49g三乙胺保持氮气氛围,置于冰水浴中,将溶有甲基丙烯酰氯(0.42g,4.69mmol)的10mL四氢呋喃溶液用恒压漏斗滴加入上述溶液。然后室温20—25摄氏度反应4h。反应结束后,先水洗萃取分液,取有机相,用2M稀盐酸洗涤一次,水洗2次,饱和食盐水洗一次,收集有机相,以乙酸乙酯:PE=1:2(体积比)过硅胶柱,产物为白色针状结晶,产率53%,得到NDMA。1HNMR(400MHz,CDCl3):δ=6.31(s,2H),5.74(d,J=45.1Hz,2H),3.49(dd,J=15.7,8.2Hz,2H),3.32(dd,J=13.6,7.1Hz,4H),2.69(s,3H),1.99(s,2H),1.63-1.49(m,6H),1.27(t,J=12.2Hz,16H),如附图4所示。
实施例3
嵌段共聚物P(NAM-r-NDMA)-b-PNBM的合成:使用二氯甲烷溶解分散Grubbs三代试剂(二氯[1,3-双(2,4,6-三甲基苯基)-2-(咪唑烷亚基)][(亚苄基)双(3-溴吡啶)钌(II))、降冰片烯苄基单体、降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体;单体浓度选择为0.5mmol/mL,先加入159.1mg NBM单体,催化剂和NBM单体的摩尔比1:250,室温反应25min。再加入180.8mg NAM和5.76mg NDMA单体的混合物,聚合反应时间40min,用乙烯基乙醚终止,甲醇沉淀三次,得到白色固体产物。由聚合物核磁谱图所得化学位移6.2左右处单体峰完全消失,证明单体转化完全,如附图5所示。
Figure BDA0001801065030000131
Grubbs三代催化剂引发环烯烃的开环易位聚合,开环易位聚合所得到的聚合物中仍保留了单体中所含有的双键。ROMP是指环状烯烃的开环聚合反应,它包含有四方面的内容:环状烯烃、卡宾络合物催化剂的存在、双键的断裂、首尾连接,聚合机理在Grubbs文章里已有说明(Matthias Scholl,Sheng Ding,Choon Woo Lee,and Robert H.Grubbs,OrganicLetters,Vol.1,No.6,1999)。
实施例4
取15mg的聚合物溶于1mL二氯甲烷中,并加入1wt%的光引发剂2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮。在紫外灯照射下,引发NDMA上双键聚合;通过溶液挥发自组装得到薄膜。再将薄膜浸入乙醚3min,再140℃加热处理。并对其进行反射光谱和扫描电镜表征。
附图6中可以看出:制备的薄膜具有明显的层状结构,且表现为蓝紫色,测得层间距为107nm,最大反射波长为461nm。
实施例5
探索不同碳原子数的单醇的快速鉴别:将制备的薄膜分别浸泡在不同的醇类溶剂:甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇和正辛醇中。其中前五个醇类浸泡时间为5min,后两个浸泡至薄膜颜色不再发生变化,用相机记录颜色并使用紫外可见近红外分光光度计进行反射光谱的表征。
附图7可以得到:使用紫外可见近红外分光光度计进行反射光谱的表征得到最大反射波长为468nm、471nm、494nm、539nm、584nm、656nm和705nm。对应的颜色分别为深蓝色、钴蓝色、湖蓝色、灰蓝色、青色、黄色、橙红色和浅灰色。
实施例6
探索不同异构醇的快速分辨:将制备的光子晶体薄膜分别浸泡在正丙醇和异丙醇以及正丁醇和异丁醇中,大约10min至颜色不再发生变化,用相机记录颜色并使用紫外可见近红外分光光度计进行反射光谱的表征。
附图8可以看出:图A使用紫外可见近红外分光光度计进行反射光谱的表征得到最大反射波长依次为494nm和488nm以及539nm和511nm,图B颜色分别为天蓝色、蓝色、灰蓝色和青色。结合颜色和最大反射波长,能够快速分辨各种异构醇。
实施例7
探索不同比例的醇类混合物的快速鉴别:我们选取了不同比例的甲醇和正己醇的混合溶剂,甲醇体积占混合溶剂总体积的比例为10%、20%、50%、70%和90%。分别浸泡在其中大约10min至颜色不再发生变化,用相机记录颜色并使用紫外可见近红外分光光度计进行反射光谱的表征。
附图9说明:图A使用紫外可见近红外分光光度计进行反射光谱的表征得到溶胀后薄膜最大反射波长为474nm、480nm、491nm、523nm、600nm和652nm。与初始薄膜的差值依次13nm,19nm,30nm,61nm,139nm and 191nm,图C颜色为深蓝色、浅蓝色、灰蓝色、青蓝色、青色、红棕色和红色。而且根据数据分析可得最大反射波长的差值与不同醇的混合比例呈线性关系,y=0.03079x+2.0718,y为不同比例混合溶剂溶胀后的薄膜与初始薄膜最大反射波长的差值的自然对数,x为甲醇体积在混合体系中的百分数占比(即体积百分数),截距和斜率的标准差分别为0.14338和0.00216,拟合度R-Square为0.97593。由此可以通过颜色的变化可以定性和半定量的表明混合醇的比例。
实施例8
探索不同比例的醇水混合物的快速鉴别:我们选取看不同比例的正丁醇和水的混合溶剂,水体积占醇水混合物总体积的比例为2%、5%、10%和15%,分别浸泡在其中大约10min至颜色不再发生变化,用相机记录颜色并使用紫外可见近红外分光光度计进行反射光谱的表征。
附图10说明:使用紫外可见近红外分光光度计进行反射光谱的表征得到溶胀后薄膜最大反射波长与初始薄膜的差值依次13nm、33nm、51nm和59nm。图C颜色分别为青色、灰蓝色、青蓝色、蓝色、普兰色、深蓝色。而且根据数据分析可得最大反射波长的差值与不同醇水的混合比例呈线性关系,y=-4.01877x+72.52011,y为溶胀后薄膜最大反射波长与初始薄膜的差值,x为水体积在混合体系中的百分数占比(即体积百分数),截距和斜率的标准差分别为3.16045和0.37561,拟合度R-Square为0.96595。由此可以通过颜色的变化可以定性和半定量的表明醇水混合的比例。
根据本发明内容进行工艺参数的调整,均可实现嵌段聚合物和光子晶体的制备,经测试表现出与实施例基本一致的性能,即本发明的嵌段共聚物及其光子晶体薄膜在检测醇类溶剂中的应用,根据反射光谱颜色变化和最大发射波长变化对醇类溶剂的种类和/或异构进行定性检测,可考虑在定性检测后,根据在溶剂溶胀后最大反射波长差值(或者其自然对数)与浓度(体积百分数)的线性关系进行定量检测。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (11)

1.基于树枝状单体的嵌段共聚物,其特征在于,由降冰片烯苄基单体、降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体共聚而成,降冰片烯苄基单体形成第一嵌段,降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺的无规聚合段,作为第二嵌段,降冰片烯烷基单体、降冰片烯苄基单体和降冰片烯十二烷基甲基丙烯酰胺单体的摩尔比为300:(230-280):(20-70),其中:
降冰片烯烷基单体如下化学式所示:
Figure FDA0003282677210000011
降冰片烯苄基单体如下化学式所示:
Figure FDA0003282677210000012
降冰片烯十二烷基甲基丙烯酰胺单体如下化学式所示:
Figure FDA0003282677210000021
2.根据权利要求1所述的基于树枝状单体的嵌段共聚物,其特征在于,降冰片烯烷基单体、降冰片烯苄基单体和降冰片烯十二烷基甲基丙烯酰胺单体的摩尔比为300:(250-280):(30-50)。
3.根据权利要求1所述的基于树枝状单体的嵌段共聚物,其特征在于,嵌段共聚物的数均分子量为200-300kDa,分散系数小于1.3。
4.制备如权利要求1-3任一所述的基于树枝状单体的嵌段共聚物的方法,其特征在于,将降冰片烯苄基单体在Grubbs三代催化剂的催化下进行活性开环易位聚合,形成降冰片烯苄基单体的嵌段聚合;再将降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体一起进行投料,两者形成无规共聚段,终止反应后,得到基于树枝状单体的嵌段共聚物,即嵌段共聚物刷P(NAM-r-NDMA)-b-PNBM。
5.根据权利要求4所述的基于树枝状单体的嵌段共聚物的制备方法,其特征在于,采用二氯甲烷作为反应溶剂,并用二氯甲烷溶解分散Grubbs三代催化剂、降冰片烯苄基单体、降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体;在活性开环易位聚合过程中,利用搅拌以使体系均匀参与反应。
6.根据权利要求4所述的基于树枝状单体的嵌段共聚物的制备方法,其特征在于,Grubbs三代催化剂和降冰片烯苄基单体的摩尔比为1:(230-280);在室温20—25℃下进行活性开环易位聚合反应,降冰片烯苄基单体的聚合反应时间为10—30min;加入降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体之后,聚合反应时间为30—60min;加入终止剂以终止活性开环易位聚合反应,终止剂为乙烯基乙醚,加入终止剂终止聚合反应过程中,利用搅拌以使体系均匀停止反应,考虑到反应程度的影响因素,在加入终止剂后搅拌至少10min,以终止聚合反应,使用甲醇/DCM沉淀三次提纯,真空35℃加热干燥得到嵌段共聚物刷P(NAM-r-NDMA)-b-PNBM。
7.根据权利要求6所述的基于树枝状单体的嵌段共聚物的制备方法,其特征在于,Grubbs三代催化剂和降冰片烯苄基单体的摩尔比为1:(250-280);在室温20—25℃下进行活性开环易位聚合反应,降冰片烯苄基单体的聚合反应时间为20—30min;加入降冰片烯烷基单体和降冰片烯十二烷基甲基丙烯酰胺单体之后,聚合反应时间为40—60min;加入终止剂以终止活性开环易位聚合反应,终止剂为乙烯基乙醚,加入终止剂终止聚合反应过程中,利用搅拌以使体系均匀停止反应,考虑到反应程度的影响因素,在加入终止剂后搅拌5—10min,以终止聚合反应,使用甲醇/DCM沉淀三次提纯,真空35℃加热干燥得到嵌段共聚物刷P(NAM-r-NDMA)-b-PNBM。
8.利用如权利要求1-3任一所述的基于树枝状单体的嵌段共聚物的光子晶体,其特征在于,将嵌段共聚物溶解分散在溶剂中并加入光引发剂,引发作为交联剂的降冰片烯十二烷基甲基丙烯酰胺单体保留的碳碳双键进行交联自组装,伴随着溶剂挥发的自组装过程得到光子晶体,即为一维光子晶体薄膜。
9.根据权利要求8所述的利用基于树枝状单体的嵌段共聚物的光子晶体,其特征在于,选择二氯甲烷为溶剂,嵌段共聚物质量/mg和溶剂体积/ml的比例为(10—15):1;光引发剂为2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮,用量为嵌段共聚物质量的1—3%。
10.如权利要求8所述的光子晶体或如权利要求1—3之一所述的基于树枝状单体的嵌段共聚物在检测醇类溶剂中的应用。
11.根据权利要求10所述的应用,其特征在于,由嵌段共聚物制备的光子晶体薄膜为蓝紫色,最大反射波长为461nm,根据反射光谱颜色变化和最大发射波长变化对醇类溶剂的种类和/或异构进行定性检测;根据在溶剂溶胀后最大反射波长差值或者其自然对数与浓度即体积百分数的线性关系进行定量检测,在甲醇和正己醇的混合体系中,y=0.03079x+2.0718,y为不同比例混合溶剂溶胀后的薄膜与初始薄膜最大反射波长的差值的自然对数,x为甲醇体积在混合体系中的百分数占比即体积百分数,截距和斜率的标准差分别为0.14338和0.00216,拟合度R-Square为0.97593;在正丁醇和水的混合体系中,y=-4.01877x+72.52011,y为溶胀后薄膜最大反射波长与初始薄膜的差值,x为水体积在混合体系中的百分数占比即体积百分数,截距和斜率的标准差分别为3.16045和0.37561,拟合度R-Square为0.96595。
CN201811077167.2A 2018-09-15 2018-09-15 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用 Expired - Fee Related CN110903465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811077167.2A CN110903465B (zh) 2018-09-15 2018-09-15 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811077167.2A CN110903465B (zh) 2018-09-15 2018-09-15 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110903465A CN110903465A (zh) 2020-03-24
CN110903465B true CN110903465B (zh) 2022-01-28

Family

ID=69812289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811077167.2A Expired - Fee Related CN110903465B (zh) 2018-09-15 2018-09-15 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110903465B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982834A (zh) * 2020-07-31 2020-11-24 大连大学 一种快速检测有机溶剂蒸汽的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892357A (ja) * 1994-09-27 1996-04-09 Nippon Zeon Co Ltd 変性ノルボルネン系樹脂の製造方法
CN103992484A (zh) * 2014-05-15 2014-08-20 长春理工大学 链端带有大分子的刷状嵌段共聚物及其制备方法
CN104693423A (zh) * 2015-02-02 2015-06-10 华东师范大学 可交联的高介电性降冰片烯类共聚物、降冰片烯交联聚合物及其制备方法
KR101724945B1 (ko) * 2015-11-16 2017-04-10 연세대학교 산학협력단 블록공중합체의 가교반응을 이용한 고체상태 광자결정 박막 제조방법 및 그 광자결정 박막

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892357A (ja) * 1994-09-27 1996-04-09 Nippon Zeon Co Ltd 変性ノルボルネン系樹脂の製造方法
CN103992484A (zh) * 2014-05-15 2014-08-20 长春理工大学 链端带有大分子的刷状嵌段共聚物及其制备方法
CN104693423A (zh) * 2015-02-02 2015-06-10 华东师范大学 可交联的高介电性降冰片烯类共聚物、降冰片烯交联聚合物及其制备方法
KR101724945B1 (ko) * 2015-11-16 2017-04-10 연세대학교 산학협력단 블록공중합체의 가교반응을 이용한 고체상태 광자결정 박막 제조방법 및 그 광자결정 박막

Also Published As

Publication number Publication date
CN110903465A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
Yin et al. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels
Mayer et al. New hybrid covalent networks based on polyoxometalates: Part 1. Hybrid networks based on poly (ethyl methacrylate) chains covalently cross-linked by heteropolyanions: Synthesis and swelling properties
Kulbaba et al. Organometallic gels: Characterization and electrochemical studies of swellable, thermally crosslinked poly (ferrocenylsilane) s
You et al. Excimer emission from self-assembly of fluorescent diblock copolymer prepared by atom transfer radical polymerization
Gao et al. Stoichiometric imbalance-promoted synthesis of polymers containing highly substituted naphthalenes: rhodium-catalyzed oxidative polycoupling of arylboronic acids and internal diynes
Saleem et al. Synthesis of amphiphilic block copolymers containing ferrocene–boronic acid and their micellization, redox-responsive properties and glucose sensing
CN110903465B (zh) 基于树枝状单体的嵌段共聚物、光子晶体及其制备方法和应用
Zhao et al. A kind of smart gold nanoparticle–hydrogel composite with tunable thermo-switchable electrical properties
CN111718450B (zh) 一种有机-无机电极化粒子及其制备方法和应用
CN102174131A (zh) 一种对pH值有荧光响应的橡胶及其制备方法
Pakhira et al. Zwitterionic poly (vinylidene fluoride) graft copolymer with unexpected fluorescence property
Menon et al. Photoresponsive glycopolymer aggregates as controlled release systems
Fortunato et al. Stimuli-responsive luminescent solar concentrators based on photoreversible polymeric systems
Kumar et al. Influence of KI salt concentration on the hydroxypropyl methylcellulose films: Optical study
Zhao et al. Alcohols responsive photonic crystals prepared by self-assembly of dendronized block copolymers
Kurmaz et al. Synthesis and properties of fullerene-containing N-vinylpyrrolidone copolymers
Sun et al. The structure and volume phase transition behavior of poly (N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots
Nakabayashi et al. Design of stimuli-responsive nanoparticles with optoelectronic cores by post-assembly cross-linking and self-assembly of functionalized block copolymers
CN111004371B (zh) 一种AB2单体及其制备的给体-受体-给体-π桥型超支化共轭聚合物及制备方法和应用
Shelake et al. Design and synthesis of glycopolymers for efficient photocatalytic hydrogen evolution
CN105884943B (zh) 一种三联吡啶钌引发剂合成聚苯乙烯磺酸钠的方法
JP5552667B2 (ja) 双連続キュービック液晶構造をとり得る重合性を有する化合物及び双連続キュービック液晶構造を有するイオン伝導性ポリマー
Gries et al. Vinyl-functionalized gold nanoparticles as artificial monomers for the free radical copolymerization with methyl methacrylate
WO2021198311A1 (en) Light-emitting marker
CN108102105B (zh) 多响应性超支化聚合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220128