CN110875421A - 磁阻式存储单元及其制造方法 - Google Patents

磁阻式存储单元及其制造方法 Download PDF

Info

Publication number
CN110875421A
CN110875421A CN201811024412.3A CN201811024412A CN110875421A CN 110875421 A CN110875421 A CN 110875421A CN 201811024412 A CN201811024412 A CN 201811024412A CN 110875421 A CN110875421 A CN 110875421A
Authority
CN
China
Prior art keywords
layer
magnetic
memory cell
magnetoresistive memory
tunneling barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811024412.3A
Other languages
English (en)
Other versions
CN110875421B (zh
Inventor
冯雅圣
陈禹钧
邱久容
林宏展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN201811024412.3A priority Critical patent/CN110875421B/zh
Priority to US16/148,852 priority patent/US10797226B2/en
Publication of CN110875421A publication Critical patent/CN110875421A/zh
Application granted granted Critical
Publication of CN110875421B publication Critical patent/CN110875421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开一种磁阻式存储单元及其制造方法,该磁阻存储单元包括基板。内层介电层设置在所述基板上。导通塞结构设置在所述内层介电层中。磁性固定层设置在所述导通塞结构上。隧穿阻障层设置在所述磁性固定层上,以覆盖所述磁性固定层的顶部与侧壁,其中所述隧穿阻障层包含由所述侧壁的底部向外的水平延伸部分。磁性自由层有
Figure DDA0001788124550000011
状结构,设置在所述隧穿阻障层上,其中所述磁性自由层通过所述隧穿阻障层与所述磁性固定层隔离。间隙壁设置在所述磁性固定层的侧壁,所述间隙壁延伸到所述内层介电层。

Description

磁阻式存储单元及其制造方法
技术领域
本发明涉及半导体制造技术,且特别是涉及磁阻式存储单元的结构及其制造方法。
背景技术
存储器装置会包含大量的存储单元,以阵列的方式构成。在有限的元件面积下,要符合提升存储容量的需求,存储单元的设计就需要能减少尺寸,且能维持其正常的操作。
以磁阻式的存储单元结构,其一般会利用一个磁性隧穿接面结构来达成存储单元功能。磁性隧穿接面(magnetic tunnel junction,MTJ)结构的基本构件包含磁性固定层、隧穿阻障层、以及磁性自由层。隧穿阻障层育于隔离磁性固定层与磁性自由层。磁性固定层具有在固定方向的磁化强度(magnetization)。磁性自由层的铁磁材料有磁化强度,但是其操作方向是会依存储单元操作而可以在两个方向自由翻转。如此,操作方向会与固定方向形成平行或是反平行的状态,其也分别产生不同的磁阻值。磁性自由层相对应一个位(bit),可以存储“0”或“1”的值。
此磁性隧穿接面的存储单元是可以使用半导体的制造技术来制造完成,可以达到缩小元件面积的需求,但是由于元件尺寸的缩小,其磁性自由层与磁性固定层之间的隔离不佳而导通,容易导致存储单元的失败。
在研发上,如何设计磁阻存储单元的结构,以使能相对简易制造且能减少失败率的需求,是一个持续的研发议题(issue)。
发明内容
本发明提供一种磁阻式存储单元的结构及其制造方法,可以容易造,且能维持磁性自由层与磁性固定层之间的隔离效果。
在一实施例中,本发明提供一种磁阻存储单元,包括基板。内层介电层设置在所述基板上。导通塞结构设置在所述内层介电层中。磁性固定层设置在所述导通塞结构上。隧穿阻障层设置在所述磁性固定层上,以覆盖所述磁性固定层的顶部与侧壁,其中所述隧穿阻障层包含由所述侧壁的底部向外的水平延伸部分。磁性自由层有
Figure BDA0001788124530000021
状结构,设置在所述隧穿阻障层上,其中所述磁性自由层通过所述隧穿阻障层与所述磁性固定层隔离。间隙壁设置在所述磁性固定层的侧壁,所述间隙壁延伸到所述内层介电层。
在一实施例中,对于所述磁阻存储单元,所述基板包含硅基板以及金属线层。金属线层设置在所述硅基板上。所述金属线层与所述导通塞结构接触。
在一实施例中,对于所述磁阻存储单元,所述导通塞结构是钨导通塞,所述金属线层是铜线层。
在一实施例中,对于所述磁阻存储单元,所述磁性固定层仅覆盖所述导通塞结构的顶表面的全部。
在一实施例中,对于所述磁阻存储单元,所述磁性固定层至少全部覆盖所述导通塞结构的顶表面。
在一实施例中,对于所述磁阻存储单元,所述磁性固定层覆盖所述导通塞结构的顶表面的一部分。
在一实施例中,对于所述磁阻存储单元,所述隧穿阻障层是氧化镁。
在一实施例中,对于所述磁阻存储单元,所述磁性自由层的所述
Figure BDA0001788124530000022
状结构包含水平部分以及周边部分。周边部分在所述水平部分的周围上,在所述磁性固定层的所述侧壁上,凸出到所述隧穿阻障层的所述水平延伸部分。
在一实施例中,对于所述磁阻存储单元,所述磁性固定层与所述磁性自由层的每一个是单层结构或是多层结构。
在一实施例中,对于所述磁阻存储单元,所述磁性固定层在固定方向有固定磁化强度,所述自由层在操作方向有操作磁化强度,所述固定方向与所述操作方向是平行或是反平行。
在一实施例中,本发明更提供一种制造磁阻存储单元的方法,包括提供基板。形成内层介电层在所述基板上。形成导通塞结构在所述内层介电层中。形成磁性固定层在所述导通塞结构上。形成隧穿阻障层在所述磁性固定层上,以覆盖所述磁性固定层的顶部与侧壁,其中所述隧穿阻障层包含由所述侧壁的底部向外的水平延伸部分。形成磁性自由层,其有
Figure BDA0001788124530000023
状结构在所述隧穿阻障层上,其中所述磁性自由层通过所述隧穿阻障层与所述磁性固定层隔离。形成间隙壁在所述磁性自由层的侧壁,所述间隙壁延伸到所述内层介电层。
在一实施例中,对于所述制造磁阻存储单元的方法,所述基板包含硅基板以及金属线层。金属线层设置在所述硅基板上,其中所述金属线层与所述导通塞结构接触。
在一实施例中,对于所述制造磁阻存储单元的方法,所述导通塞结构是钨导通塞,所述金属线层是铜线层。
在一实施例中,对于所述制造磁阻存储单元的方法,所述磁性固定层仅覆盖所述导通塞结构的顶表面的全部。
在一实施例中,对于所述制造磁阻存储单元的方法,所述磁性固定层至少全部覆盖所述导通塞结构的顶表面。
在一实施例中,对于所述制造磁阻存储单元的方法,所述磁性固定层覆盖所述导通塞结构的顶表面的一部分。
在一实施例中,对于所述制造磁阻存储单元的方法,所述隧穿阻障层是氧化镁。
在一实施例中,对于所述制造磁阻存储单元的方法,所述隧穿阻障层与所述磁性自由层的形成包含:形成初始隧穿阻障层与初始磁性自由层于所述基板上方,全部覆盖所述磁性固定层;以及图案化所述初始磁性自由层与所述初始隧穿阻障层,得到所述
Figure BDA0001788124530000031
状结构。所述
Figure BDA0001788124530000032
状结构包含水平部分以及周边部分。周边部分在所述水平部分的周围上,在所述磁性固定层的所述侧壁上,凸出到所述隧穿阻障层的所述水平延伸部分。
在一实施例中,对于所述制造磁阻存储单元的方法,所述磁性固定层与所述磁性自由层的每一个是单层结构或是多层结构。
在一实施例中,对于所述制造磁阻存储单元的方法,所述磁性固定层在固定方向有固定磁化强度,所述自由层在操作方向有操作磁化强度,所述固定方向与所述操作方向是平行或是反平行。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1为本发明一实施例,磁阻式存储器电路结构示意图;
图2为本发明一实施例,磁阻式存储器半导体结构示意图;
图3A-图3D为本发明一实施例,磁阻存储单元的制造方法的剖面结构示意图;以及
图4A-图4G为本发明一实施例,磁阻存储单元的制造方法的剖面结构示意图。
附图标号说明
100:存储器电路
102:磁性存储叠层
104:晶体管
106:磁性固定层
108:隧穿阻障层
110:磁性自由层
120:位线
122:源线
124:字线
150:存储器结构
180:硅基板
190:基板
200:内层介电层
202:金属线层
204:内层介电层
206:导通塞结构
208:电镀种层
210:磁性固定层
212:隧穿阻障层
214:磁性自由层
216:磁性存储叠层
218:介电层
222:介电层
224:间隙壁
250:磁性固定层
252:氮化层
254:氧化层
256:隧穿阻障层
258:磁性自由层
260:掩模层
262:掩模层
264:磁性存储叠层
266:介电层
268:间隙壁
具体实施方式
本发明是关于磁阻式存储器的技术,其包含使用磁性隧穿接面(magnetic tunneljunction,MTJ)叠层的存储单元,当作一个位(bit)用来记录数据。
本发明在对磁阻存储单元的结构进行详细探讨(look into)而观察到一些可能的缺陷,进而提出磁阻存储单元的结构设计,利于制造而能降低元件的是失败率。
以下举一些实施例来说明本发明,但是本发明不限于所举的实施例。
本发明对于磁阻式存储器的技术,先进行详细探讨。图1为依据本发明一实施例,磁阻式存储器电路结构示意图。参阅图1,磁阻式的存储器电路100依据一实施例会包含磁性存储叠层102以及控制的晶体管104,例如在晶体管104在导通时可以读取磁性忆叠层102的磁阻,而确定所存储的数据。磁性存储叠层102一般是包含磁性固定层106以及磁性自由层110。隧穿阻障(tunnel barrier)层108在磁性固定层106与磁性自由层110之间用以相互隔离。磁性固定层106具有固定方向的磁场强度(magnetization),当作磁场参考方向,不会随操作变动。磁性自由层110具有磁场强度的方向会随写入操作而在两个方向自由翻转,如此与固定方向构成平行或是反平行。平行与反平行的磁阻值不同,如此可以辨认所存储的数据值。
图2为依据本发明一实施例,磁阻式存储器半导体结构示意图。参阅图2,从半导体制造技术的观点来看存储器结构150,其包含制造完成的磁性存储叠层102以及晶体管104。控制磁性存储叠层102以及晶体管104的周围电路包括位线(bit line)120连接到磁阻存储叠层102的磁性自由层。晶体管104连接在磁阻存储叠层102的磁性固定层与源线(sourceline)122之间。晶体管104的栅极连接到字线(word line)124。
磁阻式存储器的前述实施例仅是用来描述一般的架构,实际上依照实际涉及可以有多种不同的架构,其中会包含使用磁阻存储叠层102当作记录的数据的工具。本发明不限于所举的整体应用,而对磁阻存储叠层102做进一步的探讨。
利用半导体技术来制造磁性存储叠层102的其中一种方式是先完成磁性的叠层结构后,而同时对叠层结构图案化。图3A-图3D为依据本发明一实施例,磁阻存储单元的制造方法的剖面结构示意图。
参阅图3A,以基板190当作结构的基础。基板190例如包括硅基板180以及在硅基板180上的金属线层202。如一般半导体制造技术,金属线层202的制造会利用内层介电层(inter-layer dielectric layer)200来完成。金属线层202例如是铜材料,当作内连线的功用。换句话说,基板190代表一些已经完成的一部分元件结构,其后续要继续形成如图3D的存储叠层216,当作磁性隧穿接面的存储叠层。
另一个内层介电层204接着形成在基板190上。内层介电层204可以是单层结构或是多层结构。本实施例以二层结构为例。利用半导体制造工艺(process)在内层介电层204中形成导通塞结构206,其一般例如通过电镀工艺与研磨工艺来完成。导通塞结构206的材料例如是钨。另外为了增加电镀品质,其也会先形成电镀种层(plating seed layer)208,其后才进行电镀。
后续在继续形成初始的(preliminary)存储叠层216,包含磁性固定层210、隧穿阻障层212、磁性自由层214。磁性固定层210与磁性自由层214是铁磁材料。隧穿阻障层212用以隔离磁性固定层210与磁性自由层214,其材料例如是氧化镁。另外,依照实际制造或是保护的需要,其上还可以有其它的介电层218,但本发明不限于此。
参阅3B,依照存储单元所预定的尺寸,一个图案化工艺会对介电层218、初始的磁性存储叠层216进形图案化,而得到所要尺寸的磁性存储叠层216。
在此,本发明观察到由于图案化工艺包含时刻过程,其会把导通塞结构206的角落暴露出来。另外,由于磁性固定层210与磁性自由层214是铁磁材料,由仅由薄的隧穿阻障层212隔离,因此在磁性存储叠层216的侧壁很可能会有残留物,导致磁性固定层210与磁性自由层214桥接。
为了避免磁性固定层210与磁性自由层214之间的桥接,其需要在增加再一次的离子束蚀刻,将在侧壁上可能产生桥接的残留物进一步清除。
参阅图3C,介电层222覆盖磁性存储叠层216的表面,且同时覆盖导通塞结构206被暴露的角落区域。参阅图3D,对介电层222进行回蚀刻工艺而暴露磁性存储叠层216的顶面,而介电层222的残留部分构成间隙壁224,覆盖在磁性存储叠层216侧壁。在此可以看到,导通塞结构206被暴露的角落区域是通过间隙壁224来绝缘,其绝缘效果也可能不足。
在检视前述的制造方法,本发明至少观察到一需缺陷。本发明进一部提出另一实施例的制造方法。
图4A-图4G为依据本发明一实施例,磁阻存储单元的制造方法的剖面结构示意图。参阅图4A,基板190、内层介电层204以及导通塞结构206如图3A相同,不再描述。接着,初始的磁性固定层250形成于内层介电层204上,与导通塞结构206接触达到电性连接。另外基于后续蚀刻的保护或是其它制造工艺的需要,磁性固定层250上例如还形成有掩模层,例如包括氮化层252及氧化层254。
参阅图4B,对初始的磁性固定层250以及氮化层252及氧化层254图案化,得到所需要尺寸的磁性固定层250,其中氮化层252及氧化层254也都被移除。
在一实施例中,磁性固定层250的宽度W1是比导通塞结构206的宽度W2小,也就是说,磁性固定层250仅覆盖导通塞结构206的顶表面的一部分。然而,本发明不限于此实施例。依照需要,磁性固定层250的宽度W1可以与导通塞结构206的宽度W2相等,例如可以刚好覆盖导通塞结构206的全部顶面。另外一实施例,宽度可以适当的大于宽度W2。
参阅图4C,隧穿阻障层256形成在基板190的上方,覆盖磁性固定层250的暴露表面,也覆盖磁性固定层250周围的内层介电层204。
参阅图4D,初始的磁性自由层258形成于隧穿阻障层256上。磁性自由层258与磁性固定层250被隧穿阻障层256隔离。接着在磁性自由层258上形成不同材料的掩模层260、262。例如,掩模层260是氮化硅的材料,掩模层262是氧化硅的材料。
参阅图4E,其进形图案化工艺,对掩模层260、262、磁性自由层258、隧穿阻障层256、磁性固定层250图案化成磁性存储叠层264,其中掩模层260、262也被移除暴露出磁性存储叠层264。
在此,磁性自由层258的宽度要大于磁性固定层250,因此磁性自由层258的结构是
Figure BDA0001788124530000081
状结构。
Figure BDA0001788124530000082
状结构包含水平部分以及周边部分。周边部分在水平部分的周围上,在磁性固定层250的侧壁上,凸出到隧穿阻障层256的水平延伸部分。在此,隧穿阻障层256的水平延伸部分会将下方的导通塞结构206覆盖,没有暴露的区域。另外隧穿阻障层256的水平延伸部分可以有效隔离磁性自由层258与磁性固定层250,因此磁性自由层258与磁性固定层250之间不会有如图3B的情形,可以有效避免磁性自由层258与磁性固定层250之间产生桥接的问题。在此,隧穿阻障层256的水平延伸部分的长度是对应
Figure BDA0001788124530000083
状结构的周边部分,其不是无限度的延伸,而是在磁性自由层258能维持正常运作的范围内。
参阅图4F,隔离磁性自由层258的侧壁需要形成间隙壁来保护与绝缘磁性存储叠层264,其形成间隙壁的方法例如会先形成介电层266覆盖于上方。参阅图4G,接着利用回蚀刻将介电层266在磁性固定层250的顶部的部分移除,而介电层266的余留部分就构成间隙壁268。间隙壁268的形成方式不仅限于上述方式。间隙壁268例如会延伸到下方的内层介电层204,达到完整对绝缘磁性存储叠层264的侧部的绝缘效果。
本发明提出磁性自由层258是
Figure BDA0001788124530000084
状结构,至少可以有效避免磁性自由层258与磁性固定层250之间产生桥接的问题,且导通塞结构206可以较完整的保护,减少被损坏的情形。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

1.一种磁阻存储单元,其特征在于,包括:
基板;
内层介电层,设置在所述基板上;
导通塞结构,设置在所述内层介电层中;
磁性固定层,设置在所述导通塞结构上;
隧穿阻障层,设置在所述磁性固定层上,以覆盖所述磁性固定层的顶部与侧壁,其中所述隧穿阻障层包含由所述侧壁的底部向外的水平延伸部分;
磁性自由层,有
Figure FDA0001788124520000011
状结构设置在所述隧穿阻障层上,其中所述磁性自由层通过所述隧穿阻障层与所述磁性固定层隔离;以及
间隙壁,设置在所述磁性自由层的侧壁,所述间隙壁延伸到所述内层介电层。
2.根据权利要求1所述的磁阻存储单元,其特征在于,所述基板包含:
硅基板;以及
金属线层,设置在所述硅基板上,其中所述金属线层与所述导通塞结构接触。
3.根据权利要求2所述的磁阻存储单元,其特征在于,所述导通塞结构是钨导通塞,所述金属线层是铜线层。
4.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性固定层仅覆盖所述导通塞结构的顶表面的全部。
5.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性固定层至少全部覆盖所述导通塞结构的顶表面。
6.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性固定层覆盖所述导通塞结构的顶表面的一部分。
7.根据权利要求1所述的磁阻存储单元,其特征在于,所述隧穿阻障层是氧化镁。
8.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性自由层的所述
Figure FDA0001788124520000012
状结构包含:
水平部分;以及
周边部分,在所述水平部分的周围上,在所述磁性固定层的所述侧壁上,凸出到所述隧穿阻障层的所述水平延伸部分。
9.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性固定层与所述磁性自由层的每一个是单层结构或是多层结构。
10.根据权利要求1所述的磁阻存储单元,其特征在于,所述磁性固定层在固定方向有固定磁化强度,所述自由层在操作方向有操作磁化强度,所述固定方向与所述操作方向是平行或是反平行。
11.一种制造磁阻存储单元的方法,包括:
提供基板;
形成内层介电层,在所述基板上;
形成导通塞结构,在所述内层介电层中;
形成磁性固定层,在所述导通塞结构上;
形成隧穿阻障层,在所述磁性固定层上,以覆盖所述磁性固定层的顶部与侧壁,其中所述隧穿阻障层包含由所述侧壁的底部向外的水平延伸部分;
形成磁性自由层,有
Figure FDA0001788124520000021
状结构在所述隧穿阻障层上,其中所述磁性自由层通过所述隧穿阻障层与所述磁性固定层隔离;以及
形成间隙壁,在所述磁性自由层的侧壁,所述间隙壁延伸到所述内层介电层。
12.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述基板包含:
硅基板;以及
金属线层,设置在所述硅基板上,其中所述金属线层与所述导通塞结构接触。
13.根据权利要求12所述的制造磁阻存储单元的方法,其特征在于,所述导通塞结构是钨导通塞,所述金属线层是铜线层。
14.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述磁性固定层仅覆盖所述导通塞结构的顶表面的全部。
15.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述磁性固定层至少全部覆盖所述导通塞结构的顶表面。
16.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述磁性固定层覆盖所述导通塞结构的顶表面的一部分。
17.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述隧穿阻障层是氧化镁。
18.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述隧穿阻障层与所述磁性自由层的形成包含:
形成初始隧穿阻障层与初始磁性自由层于所述基板上方,全部覆盖所述磁性固定层;以及
图案化所述初始磁性自由层与所述初始隧穿阻障层,得到所述
Figure FDA0001788124520000031
状结构,
其中所述
Figure FDA0001788124520000032
状结构包含
水平部分;以及
周边部分,在所述水平部分的周围上,在所述磁性固定层的所述侧壁上,凸出到所述隧穿阻障层的所述水平延伸部分。
19.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述磁性固定层与所述磁性自由层的每一个是单层结构或是多层结构。
20.根据权利要求11所述的制造磁阻存储单元的方法,其特征在于,所述磁性固定层在固定方向有固定磁化强度,所述自由层在操作方向有操作磁化强度,所述固定方向与所述操作方向是平行或是反平行。
CN201811024412.3A 2018-09-04 2018-09-04 磁阻式存储单元及其制造方法 Active CN110875421B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811024412.3A CN110875421B (zh) 2018-09-04 2018-09-04 磁阻式存储单元及其制造方法
US16/148,852 US10797226B2 (en) 2018-09-04 2018-10-01 Magnetoresistive memory cell and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811024412.3A CN110875421B (zh) 2018-09-04 2018-09-04 磁阻式存储单元及其制造方法

Publications (2)

Publication Number Publication Date
CN110875421A true CN110875421A (zh) 2020-03-10
CN110875421B CN110875421B (zh) 2023-05-23

Family

ID=69641631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811024412.3A Active CN110875421B (zh) 2018-09-04 2018-09-04 磁阻式存储单元及其制造方法

Country Status (2)

Country Link
US (1) US10797226B2 (zh)
CN (1) CN110875421B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809117A (zh) * 2020-06-16 2021-12-17 联华电子股份有限公司 半导体元件及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129289B (zh) 2018-10-31 2023-05-30 联华电子股份有限公司 半导体元件及其制作方法
US20230144157A1 (en) * 2021-11-07 2023-05-11 International Business Machines Corporation Etching of magnetic tunnel junction (mtj) stack for magnetoresistive random-access memory (mram)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081952A1 (en) * 2004-10-05 2006-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Inflected Magnetoresistive Structures, Memory Cells Having Inflected Magnetoresistive Structures, and Fabrication Methods
US20100078763A1 (en) * 2008-09-29 2010-04-01 Kabushiki Kaisha Toshiba Resistance-change memory having resistance-change element and manufacturing method thereof
CN102292815A (zh) * 2009-02-02 2011-12-21 高通股份有限公司 磁性隧道结(mtj)存储元件和具有mtj的自旋转移力矩磁阻随机存取存储器(stt-mram)单元
US20130015540A1 (en) * 2011-07-13 2013-01-17 Won Joon Choi Magnetic tunnel junction device and method for fabricating the same
CN105552214A (zh) * 2015-12-09 2016-05-04 中电海康集团有限公司 一种垂直磁化的磁电阻随机存储器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215609B2 (ja) * 2003-09-29 2009-01-28 株式会社東芝 磁気セル及び磁気メモリ
JP6043478B2 (ja) * 2010-12-07 2016-12-14 三星電子株式会社Samsung Electronics Co.,Ltd. 磁気異方性物質の自由磁性層を含むストレージノード、これを含む磁気メモリ素子及びその製造方法
KR101909201B1 (ko) * 2012-05-18 2018-10-17 삼성전자 주식회사 자기저항요소 및 이를 포함하는 메모리소자
US9444035B2 (en) 2014-09-10 2016-09-13 Qualcomm Incorporated Magnesium oxide capping with a shorted path for perpendicular magnetic tunnel junction devices and method for fabrication
US9337415B1 (en) 2015-03-20 2016-05-10 HGST Netherlands B.V. Perpendicular spin transfer torque (STT) memory cell with double MgO interface and CoFeB layer for enhancement of perpendicular magnetic anisotropy
KR102356356B1 (ko) * 2017-05-31 2022-01-28 에스케이하이닉스 주식회사 세정 조성물 및 이를 이용하는 전자 장치의 제조방법
US10163651B1 (en) * 2017-09-28 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and method to expose memory cells with different sizes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081952A1 (en) * 2004-10-05 2006-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Inflected Magnetoresistive Structures, Memory Cells Having Inflected Magnetoresistive Structures, and Fabrication Methods
US20100078763A1 (en) * 2008-09-29 2010-04-01 Kabushiki Kaisha Toshiba Resistance-change memory having resistance-change element and manufacturing method thereof
CN102292815A (zh) * 2009-02-02 2011-12-21 高通股份有限公司 磁性隧道结(mtj)存储元件和具有mtj的自旋转移力矩磁阻随机存取存储器(stt-mram)单元
US20130015540A1 (en) * 2011-07-13 2013-01-17 Won Joon Choi Magnetic tunnel junction device and method for fabricating the same
CN105552214A (zh) * 2015-12-09 2016-05-04 中电海康集团有限公司 一种垂直磁化的磁电阻随机存储器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809117A (zh) * 2020-06-16 2021-12-17 联华电子股份有限公司 半导体元件及其制作方法
US11821964B2 (en) 2020-06-16 2023-11-21 United Microelectronics Corp. Magnetoresistive random access memory and method for fabricating the same
CN113809117B (zh) * 2020-06-16 2023-12-22 联华电子股份有限公司 半导体元件及其制作方法

Also Published As

Publication number Publication date
US10797226B2 (en) 2020-10-06
CN110875421B (zh) 2023-05-23
US20200075840A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN110875352B (zh) 集成电路、mram单元和用于制造存储器件的方法
KR102281557B1 (ko) 스페이서를 포함한 mram mtj 최상부 전극과 금속층간 계면을 위한 기술들
CN106356448B (zh) 用于磁隧道结器件的制造技术和相应的器件
KR100608248B1 (ko) 엠램 전극용 키퍼
US9306156B2 (en) Methods of manufacturing a magnetoresistive random access memory device
US10283698B2 (en) Semiconductor devices and methods of fabricating the same
US8415756B2 (en) Semiconductor device and method of manufacturing the same
US7508700B2 (en) Method of magnetic tunneling junction pattern layout for magnetic random access memory
US7523543B2 (en) Methods of forming magnetic memory devices including ferromagnetic spacers
CN106298831A (zh) 用于mram mtj顶部电极连接的技术
US9231193B2 (en) Magnetic memory and manufacturing method thereof
KR102212558B1 (ko) 자기 메모리 소자의 제조 방법
JP5080102B2 (ja) 磁気記憶装置の製造方法および磁気記憶装置
CN101911326A (zh) 存储器单元和形成存储器单元的磁性隧道结(mtj)的方法
US10211396B2 (en) Semiconductor device having magnetic tunnel junction structure and method of fabricating the same
CN110875421B (zh) 磁阻式存储单元及其制造方法
JP2009135223A (ja) 半導体装置およびその製造方法
US12016250B2 (en) MRAM structure and method of fabricating the same
US9196832B2 (en) Fabrication method of vertical type semiconductor memory apparatus
KR102721029B1 (ko) 반도체 장치 및 이의 제조 방법
US12069960B2 (en) Magnetic random access memory structure
US20220140229A1 (en) Method for fabricating memory cell of magnetoresistive random access memory
CN118524709A (zh) 磁存储器及其制备方法
CN117202759A (zh) 磁性存储器器件及其制造方法
KR20060011673A (ko) 자화집속층을 갖는 디지트라인 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant