CN110838519A - 柔性ZnO/NiO/ZnO多功能三极管及其制备方法 - Google Patents

柔性ZnO/NiO/ZnO多功能三极管及其制备方法 Download PDF

Info

Publication number
CN110838519A
CN110838519A CN201910977844.4A CN201910977844A CN110838519A CN 110838519 A CN110838519 A CN 110838519A CN 201910977844 A CN201910977844 A CN 201910977844A CN 110838519 A CN110838519 A CN 110838519A
Authority
CN
China
Prior art keywords
zno
flexible
nio
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910977844.4A
Other languages
English (en)
Other versions
CN110838519B (zh
Inventor
徐旻轩
李馨
金成超
何志伟
张骐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201910977844.4A priority Critical patent/CN110838519B/zh
Publication of CN110838519A publication Critical patent/CN110838519A/zh
Application granted granted Critical
Publication of CN110838519B publication Critical patent/CN110838519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种柔性ZnO/NiO/ZnO多功能三极管,该结构为从上到下依次为发射极、基极、集电极、柔性导电衬底;所述的柔性导电衬底为柔性衬底上设有导电层;所述的发射极材料为ZnO,所述的基极材料为NiO,所述的集电材料为ZnO,所述的发射极、基极、集电极的一侧对齐,所述的发射极和柔性衬底的导电层上设有电极。本发明通过压电效应与半导体能带工程的耦合作用实现该晶体管在光电探测,力电传感以及纳米发电等多种功能化应用。

Description

柔性ZnO/NiO/ZnO多功能三极管及其制备方法
技术领域
本发明涉及一种三极管,具体涉及一种柔性ZnO/NiO/ZnO多功能三极管及其制备方法。
背景技术
三极管体积小、重量轻、耗电少、寿命长、可靠性高,已广泛用于广播、电视、通信、雷达、计算机、家用电器等领域,可起到放大、振荡、开关等作用。特别在超高频应用中,如无线系统中的射频电路。
一直以来三极管的研究都备受关注,其研究工作主要侧重第一代和第二代半导体材料。硅(Si)作为第一代半导体材料的典型代表,以其优越的电子特性及热稳定性,被广泛用于电子元器件的制备,目前市场上的三极管以Si基为主。砷化铟(InAs)和砷化镓(GaAs)等第二代半导体材料拥有较Si更优异的电子特性,如高频特性,高击穿电压等,但其制作的三极管放大倍数小,导热性差,并不适宜制作大功率器件。因此基于第三代半导体材料的三极管开发逐渐成为热门。
氧化锌(ZnO)作为典型的第三代半导体材料,制备工艺成熟,成膜性强且易于找到晶格匹配的衬底材料。这些特点可大大降低制备薄膜晶体管的成本,并有利于提高薄膜质量。另外,ZnO为n型宽禁带材料,可与许多P型薄膜接触形成异质结,利于载流子的运输并抑制空穴从基极到发射极的注入,提高发射效率,增加电流增益,以上优势使ZnO成为制作高性能三极管的潜力材料。但目前关于ZnO基三极管的报道极少,且止步于三极管的基础性能研究,而对其他功能毫无关注,这使得ZnO基三极管在未来智能电子市场中表现出较弱的竞争优势,因此急需开发一种基于ZnO异质结的薄膜晶体管,并积极开发其各项功能的应用。
发明内容
本发明针对现有技术的不足,提出了一种柔性ZnO/NiO/ZnO多功能三极管及其制备方法。
本发明一种三极管为磁控溅射制备的ZnO/NiO/ZnO平面结构。设计思路以n型半导体ZnO作为集电极(C)和发射极(E),以p型半导体NiO为基极(B),在导电PET柔性衬底上构筑该npn型薄膜三极管,其中双层ZnO层与中间NiO层构成2个pn结区,结区载流子输运行为可被光照、应变等外场调控,从而实现光电探测、力电传感甚至纳米发电等功能。
本发明一种柔性ZnO/NiO/ZnO多功能三极管,该结构为从上到下依次为发射极、基极、集电极、柔性导电衬底;所述的柔性导电衬底为柔性衬底上设有导电层;所述的发射极材料为ZnO,所述的基极材料为NiO,所述的集电材料为ZnO,所述的发射极、基极、集电极的一侧对齐,所述的发射极和柔性衬底的导电层上设有电极。
作为优选,所述集电极为20mm×10mm×320nm大小的薄膜,采用导电PET为基底通过磁控溅射法进行制备。
作为优选,所基极为20mm×10mm×80nm大小的薄膜,在集电极上直接磁控溅射进行制备。
作为优选,所述发射极层为5mm×10mm×320nm大小的薄膜,在基极上直接磁控溅射进行制备。
作为优选,所述的导电层为ITO涂层。
作为优选,所述的柔性衬底为PET片。
作为优选,所述电极材料为银、铂或金。
柔性ZnO/NiO/ZnO多功能三极管的制备方法,该方法具体包括以下步骤:
步骤一:柔性衬底在丙酮、酒精、去离子水中各超声10分钟,然后用N2吹干备用;
步骤二:采用磁控溅射法在柔性衬底上直接制备导电层;
步骤三:通过PI胶带遮盖部分导电层,通过磁控溅射在导电层上制备n型ZnO薄膜作为集电极;
步骤四:在集电极表面直接磁控溅射制备p型NiO薄膜作为基极;
步骤五:通过PI胶带遮盖部分基极,采用与集电极相同的参数进行磁控溅射制备n型ZnO薄膜作为发射极;
步骤六:撕去两层PI胶带,裸露出部分导电层和基极,将两个电极分别设置在发射极和柔性衬底的导电层上。
本发明的有益效果在于:本发明提供了一种柔性多功能的薄膜三极管及其制备方法,以压电材料ZnO为n型薄膜,NiO为p型薄膜,构筑npn型的柔性三极管。通过压电效应与半导体能带工程的耦合作用实现该晶体管在光电探测,力电传感以及纳米发电等多种功能化应用。
附图说明
图1为本发明基于ZnO/NiO/ZnO双异质结结构的柔性多功能三极管示意图;
图2为本发明一个实施例中柔性多功能三极管对紫外光的探测结果图;
图3为本发明实施例中柔性多功能三极管对应变的传感结果图;
图4为本发明实施例中柔性多功能三极管作为纳米发电机的电流输出图。
具体实施方式
下面将结合附图及具体实施例对本发明作进一步详细说明。
参见图1,本发明提供一种柔性多功能薄膜三极管的设计方案,包含:柔性衬底1,所述柔性衬底为绝缘的长方形PET薄片,分别在丙酮、酒精、去离子水中各超声10分钟,然后用N2吹干备用;导电层2,所述导电层为ITO涂层,高度透明,采用磁控溅射法在柔性衬底上直接制备;集电极3,所述集电极为n型ZnO薄膜,以带有导电层的柔性衬底为基底,通过磁控溅射进行制备,制备前需用PI胶带遮盖部分导电层;基极4,所述基极为p型NiO薄膜,制备工艺为在集电极表面直接磁控溅射;发射极5,所述发射级为n型ZnO薄膜,采用与集电极相同的参数进行磁控溅射,溅射前需用PI胶带遮盖大部分基极表面;金属电极6,所述金属电极为Ag电极,各层薄膜溅射完毕后撕去两层PI胶带,裸露出部分导电层和基极,通过银胶将外接导线分别固定于导电层、基极和发射极。
参见图2,所述柔性多功能薄膜三极管对紫外光具有明显的响应特性。采用紫外光波长为254nm,照射中心为裸露的基极表面,照射区域及距离固定,光强密度为20μW/cm2。当发射极-集电极电压恒为1V时,发射极-集电极电流初始值为42nA,经紫外光照后,电流升至56nA,且在关闭光照后迅速回落至初始电流附近。该三极管的光电探测原理为紫外光照到NiO基区上时,会有电子-空穴对在两个pn结区附近产生,这些电子-空穴对在pn结的内建电场下快速向两端分离。后在基区漂移场作用下空穴向发射区流动聚集,电子进入集电区。由于三极管中以电子为主流载流子,且流动方向为发射极-集电极,根据其能带图发现三极管中电子的输运行为主要受到发射极-基极结区的调控。而在发射区聚集的空穴会使ZnO发射极的导带和价带升高,从而导致发射极-基极结区的势垒高度降低,这会促进ZnO发射极层电子到NiO基极层的运输,即导致了三极管中电流信号的放大。
参见图3,所述柔性多功能薄膜三极管对应变信号具有明显的响应特性。当发射极-集电极加载正向扫描电压至8V时,发射极-集电极电流随三极管水平拉伸而降低,水平压缩而增大;且应变量越大,电流变化幅度越明显。该三极管的力电传感是基于n型ZnO发射极层的压电效应对发射极-基极结区势垒高度的调控规律。当三极管施加水平方向拉伸应变时,ZnO发射极层受到垂直方向的压应力,应力方向与ZnO的C轴方向相反,即发射极的下表面聚集了大量负电荷,发射极-基极结区的势垒高度被提升,抑制了ZnO发射极层电子到NiO基极层的运输;而当三极管施加反向应变时,ZnO发射极层实际受到垂直方向的拉应力,在其下表面产生正电荷,降低了发射极-基极结区的势垒高度,从而提高了ZnO发射极层电子到NiO基极层的运输。
参见图4,所述柔性多功能薄膜三极管可实现纳米发电功能。当无外加偏压时,反复弯曲三极管可得到约4nA的输出电流,该电流是由n型ZnO发射极层和集电极层的压电效应引起。三极管弯曲形变时,ZnO薄膜的上、下表面分别诱发聚集正、负电荷,即三极管内产生了压电电场,外部电子在该压电电场的驱动下流动,宏观表现为可测量的电流信号。

Claims (8)

1.柔性ZnO/NiO/ZnO多功能三极管,其特征在于:该结构为从上到下依次为发射极、基极、集电极、柔性导电衬底;所述的柔性导电衬底为柔性衬底上设有导电层;所述的发射极材料为ZnO,所述的基极材料为NiO,所述的集电材料为ZnO,所述的发射极、基极、集电极的一侧对齐,所述的发射极和柔性衬底的导电层上设有电极。
2.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所述集电极为20mm×10mm×320nm大小的薄膜,采用导电PET为基底通过磁控溅射法进行制备。
3.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所基极为20mm×10mm×80nm大小的薄膜,在集电极上直接磁控溅射进行制备。
4.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所述发射极层为5mm×10mm×320nm大小的薄膜,在基极上直接磁控溅射进行制备。
5.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所述的导电层为ITO涂层。
6.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所述的柔性衬底为PET片。
7.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管,其特征在于:所述电极材料为银、铂或金。
8.根据权利要求1所述的柔性ZnO/NiO/ZnO多功能三极管的制备方法,其特征在于,该方法具体包括以下步骤:
步骤一:柔性衬底在丙酮、酒精、去离子水中各超声10分钟,然后用N2吹干备用;
步骤二:采用磁控溅射法在柔性衬底上直接制备导电层;
步骤三:通过PI胶带遮盖部分导电层,通过磁控溅射在导电层上制备n型ZnO薄膜作为集电极;
步骤四:在集电极表面直接磁控溅射制备p型NiO薄膜作为基极;
步骤五:通过PI胶带遮盖部分基极,采用与集电极相同的参数进行磁控溅射制备n型ZnO薄膜作为发射极;
步骤六:撕去两层PI胶带,裸露出部分导电层和基极,将两个电极分别设置在发射极和柔性衬底的导电层上。
CN201910977844.4A 2019-10-15 2019-10-15 柔性ZnO/NiO/ZnO多功能三极管及其制备方法 Active CN110838519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910977844.4A CN110838519B (zh) 2019-10-15 2019-10-15 柔性ZnO/NiO/ZnO多功能三极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910977844.4A CN110838519B (zh) 2019-10-15 2019-10-15 柔性ZnO/NiO/ZnO多功能三极管及其制备方法

Publications (2)

Publication Number Publication Date
CN110838519A true CN110838519A (zh) 2020-02-25
CN110838519B CN110838519B (zh) 2022-07-19

Family

ID=69575367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910977844.4A Active CN110838519B (zh) 2019-10-15 2019-10-15 柔性ZnO/NiO/ZnO多功能三极管及其制备方法

Country Status (1)

Country Link
CN (1) CN110838519B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361253A (zh) * 2021-12-29 2022-04-15 东南大学 一种氧化物半导体双极型晶体管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228414A1 (en) * 2006-03-31 2007-10-04 Sandisk 3D, Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
WO2009152207A2 (en) * 2008-06-11 2009-12-17 Lumenz, Inc. Zinc oxide alloys and devices including the same
US20130178014A1 (en) * 2012-01-05 2013-07-11 PengFei WANG Method for manufacturing a gate-control diode semiconductor memory device
CN103794692A (zh) * 2014-01-27 2014-05-14 河南科技大学 一种氧化锌基异质结发光器件及其制备方法
WO2018019292A1 (zh) * 2016-07-29 2018-02-01 北京纳米能源与系统研究所 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228414A1 (en) * 2006-03-31 2007-10-04 Sandisk 3D, Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
WO2009152207A2 (en) * 2008-06-11 2009-12-17 Lumenz, Inc. Zinc oxide alloys and devices including the same
US20130178014A1 (en) * 2012-01-05 2013-07-11 PengFei WANG Method for manufacturing a gate-control diode semiconductor memory device
CN103794692A (zh) * 2014-01-27 2014-05-14 河南科技大学 一种氧化锌基异质结发光器件及其制备方法
WO2018019292A1 (zh) * 2016-07-29 2018-02-01 北京纳米能源与系统研究所 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAN-QUI LE.ET.AL: "Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite)", 《NANO ENERGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361253A (zh) * 2021-12-29 2022-04-15 东南大学 一种氧化物半导体双极型晶体管及其制备方法

Also Published As

Publication number Publication date
CN110838519B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Rasool et al. Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes
WO2012021968A1 (en) Organic/inorganic hybrid optical amplifier with wavelength conversion
CN104900747B (zh) 基于GaN的光电集成器件及其制备方法、外延结构
CN110838519B (zh) 柔性ZnO/NiO/ZnO多功能三极管及其制备方法
CN104900689A (zh) 降低基区电阻率的GaN基HBT外延结构及生长方法
CN105895670A (zh) 带GaN子阱的共振隧穿二极管
CN109273555A (zh) 一种光电子注入型x射线探测器件及其制备方法
Verma et al. A comprehensive study on piezo-phototronic effect for increasing efficiency of solar cells: A review
CN113013714B (zh) 石墨烯太赫兹光源器件及其制作方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN106328802A (zh) 一种压电双极型晶体管
CN219350245U (zh) 一种铊镍硒和硒化铋异质结构光电探测器
CN110783423A (zh) 石墨烯/三氧化二铝/砷化镓太赫兹探测器及其制作方法
CN209169150U (zh) 一种hbt器件
Hwang et al. Base-width modulation effects on the optoelectronic characteristics of n-ITO/p-NiO/n-ZnO heterojunction bipolar phototransistors
TWI425644B (zh) A highly efficient solar cell structure
CN204668309U (zh) 基于GaN的光电集成器件及其外延结构
KR101593398B1 (ko) 태양 전지 부스터
CN209328902U (zh) 低漏电高可靠性的夹层隔离阱
CN207558815U (zh) 一种光控GaN/SiC基功率半导体开关器件
Huang et al. A mechanically tunable electromagnetic wave harvester and dual-modal detector based on quasi-static van der Waals heterojunction
CN103794692A (zh) 一种氧化锌基异质结发光器件及其制备方法
CN111504523B (zh) 一种自发光式压光电器件及制备方法
Su et al. Piezo-phototronic UV photosensing with ZnO nanowires array
JP5750723B2 (ja) 半導体デバイスの増幅率の電流変化に対する変化の抑制方法、光電変換素子および半導体デバイスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant