WO2018019292A1 - 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统 - Google Patents

柔性透明摩擦电子学晶体管及其制备方法、电路集成系统 Download PDF

Info

Publication number
WO2018019292A1
WO2018019292A1 PCT/CN2017/094911 CN2017094911W WO2018019292A1 WO 2018019292 A1 WO2018019292 A1 WO 2018019292A1 CN 2017094911 W CN2017094911 W CN 2017094911W WO 2018019292 A1 WO2018019292 A1 WO 2018019292A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transistor
thin film
film transistor
flexible
Prior art date
Application number
PCT/CN2017/094911
Other languages
English (en)
French (fr)
Inventor
张弛
王中林
逄尧堃
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2018019292A1 publication Critical patent/WO2018019292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to the field of friction generators and flexible electronics, and in particular to a flexible transparent triboelectric transistor, a method for fabricating the same, and a circuit integration system.
  • organic thin film transistors not only have excellent compatibility with flexible transparent substrates, but also have low preparation cost and can be produced in a large area. They are suitable for industrial production and can be used for organic flexible displays and memory components. Fields such as shift registers and smart sensors. This has led major companies and research institutions at home and abroad to devote resources to research. In our daily lives, electronic devices are ubiquitous and have become an integral part of people's lives. For a long time, the regulation of electronic devices has mainly been through the regulation of capacitors or resistors in the circuit. This passive regulation lacks a human-computer interaction experience and is not conducive to the regulation of a flexible curved interface.
  • Friction generators can be used not only in a variety of self-driven systems, but also in triboelectric control devices.
  • triboelectric electronics using the electrostatic potential generated by a friction generator as a gate voltage to regulate carrier transport characteristics in a semiconductor was first proposed.
  • triboelectronics has found applications in logic circuits, organic LEDs, organic storage, smart touch switches, and phototransistors. Due to the excellent performance of triboelectric devices, its potential application value in flexible electronics and human-computer interaction has gradually attracted attention, and it has become a hot spot in flexible electronics research.
  • the present disclosure provides a flexible transparent triboelectric transistor and a method of fabricating the same to provide an electronic device having both flexibility and transparency.
  • the flexible transparent triboelectric transistor of the present disclosure includes a flexible substrate 10, a thin film transistor 20, and a friction generator 30.
  • the thin film transistor 20 is formed on the first surface of the flexible substrate 10.
  • the friction generator 30 includes: a first electrode 31 and a second electrode 32 side by side, formed on a second surface of the flexible substrate, which are insulated from each other; and a movable friction portion 33 opposite to the first electrode 31 and the second electrode 32 It is provided that it can slide between the first electrode 31 and the second electrode 32 under the action of an external force, thereby forming a potential difference between the two, and the switching control of the thin film transistor is realized by the potential difference.
  • a method of preparation is also provided.
  • the preparation method is for preparing the flexible transparent triboelectric transistor described above, comprising: step A, forming a side-by-side first electrode 31 and a second electrode 32 of a friction generator on a second surface of the flexible substrate 10; step B, The first surface of the flexible substrate 10 forms a thin film transistor; in step C, the first electrode 31 of the friction generator is connected to the source 23 or the drain 25 of the organic thin film transistor, and the second electrode 32 is connected to the gate of the organic thin film transistor 21; and step D, preparing a movable friction portion of the friction generator so that it can slide between the first electrode 31 and the second electrode 32 under an external force, thereby forming a potential difference between the two, by which the potential difference is realized Switching control of thin film transistors.
  • a circuit integration system comprising: a human-computer interaction interface portion; the human-machine interaction interface portion comprising: a flexible transparent triboelectronic transistor and a first external power source as described above; The drain of the thin film transistor is connected to the anode of the first external power source, the cathode of the first external power source is grounded, and the source of the thin film transistor serves as the output end of the human-machine interface portion.
  • the flexible transparent triboelectric transistor of the present disclosure has at least one of the following beneficial effects:
  • FIG. 1A is a perspective view of a flexible transparent triboelectronic transistor in accordance with an embodiment of the present disclosure.
  • FIG. 1B is a schematic cross-sectional view of the flexible transparent triboelectric transistor of FIG. 1A.
  • FIG. 2 is a flow chart of a method of fabricating a flexible transparent triboelectric transistor in accordance with an embodiment of the present disclosure.
  • FIGS. 1A and 1B are schematic diagram showing the operation of the flexible transparent triboelectric transistor shown in FIGS. 1A and 1B.
  • FIGS. 1A and 1B are graph showing the relationship between the sliding distance of the friction layer shown in FIGS. 1A and 1B and the source leakage current of the flexible transparent triboelectric transistor.
  • Figure 5 is an output characteristic of the flexible transparent triboelectronic transistor of Figures 1A and 1B at a particular bend radius.
  • Figure 6 is a graph showing the light transmission performance of the flexible transparent triboelectric transistor shown in Figures 1A and 1B.
  • FIGS. 1A and 1B are circuit diagrams of the active control electronics of the flexible transparent triboelectric transistor shown in FIGS. 1A and 1B.
  • FIG. 8 is an experimental result of the active control electronic device of the flexible transparent triboelectric transistor shown in FIGS. 1A and 1B.
  • the present disclosure provides a flexible transparent triboelectronic transistor based on a friction generator and an organic thin film transistor that can be used for active regulation electronics.
  • the characteristics of the flexible transparent triboelectric transistor include, but are not limited to: (1) flexible and bendable, that is, having a certain degree of softness, which can be attached to a limb or skin; (2) transparent, which is mainly embodied in light transmittance. That is, for light of 400 nm to 800 nm, the light transmittance is greater than 50%.
  • the key factors are the selection of materials for each part and the control of the thickness, which will be described in detail below.
  • a flexible transparent triboelectric transistor is provided.
  • 1A is a perspective view of a flexible transparent triboelectronic transistor in accordance with an embodiment of the present disclosure.
  • 1B is a schematic cross-sectional view of the flexible transparent triboelectric transistor of FIG. 1A.
  • the flexible transparent triboelectric transistor of the present embodiment includes a flexible substrate 10, a thin film transistor 20, and a friction generator 30.
  • the thin film transistor 20 is formed on the upper surface of the flexible substrate 10.
  • the friction generator 30 includes: a first electrode 31 and a second electrode 32, which are formed side by side on the lower surface of the flexible substrate, which are insulated from each other; and a movable friction portion 33 opposite to the first electrode 31 and the second electrode 32 It is provided that it can slide between the first electrode 31 and the second electrode 32 under an external force to form a potential difference between the two, and the switching control of the thin film transistor is realized by the potential difference.
  • the flexible substrate 10 and the thin film transistor 20, the first electrode 31 and the second electrode 32 formed thereon constitute a transparent and flexible bendable whole, and the movable friction portion 33 is also transparent and flexible and bendable.
  • the flexible substrate 10 is made of a PET (polyethylene terephthalate) film having a thickness of 50 ⁇ m, but the disclosure is not limited thereto.
  • the flexible substrate can also be made of other materials such as PI (Polyimide, polyimide), PES (polyether sulfone resin), PEN (polyethylene naphthalate), Parylene (parylene), PDMS It is prepared by (polydimethylsiloxane) or the like, and its thickness should be between 10 ⁇ m and 500 ⁇ m.
  • an ITO film is deposited on the flexible substrate 10 as the gate electrode 21 of the organic thin film transistor, and a tantalum pentoxide film is deposited on the ITO film by sputtering.
  • a P-type pentacene film was deposited as a semiconductor layer 23 of an organic thin film transistor by thermal evaporation on a tantalum pentoxide film.
  • the gate electrode 21 is an ITO thin film of 300 nm.
  • the gate electrode 21 can also be prepared by using a non-metallic transparent conductive material such as PEDOT:PSS, AZO (aluminum-doped zinc oxide), graphene, carbon nanotubes, GZO (silver oxide gallium), NiO X or the like.
  • the gates prepared for these materials may have a thickness between 50 nm and 1000 nm.
  • a gate electrode can also be prepared using a metal material such as Au, Ag, Cu, or Al. Also, considering the flexibility and transparency of the device, the thickness of the gate electrode prepared from these metal materials is generally not more than 50 nm.
  • the gate insulating layer 22 is a 500 nm Ta 2 O 5 film.
  • the gate insulating layer may also be PMMA (polymethyl methacrylate), PVA (polyvinyl alcohol), PI (polyimide), SiO 2 , PVP (polyvinylpyrrolidone), Al 2 O 3 . , ZrO 2 , TiO 2 and other materials are prepared.
  • the thickness of the gate insulating layer prepared from these materials may be between 50 nm and 2000 nm in consideration of flexibility and transparency of the device.
  • the semiconductor layer 23 is a 45 nm P-type pentacene film.
  • the semiconductor layer may also be ZnO, polythiophene, fullerene, PTAA (polytriarylamine), P3HT (poly-3-hexylthiophene), PDTT (polydithiazinothiophene), MoS 2 , graphene. Preparation of materials.
  • the thickness of the semiconductor layer prepared from these materials may be between 20 nm and 1000 nm in consideration of the flexibility and transparency of the device.
  • the source 24 and the drain 25 of the organic thin film transistor are 20 nm gold thin films.
  • the source and drain electrodes can also be prepared using non-metallic transparent conductive materials such as ITO, PEDOT:PSS, AZO, graphene, carbon nanotubes, GZO, NiO X. Considering the flexibility and transparency of the device, the source and drain electrodes prepared for these materials may have a thickness between 50 nm and 500 nm.
  • metal and silver, copper, aluminum and other metal materials can be used to prepare the source and the drain. Also, the thickness of the source and drain electrodes prepared from these metal materials generally does not exceed 50 nm in consideration of the flexibility and transparency of the device.
  • a first side by side is formed on the lower surface of the flexible substrate.
  • the first electrode and the second electrode are disposed opposite to each other in the x direction, and the distance between the two in the x direction is less than 1 mm.
  • the first electrode and the second electrode are 300 nm ITO thin films obtained by a wet etching method.
  • the x direction is a direction perpendicular to the thickness direction of the flexible substrate, that is, the y direction.
  • first electrode and the second electrode may also be prepared using materials such as PEDOT:PSS, AZO, graphene, carbon nanotubes, GZO, NiO X, and the like.
  • first electrode and the second electrode prepared for these materials have a thickness of between 100 nm and 1000 nm.
  • the first electrode and the second electrode may be prepared using a metal material such as gold, silver, copper or aluminum. Also, the thickness of the first electrode and the second electrode prepared from these metal materials generally does not exceed 50 nm in consideration of the flexibility and transparency of the device.
  • the first electrode 31 is connected to the source 23 of the organic thin film transistor, and the second electrode 32 is connected to the gate 21 of the organic thin film transistor, but the disclosure should not be limited thereto, based on its own expertise. Knowledge, those skilled in the art should know that the connection relationship between the first electrode and the second electrode is interchangeable, that is, the first electrode is connected to the gate of the organic thin film transistor, and the second electrode is connected to the organic thin film transistor.
  • the source can also implement the present disclosure.
  • connection it may be connected by a wire, or may be connected by processing a via hole on a substrate.
  • connection is made through vias on the flexible substrate.
  • the gate electrode 21, the gate insulating layer 22, the semiconductor layer 23, the source electrode 24, and the drain electrode 25 are all two-dimensional thin film materials having a thickness of not more than 2000 nm, and the first electrode and the second electrode are It is also thin enough, in which case the flexible substrate 10 and the thin film transistor 20, the first electrode 31 and the second electrode 32 formed thereon constitute a transparent and flexible bendable unit.
  • the movable friction portion 33 is a transparent and flexible and bendable member, including: a flexible substrate 33a and a friction layer 33b formed thereon.
  • the movable friction portion 33 is slidable in the x direction by an external force, and the first electrode 31 and the second electrode 32 generate a potential difference in the process of rubbing against the friction layer 33b. Since the first electrode 31 and the second electrode 32 are respectively connected to the source 23 and the gate 21 of the organic thin film transistor, switching control of the thin film transistor is realized.
  • the flexible substrate 33a is a PET film having a thickness of 50 ⁇ m, which is the same as the material and thickness of the flexible substrate 10.
  • the disclosure is not limited thereto, and the flexible substrate 33a may also be made of other materials such as PI (Polyimide, polyimide), PES (polyether sulfone resin), PEN (polyethylene naphthalate). Ester), Parylene (parylene), PDMS (polydimethyl) Siloxane) and the like.
  • the flexible substrate prepared from these materials may have a thickness of between 10 ⁇ m and 500 ⁇ m.
  • the friction layer 33b is a 20 ⁇ m FEP layer, and the FEP is fixed to the flexible substrate 33a by means of bonding.
  • the friction layer 33b can also be prepared using an organic polymer material such as Kapton, PTFE or PET. The thickness of the friction layer prepared from these materials should be between 50 nm and 1000 ⁇ m.
  • the transparent substrate and the organic polymer film having a thickness of less than 1000 ⁇ m adhered thereto are formed into a transparent and flexible bendable movable friction portion.
  • a nanostructure may be formed to increase the friction area, thereby increasing the regulation voltage.
  • the nanostructures can be nanowires, nanorods, nanocones, etc. formed or fixed to the friction surface.
  • the preparation method of the flexible transparent triboelectric transistor of the present disclosure includes:
  • Step A forming a side-by-side first electrode 31 and a second electrode 32 of the friction generator on the lower surface of the flexible substrate 10;
  • an ITO film is formed on the lower surface of the flexible substrate 10, and the first electrode 31 and the second electrode 32 disposed opposite to each other in the x direction are obtained by wet etching;
  • Step B forming a thin film transistor on the upper surface of the flexible substrate 10;
  • step B further includes:
  • an ITO film is deposited on the upper surface of the flexible substrate to form the gate electrode 21 of the thin film transistor;
  • a Ta 2 O 5 film is deposited on the gate 21 by sputtering to form a gate insulating layer 22 of the thin film transistor;
  • a P-type pentacene film is deposited on the gate insulating layer 22 by thermal evaporation, and is etched to form a semiconductor layer 23 of the organic thin film transistor;
  • a method of thermal evaporation is applied on the surface of the gate insulating layer, and two independent metal electrodes are respectively deposited in the y direction on both sides of the semiconductor layer to form an ohmic contact with the semiconductor layer as the source 24 and the drain 25 of the organic thin film transistor.
  • steps A and B may be interchanged or cross-over, for example, first depositing the gate of the thin film transistor, then depositing the first electrode and the second electrode of the friction generator, and then fabricating the thin film.
  • the present disclosure can also be implemented by other parts of the transistor other than the gate.
  • Step C the first electrode 31 and the second electrode 32 of the friction generator are respectively connected to the source 23 and the gate 21 of the organic thin film transistor;
  • connection may be made by wires or by vias through the flexible substrate, and the present disclosure may be implemented.
  • connection is achieved by via holes on the flexible substrate.
  • this step C can also be performed simultaneously with step B.
  • Step D Preparing a movable friction portion of the friction generator so that it can slide between the first electrode 31 and the second electrode 32 under an external force, thereby forming a potential difference therebetween.
  • the step of preparing the movable friction portion of the friction generator may further include: attaching the FEP layer as a friction layer on the PET film, and the two together constitute a movable friction portion.
  • Figure 3 is a schematic diagram of the operation of a flexible transparent triboelectric transistor.
  • the friction layer 33b is in close contact with the first electrode 31, and the surface of the friction layer 33b is negatively charged due to different electron binding capabilities, and the first electrode 31 is positively charged with an equal amount of positive and negative friction surfaces.
  • the charge is in equilibrium, so the gate voltage is zero and the width of the conductive channel is unaffected.
  • the friction layer 33b slides in the direction of the second electrode 32 by the external force.
  • the electrons on the second electrode 32 flow toward the gate 21 under the induction of a negative charge on the friction layer 33b.
  • the positive charge on the first electrode 31 flows toward the source 23 due to the lack of binding of a negative charge.
  • a positive potential difference acts on the gate and source stages of the organic thin film transistor, resulting in an increase in the width of the conductive channel and an increase in source and drain current.
  • Figure 4 shows the sliding distance between the friction layer and the leakage current of the flexible transparent triboelectric transistor. relationship.
  • Fig. 4(a) shows the output characteristic curve of a flexible transparent triboelectric transistor. In the absence of an applied gate voltage, the source-drain current increases with the increase of the sliding distance, exhibiting a transistor characteristic similar to the conventional gate voltage.
  • . (b) in FIG. 4 is a transfer characteristic curve of the flexible transparent triboelectric transistor.
  • the friction layer 33b is slid from the initial position to 7 mm, the source-drain current of the organic thin film transistor is increased from 2 ⁇ A to 22 ⁇ A, and there is a very large relationship between the two. Good linear relationship, which is consistent with the principle analysis.
  • Figure 5 is an output characteristic of the flexible transparent triboelectronic transistor of Figures 1A and 1B at a particular bend radius.
  • the electrical properties of the flexible transparent triboelectric transistor were tested under a certain bending state.
  • Fig. 5(a) when the device is in a compression and bending state with a bending radius of 20 mm and a source-drain voltage of -8 V, the source-drain current can be stably increased from 2 ⁇ A to 22 ⁇ A as the sliding distance increases. .
  • Fig. 5(a) when the device is in a compression and bending state with a bending radius of 20 mm and a source-drain voltage of -8 V, the source-drain current can be stably increased from 2 ⁇ A to 22 ⁇ A as the sliding distance increases. .
  • the source-drain current can be stably increased from 2 ⁇ A to the continuous distance as the sliding distance increases. 21 ⁇ A.
  • the device has high transparency in the spectral range of 400-800 nm, and the transparency is more than 50%, and the light is light.
  • the transmission curve is shown in Figure 6.
  • FIG. 7 is a circuit diagram of the active control electronics of the flexible transparent triboelectric transistor shown in FIGS. 1A and 1B.
  • a circuit integration system as shown in the figure is designed, which is mainly composed of a human-computer interaction interface and an electronic device.
  • the human-machine interface portion is comprised of a flexible transparent triboelectronic transistor as described above and a first external power source.
  • the drain of the thin film transistor of the flexible transparent triboelectric transistor is connected to the anode of the first external power source, and the cathode of the first external electrode is grounded.
  • the regulation voltage is generated by an external force, and the current between the source and drain electrodes of the thin film transistor can be regulated.
  • the source of the thin film transistor serves as an output end of the human-machine interface portion.
  • the electronic device portion includes an amplifying circuit and a second external power source.
  • the amplifying circuit is composed of a triode and a voltage stabilizing resistor, wherein the stabilizing resistor is connected between the output end of the flexible transparent triboelectronic transistor and the ground, and the gate of the triode is connected to the output end of the flexible transparent triboelectric transistor.
  • the source is connected to ground.
  • the second external power supply is used to drive the electronic device with its negative connection To the ground.
  • the electronics to be regulated are connected between the drain of the transistor and the anode of the second external power source.
  • FIG. 8 is an experimental result of the active control electronic device of the flexible transparent triboelectric transistor shown in FIGS. 1A and 1B.
  • Fig. 8(a) shows the experimental results of the active adjustment of the brightness of the luminescent sheet by the flexible transparent triboelectric transistor. Sliding distance of about 1mm from the luminance increases 7mm, from cold light 60cd / m 2 increased to 310cd / m 2.
  • (b) in Fig. 8 is an experimental result of the magnetic field strength of the active-regulated electromagnet of the flexible transparent triboelectric transistor. As shown in the figure, as the sliding distance increases from 1 mm to 7 mm, the magnetic field strength of the electromagnet increases from 0.1 mT to about 4.8 mT.
  • FIG. 8 is an experimental result of actively adjusting the volume of the buzzer by the flexible transparent triboelectric transistor. The sound intensity increases linearly from 109.5 dB to 115.0 dB with the sliding distance.
  • (d) in Fig. 8 is an experimental result of the active regulation of the piezoelectric bimorph micro-movement by the flexible transparent triboelectric transistor. As shown in Fig. 8, as the sliding distance is increased from 1 mm to 7 mm, the piezoelectric bimorph is continuously curved and moved from 0.01 mm to 0.13 mm.
  • the above experimental results show that the use of flexible transparent triboelectronic crystals as a human-computer interaction interface can realize the use of external sliding active and continuous regulation electronic devices.
  • the present disclosure is based on a sliding friction generator and an organic thin film transistor, A flexible transparent triboelectric transistor that enables active regulation of commonly used electronic devices.
  • the present disclosure not only provides a new active method for continuously regulating common electronic devices, but also demonstrates the feasibility of triboelectric electronics in the field of flexible electronics and human-computer interaction, in terms of wearable electronics and human-machine interface. The application is positive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性透明摩擦电子学晶体管及其制备方法、电路集成系统。该柔性透明摩擦电子学晶体管包括:柔性衬底(10)、薄膜晶体管(20)和摩擦发电机(30)。其中,薄膜晶体管(20)形成于柔性衬底(10)的第一表面。摩擦发电机(30)包括:并排的第一电极(31)和第二电极(32),形成于柔性衬底(10)的第二表面,两者相互绝缘;可移动摩擦部(33),与第一电极(31)和第二电极(32)相对设置,其在外力作用下可在第一电极(31)和第二电极(32)之间滑动,从而在两者之间形成电势差,通过该电势差实现对薄膜晶体管(20)的开关控制。提供了一种新颖的柔性透明摩擦电子学晶体管,其可以利用滑动式摩擦纳米发电机实现主动式和连续性地调控,具有良好的应用前景。

Description

柔性透明摩擦电子学晶体管及其制备方法、电路集成系统 技术领域
本公开涉及摩擦发电机和柔性电子学技术领域,尤其涉及一种柔性透明摩擦电子学晶体管及其制备方法、电路集成系统。
背景技术
在过去的几年中,柔性透明电子器件由于其便携、抗疲劳、质量轻且不易损坏的特点,受到了越来越多的关注,在可穿戴电子、智能皮肤、可弯曲显示屏和人机交互界面等具有很大的应用前景。
作为柔性透明电子学器件的重要组成部分,有机薄膜晶体管不但与柔性透明基底具有优异的兼容性,制备成本低,而且可大面积生产,可适用于工业化生产且可用于有机柔性显示、内存组件、移位寄存器和智能传感器等领域。这使得了国内外各大公司和科研机构争先投入资源对其进行研究。在我们日常生活中,电子器件无处不在,已经成为人们生活中不可分割的一部分。长久以来,电子器件的调控主要是通过调控电路中的电容或者电阻。这种被动式的调控方式缺乏人机交互体验且不利于实现在柔性弯曲界面的调控。
近年来,王中林教授领导的研究组提出了摩擦发电机的概念,其原理是基于摩擦生电和静电感应现象,将两种镀有金属电极的高分子聚合物薄膜贴合在一起组成器件,在外力作用下器件产生机械形变,导致两层聚合物膜之间发生相互摩擦,两种高分子聚合物具有不同的得失电子能力,从而产生电荷分离并形成电势差,两个金属极板通过静电感应在表面生成感应电荷,感应电荷在摩擦电电势的驱动下流经外电路即可形成电流。摩擦发电机不仅可以用于各种自驱动系统,而且可以用于摩擦电控制器件。2014年,利用摩擦发电机产生的静电势作为门电压来调控半导体中载流子输运特性的摩擦电子学首次被提出。
到目前为止,摩擦电子学已经在逻辑电路、有机LED、有机存储、智能触碰开关和光电晶体管中得到应用。由于摩擦电子学器件的优异性能,其在柔性电子学和人机交互中潜在应用价值逐渐被大家所关注,成为目前柔性电子学研究的热点。
公开内容
(一)要解决的技术问题
鉴于上述技术问题,本公开提供了一种柔性透明摩擦电子学晶体管及其制备方法,以提供一种兼具柔性性能和透明性能的电子学器件。
(二)技术方案
本公开柔性透明摩擦电子学晶体管包括:柔性衬底10、薄膜晶体管20和摩擦发电机30。其中,薄膜晶体管20形成于柔性衬底10的第一表面。摩擦发电机30包括:并排的第一电极31和第二电极32,形成于柔性衬底的第二表面,两者相互绝缘;可移动摩擦部33,与第一电极31和第二电极32相对设置,其在外力作用下可在第一电极31和第二电极32之间滑动,从而在两者之间形成电势差,通过该电势差实现对薄膜晶体管的开关控制。
根据本公开的另一个方面,还提供了一种制备方法。该制备方法用于制备上述的柔性透明摩擦电子学晶体管,包括:步骤A,在柔性衬底10的第二表面形成摩擦发电机的并排的第一电极31和第二电极32;步骤B,在柔性衬底10的第一表面形成薄膜晶体管;步骤C,令摩擦发电机的第一电极31连接至有机薄膜晶体管的源极23或漏极25,第二电极32连接至有机薄膜晶体管的栅极21;以及步骤D,制备摩擦发电机的可移动摩擦部,令其在外力作用下可在第一电极31和第二电极32之间滑动,从而在两者之间形成电势差,通过该电势差实现对薄膜晶体管的开关控制。
根据本公开的另一个方面,还提供了一种电路集成系统,包括:人机交互界面部分;所述人机交互界面部分包括:如上所述的柔性透明摩擦电子学晶体管和第一外部电源;其中,所述薄膜晶体管的漏极连接至第一外部电源的正极,第一外部电源的负极接地,所述薄膜晶体管的源极作为人机交互界面部分的输出端。
(三)有益效果
从上述技术方案可以看出,本公开柔性透明摩擦电子学晶体管及其制备方法、电路集成系统至少具有以下有益效果其中之一:
(1)提供了一种新颖的柔性透明摩擦电子学晶体管,可以利用滑动式摩擦纳米发电机实现主动式和连续性地调控;
(2)具有良好的柔性性能,在弯曲状态下可以稳定工作,在可穿戴电子设备、智能皮肤、可弯曲显示屏和人机交互界面等领域具有广阔的应用前景;
(3)具有较高的透明度,这在某些特定领域具有潜在的应用价值;
(4)具有制备工艺简单,成本低等优点,适合工业化生产。
附图说明
图1A为根据本公开实施例柔性透明摩擦电子学晶体管的立体图。
图1B为图1A所示柔性透明摩擦电子学晶体管的剖面示意图。
图2为根据本公开实施例柔性透明摩擦电子学晶体管制备方法的流程图。
图3为图1A和图1B所示柔性透明摩擦电子学晶体管的工作原理图。
图4为图1A和图1B所示摩擦层滑动距离与柔性透明摩擦电子学晶体管源漏电流之间的关系。
图5为图1A和图1B所示柔性透明摩擦电子学晶体管在某一特定弯曲半径下的输出特性。
图6为图1A和图1B所示柔性透明摩擦电子学晶体管的光透过性能曲线。
图7为图1A和图1B所示柔性透明摩擦电子学晶体管主动式调控电子器件的电路图。
图8为图1A和图1B所示柔性透明摩擦电子学晶体管主动式调控电子器件的实验结果。
【本公开主要元件符号说明】
10-柔性衬底;
20-薄膜晶体管;
  21-栅极;               22-栅绝缘层;     23-半导体层;
  24-源极;               25-漏极;
30-摩擦发电机;
  31-第一电极;           32-第二电极;     33-可移动摩擦部;
  33a-柔性基底;          33b-摩擦层。
具体实施方式
本公开提供了一种基于摩擦发电机和有机薄膜晶体管的柔性透明摩擦电子学晶体管,其可以用于主动式调控电子器件。该柔性透明摩擦电子学晶体管的特点包括但不限于:(一)柔性可弯曲,即具有一定的柔软度,可以贴合在肢体或皮肤上;(二)透明,其主要体现在透光性上,即对于400nm~800nm的光,光透过率大于50%。为了实现上述两个特点,关键因素在于各部分材料的选择以及厚度的控制,这将在下文中进行详细说明。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
在本公开的第一个示例性实施例中,提供了一种柔性透明摩擦电子学晶体管。图1A为根据本公开实施例柔性透明摩擦电子学晶体管的立体图。图1B为图1A所示柔性透明摩擦电子学晶体管的剖面示意图。
请参照图1A和图1B,本实施例柔性透明摩擦电子学晶体管包括:柔性衬底10、薄膜晶体管20和摩擦发电机30。其中,薄膜晶体管20形成于柔性衬底10的上表面。摩擦发电机30包括:第一电极31和第二电极32,并排形成于所述柔性衬底下表面,两者相互绝缘;可移动摩擦部33,与所述第一电极31和第二电极32相对设置,其在外力作用下可在所述第一电极31和第二电极32之间滑动,从而在两者之间形成电势差,通过该电势差实现对所述薄膜晶体管的开关控制。其中,柔性衬底10及形成于其上的薄膜晶体管20、第一电极31和第二电极32构成一透明且柔性可弯曲的整体,并且,可移动摩擦部33也是透明且柔性可弯曲的。
以下分别对本实施例柔性透明摩擦电子学晶体管的各个组成部分进行详细描述。
本实施例中,柔性衬底10采用PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)薄膜,厚度50μm,但本公开并不以此为限。柔性衬底还可以采用其他材料,例如:PI(Polyimide,聚酰亚胺)、PES(聚醚砜树脂)、PEN(聚萘二甲酸乙二醇酯)、Parylene(聚对二甲苯)、PDMS(聚二甲基硅氧烷)等来制备,其厚度应当介于10μm~500μm之间。
请参照图1A和图1B,在柔性衬底10上沉积ITO薄膜作为有机薄膜晶体管的栅极21,在ITO薄膜上采用溅射方法沉积五氧化二钽薄膜作为 有机薄膜晶体管的栅绝缘层22。在五氧化二钽薄膜上采用热蒸发的方法沉积P型并五苯薄膜作为有机薄膜晶体管的半导体层23。采用热蒸发的方法沉积在栅绝缘层的表面,半导体层两侧沿y方向分别沉积独立的两金属电极,与半导体层形成欧姆接触,作为有机薄膜晶体管的源极24和漏极25,两者之间的半导体层形成宽度为60μm的沟道。
本实施例中,栅极21为300nm的ITO薄膜。除此之外,栅极21还可以采用PEDOT:PSS、AZO(铝掺杂氧化锌)、石墨烯、碳纳米管、GZO(氧化银镓)、NiOX等非金属透明导电材料制备。考虑到器件的柔性和透明性,对于这些材料制备的栅极,其厚度可以介于50nm~1000nm之间。此外,还可以采用Au、Ag、Cu、Al等金属材料制备栅极。同样,考虑到器件的柔性和透明性,对于这些金属材料制备的栅极而言,其厚度一般不超过50nm。
本实施例中,栅绝缘层22为500nm的Ta2O5薄膜。除此之外,栅绝缘层还可以采用PMMA(聚甲基丙烯酸甲酯)、PVA(聚乙烯醇)、PI(聚酰亚胺)、SiO2、PVP(聚乙烯吡咯烷酮)、Al2O3、ZrO2、TiO2等材料制备。考虑到器件的柔性和透明性,由这些材料制备的栅绝缘层的厚度可以介于50nm~2000nm之间。
本实施例中,半导体层23为45nm的P型并五苯薄膜。除此之外,半导体层还可以采用ZnO、聚噻吩、富勒烯、PTAA(聚三芳胺)、P3HT(聚3-己基噻吩)、PDTT(聚二噻葸并噻吩)、MoS2、石墨烯等材料制备。考虑到器件的柔性和透明性,由这些材料制备的半导体层的厚度可以介于20nm~1000nm之间。
本实施例中,有机薄膜晶体管的源极24和漏极25为20nm的金薄膜。除此之外,源极和漏极还可以采用ITO、PEDOT:PSS、AZO、石墨烯、碳纳米管、GZO、NiOX等非金属透明导电材料制备。考虑到器件的柔性和透明性,对于这些材料制备的源极和漏极,其厚度可以介于50nm~500nm之间。此外,还可以采用金、银、铜、铝等金属材料制备源极和漏极。同样,考虑到器件的柔性和透明性,由这些金属材料制备的源极和漏极的厚度一般不超过50nm。
请继续参照图1A和图1B,在柔性衬底的下表面,形成有并排的第一 电极31和第二电极32。该第一电极和第二电极在x方向上相对设置,两者在x方向的间距小于1mm。其中,该第一电极和第二电极是300nm的ITO薄膜经由湿法刻蚀方法得到。该x方向为与柔性衬底的厚度方向,即y方向,相垂直的方向。
除此之外,第一电极和第二电极还可以采用PEDOT:PSS、AZO、石墨烯、碳纳米管、GZO、NiOX等材料制备。考虑到器件的柔性和透明性,对于这些材料制备的第一电极和第二电极,其厚度介于100nm~1000nm之间。此外,还可以采用金、银、铜、铝等金属材料制备该第一电极和第二电极。同样,考虑到器件的柔性和透明性,由这些金属材料制备的第一电极和第二电极的厚度一般不超过50nm。
本实施例中,第一电极31是连接至有机薄膜晶体管的源极23,第二电极32是连接至有机薄膜晶体管的栅极21,但本公开并不应当以此为限,基于自身的专业知识,本领域技术人员应当可以得知第一电极和第二电极的连接关系是可以互换的,也就是说,第一电极连接至有机薄膜晶体管的栅极,第二电极连接至有机薄膜晶体管的源极,同样可以实现本公开。
关于连接的方式,可以是通过导线进行连接,也可以是通过衬底上加工过孔的方式连接。优选地,通过柔性衬底上的过孔实现连接。
可见,在薄膜晶体管中,栅极21、栅绝缘层22、半导体层23、源极24和漏极25均为二维薄膜材料,其厚度均不超过2000nm,并且,第一电极和第二电极也足够薄,在这种情况下,柔性衬底10及形成于其上的薄膜晶体管20、第一电极31和第二电极32构成一透明且柔性可弯曲的整体。
可移动摩擦部33为透明且柔性可弯曲的部件,包括:柔性基底33a及形成于其上的摩擦层33b。该可移动摩擦部33可在外力的作用下沿x方向滑动,第一电极31和第二电极32在与摩擦层33b摩擦的过程中产生电势差。由于第一电极31和第二电极32分别连接至有机薄膜晶体管的源极23和栅极21,从而实现对薄膜晶体管的开关控制。
本实施例中,柔性基底33a为PET薄膜,厚度50μm,与柔性衬底10的材料和厚度相同。同样,本公开并不以此为限,该柔性基底33a还可以采用其他材料,例如:PI(Polyimide,聚酰亚胺)、PES(聚醚砜树脂)、PEN(聚萘二甲酸乙二醇酯)、Parylene(聚对二甲苯)、PDMS(聚二甲基 硅氧烷)等。由这些材料制备的柔性基底厚度可以介于1Oμm~500μm之间。
本实施例中,摩擦层33b为20μm的FEP层,该FEP通过粘贴的方式固定于柔性基底33a上。除此之外,摩擦层33b还可以采用Kapton,PTFE、PET等有机聚合物材料制备。由这些材料制备的摩擦层的厚度应当介于50nm~1000μm之间。
需要说明的是,只要是与第一电极和第二电极的材料不同的材料,由于摩擦电极序的原因,均可以用于制备摩擦层。采用有机聚合物材料的原因是由于其与ITO材料在摩擦电极序上的距离较远,摩擦性能较好。关于摩擦发电机及摩擦电极序的相关内容,可以参照申请人在以往专利中的相关披露,此处不再赘述。
本实施例中,由柔性基底和粘附于其上的厚度小于1000μm的有机聚合物薄膜构成透明且柔性可弯曲的可移动摩擦部。
此外,在摩擦层33b、第一电极,和/或第二电极相对的摩擦面上,还可以形成有纳米结构来增加摩擦面积,进而提高调控电压。该纳米结构可以是形成或固定至摩擦面上的纳米线、纳米棒、纳米锥等。
以下介绍本公开柔性透明摩擦电子学晶体管的制备方法。请参照请1A、图1B和图2,本公开柔性透明摩擦电子学晶体管的制备方法包括:
步骤A:在柔性衬底10的下表面形成摩擦发电机的并排的第一电极31和第二电极32;
具体地,首先在柔性衬底10的下表面形成ITO薄膜,采用湿法刻蚀得到在x方向相对设置的第一电极31和第二电极32;
步骤B:在柔性衬底10的上表面形成薄膜晶体管;
具体地,该步骤B进一步包括:
首先,在柔性衬底的上表面沉积ITO薄膜,形成薄膜晶体管的栅极21;
其次,在栅极21上采用溅射的方法沉积Ta2O5薄膜,形成薄膜晶体管的栅绝缘层22;
在次,在栅绝缘层22上采用热蒸发的方法沉积P型并五苯薄膜,并对其进行刻蚀,形成有机薄膜晶体管的半导体层23;
最后,采用热蒸发的方法在栅绝缘层的表面,半导体层两侧沿y方向分别沉积独立的两金属电极,与半导体层形成欧姆接触,作为有机薄膜晶体管的源极24和漏极25。
需要说明的是,上述步骤A和步骤B的顺序可以互换,或者是交叉进行,例如,首先沉积薄膜晶体管的栅极,而后沉积摩擦发电机的第一电极和第二电极,再后制作薄膜晶体管除栅极之外的其他部分,同样可以实现本公开。
步骤C:令摩擦发电机的第一电极31和第二电极32分别连接至所述有机薄膜晶体管的源极23和栅极21;
本步骤中,可以采用导线进行连接,也可以采用通过柔性衬底的过孔进行连接,均可以实现本公开,优选地,通过柔性衬底上的过孔实现连接。并且,该步骤C也可以与步骤B同时进行。
步骤D:制备摩擦发电机的可移动摩擦部,令其在外力作用下可在所述第一电极31和第二电极32之间滑动,从而在两者之间形成电势差。
其中,制备摩擦发电机的可移动摩擦部的步骤进一步可以包括:在PET薄膜上粘贴FEP层作为摩擦层,两者共同构成可移动摩擦部。
至此,图1A和图1B所示的柔性透明摩擦电子学晶体管制备完毕。
以下介绍本公开柔性透明摩擦电子学晶体管的工作原理以及测试结果。
图3为柔性透明摩擦电子学晶体管的工作原理图。在初始状态下,摩擦层33b与第一电极31紧密接触摩擦,由于不同的电子束缚能力,摩擦层33b的表面带负电,第一电极31带等量正电,此时上下摩擦表面的正负电荷处于平衡状态,因此栅电压为0,导电沟道宽度不受影响。在外力的作用下,摩擦层33b向第二电极32方向滑动。在摩擦层33b上负电荷的诱导下,第二电极32上的电子向栅极21流动。由于缺少负电荷的束缚,第一电极31上的正电荷向源极23流动。因此,一个正的电势差作用于有机薄膜晶体管的栅极和源级,致使导电沟道宽度增加,源漏电流加大。当摩擦层33b在外力作用下回到初始位置时,栅电压变为0,导电沟道宽度恢复到初始状态。
图4为摩擦层滑动距离与柔性透明摩擦电子学晶体管源漏电流之间的 关系。图4中(a)为柔性透明摩擦电子学晶体管的输出特性曲线,在无外加栅压的情况下,源漏电流随着滑动距离的增加而增大,表现出近似外加传统栅压的晶体管特性。图4中(b)为柔性透明摩擦电子学晶体管的转移特性曲线,当摩擦层33b从初始位置滑动到7mm,有机薄膜晶体管的源漏电流由2μA增大到22μA,且两者之间具有很好的线性关系,这与原理分析相一致。
图5为图1A和图1B所示柔性透明摩擦电子学晶体管在特定弯曲半径下的输出特性。将柔性透明摩擦电子学晶体管保持在某一弯曲状态下,测试其电学性能。如图5中(a)所示,器件处于压缩弯曲状态,弯曲半径为20mm,源漏电压为-8V时,随着滑动距离的增加,源漏电流可以稳定连续性的从2μA增大到22μA。如图5中(b)所示,器件处于拉伸弯曲状态,弯曲半径为20mm,源漏电压为-8V时,随着滑动距离的增加,源漏电流可以稳定连续性的从2μA增大到21μA。上述实验结果表明,柔性透明摩擦电子学晶体管在大的弯曲弧度及不同弯曲状态下都可以保持优异的性能。
此外,对于图1A和图1B所示柔性透明摩擦电子学晶体管,由于选择了合适的材料和厚度,因此器件在400-800nm的光谱范围内具有很高的透明性,透明度均大于50%,光透过率曲线如图6所示。
图7为图1A和图1B所示柔性透明摩擦电子学晶体管主动式调控电子器件的电路图。为了达到调控电子器件的目的,设计了如图所示的电路集成系统,其主要由人机交互界面和电子器件两部分组成。
人机交互界面部分由如上所述的柔性透明摩擦电子学晶体管和第一外部电源组成。其中,柔性透明摩擦电子学晶体管的薄膜晶体管的漏极连接至第一外部电源的正极,第一外部电极的负极接地。在摩擦发电机中,通过外力作用产生调控电压,可以调控薄膜晶体管的源漏电极之间电流的大小。其中,薄膜晶体管的源极作为人机交互界面部分的输出端。
电子器件部分包括:放大电路、第二外部电源。其中,放大电路由一个三极管和稳压电阻组成,其中,稳压电阻连接于柔性透明摩擦电子学晶体管的输出端与地之间,三极管的栅极连接至柔性透明摩擦电子学晶体管的输出端,源极连接至地。第二外部电源用于驱动电子器件,其负极连接 至地。待调控的电子器件连接至三极管的漏极和第二外部电源的正极之间。
当人机交互界面部分的电流在外部滑动作用下发生改变时,电阻两端的电压随之发生变化,三极管栅极电压随之改变,改变电子器件部分电路中的电流大小,从而起到调节电子器件的作用。
图8为图1A和图1B所示柔性透明摩擦电子学晶体管主动式调控电子器件的实验结果。图8中(a)为柔性透明摩擦电子学晶体管主动式调控冷光片亮度的实验结果。滑动距离从1mm增加到7mm,冷光片的亮度从60cd/m2增加到310cd/m2左右。图8中(b)为柔性透明摩擦电子学晶体管主动式调控电磁铁磁场强度的实验结果。如图所示,随着滑动距离从1mm增加到7mm,电磁铁的磁场强度从0.1mT增加到4.8mT左右。图8中(c)为柔性透明摩擦电子学晶体管主动式调控蜂鸣器音量的实验结果。声音强度随着滑动距离线性的从109.5dB增加到115.0dB。图8中(d)为柔性透明摩擦电子学晶体管主动式调控压电双晶片微移动的实验结果。如图8所示,随着滑动距离从1mm增加到7mm,压电双晶片不断的弯曲移动,移动距离从0.01mm到0.13mm。上述实验结果表明,利用柔性透明摩擦电子学晶体作为人机交互界面,可以实现利用外部滑动主动式和连续性调控电子器件。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
还需要说明的是,本文可提供包含特定值的参数的示范,但这些参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。此外,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
综上所述,本公开基于滑动式摩擦发电机和有机薄膜晶体管,提供了 一种柔性透明摩擦电子学晶体管,可以实现对常用电子器件的主动式调控。本公开不但提供了一种新的主动式可连续调控常用电子器件的方法,而且证明了摩擦电子学在柔性电子和人机交互领域方面应用的可行性,在可穿戴电子和人机界面等方面应用具有积极意义。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种柔性透明摩擦电子学晶体管,包括:
    柔性衬底(10);
    薄膜晶体管(20),形成于所述柔性衬底(10)的第一表面;
    摩擦发电机(30),包括:
    并排的第一电极(31)和第二电极(32),形成于所述柔性衬底的第二表面,两者相互绝缘;
    可移动摩擦部(33),与所述第一电极(31)和第二电极(32)相对设置,其在外力作用下可在所述第一电极(31)和第二电极(32)之间滑动,从而在两者之间形成电势差,通过该电势差实现对所述薄膜晶体管的开关控制。
  2. 根据权利要求1所述的柔性透明摩擦电子学晶体管,其中:
    所述第一电极(31)和第二电极(32)的其中之一连接至所述薄膜晶体管(20)的栅极;
    所述第一电极(31)和第二电极(32)的其中另一连接至所述薄膜晶体管(20)的源极或漏极。
  3. 根据权利要求1所述的柔性透明摩擦电子学晶体管,其中:
    所述可移动摩擦部(33)为透明且柔性可弯曲的部件;
    所述柔性衬底(10)及形成于其上的薄膜晶体管(20)、第一电极(31)和第二电极(32)构成一透明且柔性可弯曲的整体。
  4. 根据权利要求2或3所述的柔性透明摩擦电子学晶体管,其中,所述薄膜晶体管包括:
    栅极(21),形成于所述柔性衬底(10)上;
    栅绝缘层(22),形成于所述栅极(21)上;
    半导体层(23),形成于所述栅绝缘层(22)上;
    源极(24)和漏极(25),形成于所述栅绝缘层(22)上,所述半导体层(23)的两侧,并与所述半导体层(23)形成欧姆接触;
    其中,所述第一电极(31)连接至所述有机薄膜晶体管的源极(24)或漏极(25),所述第二电极(32)连接至所述有机薄膜晶体管的栅极(21);
    其中,所述栅极(21)、栅绝缘层(22)、半导体层(23)、源极(24) 和漏极(25)均为透明薄膜材料。
  5. 根据权利要求4所述的柔性透明摩擦电子学晶体管,其中,通过导线或过孔实现:
    所述第二电极与所述有机薄膜晶体管的栅极(21)的连接;以及
    所述第一电极(31)与所述有机薄膜晶体管的源极(24)或漏极(25)的连接。
  6. 根据权利要求4所述的柔性透明摩擦电子学晶体管,其中:
    所述栅极(21)为:由金属材料制备的薄膜,其厚度不超过50nm;或者由非金属透明导电材料制备的薄膜,其厚度介于50nm~1000nm之间;和/或
    所述栅绝缘层的厚度介于50nm~2000nm之间,其材料选自于以下材料中的一种:Ta2O5、PMMA、PVA、PI、SiO2、PVP、Al2O3、ZrO2、TiO2;和/或
    所述半导体层的厚度介于20nm~1000nm之间,其材料选自于以下材料中的一种:P型并五苯、ZnO、聚噻吩、富勒烯、PTAA、P3HT、PDTT、MoS2、石墨烯;和/或
    所述源极(24)和漏极(25)为:由金属材料制备的薄膜,其厚度不超过50nm;或者由非金属透明导电材料制备的薄膜,其厚度介于50nm~500nm之间。
  7. 根据权利要求3所述的柔性透明摩擦电子学晶体管,其中,所述可移动摩擦部(33)包括:
    柔性基底(33a);以及
    摩擦层(33b),形成或固定于所述柔性衬底(33a)上,与所述第一电极(31)和第二电极(32)相对,所述第一电极(31)和第二电极(32)在与所述摩擦层(33b)摩擦的过程中产生电势差;
    其中,所述柔性基底(33a)及形成于其上的摩擦层(33b)构成透明且柔性可弯曲的可移动摩擦部(33)。
  8. 根据权利要求7所述的柔性透明摩擦电子学晶体管,其中:
    所述柔性基底的材料选自于以下材料中的一种:PET、PI、PES、PEN、Parylene、PDMS;和/或
    所述摩擦层(31)粘贴固定于所述柔性衬底上,其材料选自于有机聚合物材料。
  9. 根据权利要求1至8中任一项所述的柔性透明摩擦电子学晶体管,其中,所述柔性衬底的厚度介于10μm~500μm之间,其材料选自于以下材料中的一种或多种:PET、PI、PES、PEN、Parylene和PDMS。
  10. 一种制备方法,用于制备权利要求1至9中任一项所述的柔性透明摩擦电子学晶体管,包括:
    步骤A,在柔性衬底(10)的第二表面形成摩擦发电机的并排的第一电极(31)和第二电极(32);
    步骤B,在所述柔性衬底(10)的第一表面形成薄膜晶体管;
    步骤C,令所述摩擦发电机的第一电极(31)连接至所述有机薄膜晶体管的源极(23)或漏极(25),第二电极(32)连接至所述有机薄膜晶体管的栅极(21);以及
    步骤D,制备摩擦发电机的可移动摩擦部,令其在外力作用下可在所述第一电极(31)和第二电极(32)之间滑动,从而在两者之间形成电势差,通过该电势差实现对所述薄膜晶体管的开关控制。
  11. 根据权利要求10所述的制备方法,其特征在于,所述步骤D包括:在柔性基底(33a)上形成或固定摩擦层(33b),两者构成所述可移动摩擦部。
  12. 一种电路集成系统,包括:人机交互界面部分;
    所述人机交互界面部分包括:如权利要求1至9中任一项所述的柔性透明摩擦电子学晶体管和第一外部电源;
    其中,所述薄膜晶体管的漏极连接至第一外部电源的正极,第一外部电源的负极接地,所述薄膜晶体管的源极作为人机交互界面部分的输出端。
  13. 根据权利要求12所述的电路集成系统,还包括:电子器件部分
    所述电子器件部分包括:放大电路;其中,所述放大电路包括:三极管和稳压电阻,所述稳压电阻连接于人机交互界面的输出端与地之间;所述三极管的栅极连接至人机交互界面的输出端,源极接地。
  14. 根据权利要求13所述的电路集成系统,所述电子器件部分还包括:
    第二外部电源,用于驱动待调控的电子器件,其负极接地;
    其中,待调控的电子器件连接至三极管的漏极和第二外部电源的正极之间。
  15. 根据权利要求14所述的电路集成系统,所述待调控的电子器件为冷光片或电磁铁。
PCT/CN2017/094911 2016-07-29 2017-07-28 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统 WO2018019292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610617192.XA CN106612079B (zh) 2016-07-29 2016-07-29 柔性透明摩擦电子学晶体管及其制备方法
CN201610617192.X 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019292A1 true WO2018019292A1 (zh) 2018-02-01

Family

ID=58614935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094911 WO2018019292A1 (zh) 2016-07-29 2017-07-28 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统

Country Status (2)

Country Link
CN (1) CN106612079B (zh)
WO (1) WO2018019292A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118968A (zh) * 2018-10-22 2019-01-01 五邑大学 一种电流驱动的柔性显示器件
CN110838519A (zh) * 2019-10-15 2020-02-25 杭州电子科技大学 柔性ZnO/NiO/ZnO多功能三极管及其制备方法
CN113086941A (zh) * 2021-04-02 2021-07-09 西交利物浦大学 一种声音探测器件及其制备方法
CN114005876A (zh) * 2021-10-19 2022-02-01 北京纳米能源与系统研究所 一种双极性晶体管及逻辑器件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612079B (zh) * 2016-07-29 2019-10-08 北京纳米能源与系统研究所 柔性透明摩擦电子学晶体管及其制备方法
CN109425369B (zh) * 2017-08-28 2020-01-31 北京纳米能源与系统研究所 摩擦电子学晶体管及应用其的力、磁场传感器
CN110364621B (zh) * 2018-04-11 2023-12-01 清华大学 一种触觉存储电子器件及电子设备
CN110143563B (zh) * 2018-05-16 2021-12-24 北京纳米能源与系统研究所 肖特基传感器系统
US11009921B1 (en) * 2020-05-14 2021-05-18 Apple Inc. Electronic devices with adjustable hinges
CN112414438B (zh) * 2020-11-19 2022-07-05 清华大学 基于神经元晶体管的柔性传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084748A1 (en) * 2012-09-21 2014-03-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Powering Portable Electronics
CN105336868A (zh) * 2014-07-17 2016-02-17 北京纳米能源与系统研究所 摩擦发电直接驱动的有机发光二极管及驱动方法
CN105470313A (zh) * 2014-08-12 2016-04-06 北京纳米能源与系统研究所 基于接触起电的背栅场效应晶体管
CN106612079A (zh) * 2016-07-29 2017-05-03 北京纳米能源与系统研究所 柔性透明摩擦电子学晶体管及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611126B1 (ko) * 2015-03-03 2016-04-08 성균관대학교산학협력단 전해질을 이용한 마찰전기 발생소자
CN105553324A (zh) * 2016-02-29 2016-05-04 电子科技大学 柔性透明摩擦发电机及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084748A1 (en) * 2012-09-21 2014-03-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Powering Portable Electronics
CN105336868A (zh) * 2014-07-17 2016-02-17 北京纳米能源与系统研究所 摩擦发电直接驱动的有机发光二极管及驱动方法
CN105470313A (zh) * 2014-08-12 2016-04-06 北京纳米能源与系统研究所 基于接触起电的背栅场效应晶体管
CN106612079A (zh) * 2016-07-29 2017-05-03 北京纳米能源与系统研究所 柔性透明摩擦电子学晶体管及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118968A (zh) * 2018-10-22 2019-01-01 五邑大学 一种电流驱动的柔性显示器件
CN109118968B (zh) * 2018-10-22 2023-10-03 五邑大学 一种电流驱动的柔性显示器件
CN110838519A (zh) * 2019-10-15 2020-02-25 杭州电子科技大学 柔性ZnO/NiO/ZnO多功能三极管及其制备方法
CN110838519B (zh) * 2019-10-15 2022-07-19 杭州电子科技大学 柔性ZnO/NiO/ZnO多功能三极管及其制备方法
CN113086941A (zh) * 2021-04-02 2021-07-09 西交利物浦大学 一种声音探测器件及其制备方法
CN113086941B (zh) * 2021-04-02 2023-08-18 西交利物浦大学 一种声音探测器件及其制备方法
CN114005876A (zh) * 2021-10-19 2022-02-01 北京纳米能源与系统研究所 一种双极性晶体管及逻辑器件
CN114005876B (zh) * 2021-10-19 2024-04-26 北京纳米能源与系统研究所 一种双极性晶体管及逻辑器件

Also Published As

Publication number Publication date
CN106612079A (zh) 2017-05-03
CN106612079B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2018019292A1 (zh) 柔性透明摩擦电子学晶体管及其制备方法、电路集成系统
Tao et al. Self‐powered tactile sensor array systems based on the triboelectric effect
Kang et al. Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
Yang et al. Tribotronic transistor array as an active tactile sensing system
Chen et al. An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing
JP6059370B2 (ja) スライド摩擦式ナノ発電機および発電方法
JP6236552B2 (ja) 摩擦接触帯電効果に基づくバックゲート電界効果トランジスタ
Yang et al. Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging
Pang et al. Flexible transparent tribotronic transistor for active modulation of conventional electronics
KR102211497B1 (ko) 촉각 디스플레이 장치
JP2016510206A (ja) スライド摩擦式ナノ発電機および発電方法
Zhang et al. Tribotronics for active mechanosensation and self‐powered microsystems
CN104600114B (zh) 摩擦电场效应晶体管
WO2019000935A1 (zh) 压力传感器及其制作方法、电子器件
Wang et al. Field effect transistor‐based tactile sensors: From sensor configurations to advanced applications
WO2015192520A1 (zh) 触摸屏及其制作方法、显示装置
WO2014114028A1 (zh) 一种单摩擦表面微型发电机及其制造方法
Cao et al. High‐resolution monolithic integrated tribotronic InGaZnO thin‐film transistor array for tactile detection
WO2015158302A1 (zh) 基于静电感应的传感器、发电机、传感方法与发电方法
Zhou et al. Tribotronic tuning diode for active analog signal modulation
CN105336868B (zh) 摩擦发电直接驱动的有机发光二极管及驱动方法
CN107611171A (zh) 一种基于硅纳米膜的柔性底栅多沟道晶体管及其制备方法
Jang et al. Impact of polyimide film thickness for improving the mechanical robustness of stretchable InGaZnO thin-film transistors prepared on wavy-dimensional elastomer substrates
Lee et al. Stress release effect of micro-hole arrays for flexible electrodes and thin film transistors
Nie et al. Flexible double-sided light-emitting devices based on transparent embedded interdigital electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17833595

Country of ref document: EP

Kind code of ref document: A1