CN110836667A - 在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪 - Google Patents

在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪 Download PDF

Info

Publication number
CN110836667A
CN110836667A CN201910653953.0A CN201910653953A CN110836667A CN 110836667 A CN110836667 A CN 110836667A CN 201910653953 A CN201910653953 A CN 201910653953A CN 110836667 A CN110836667 A CN 110836667A
Authority
CN
China
Prior art keywords
glass
rare earth
loop path
doped
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910653953.0A
Other languages
English (en)
Inventor
迪安·E·约翰逊
吴剑峰
艾伦·布鲁斯·塔弛贝里
特里萨·马尔塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of CN110836667A publication Critical patent/CN110836667A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • G01C19/662Ring laser gyrometers details signal readout; dither compensators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1605Solid materials characterised by an active (lasing) ion rare earth terbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1606Solid materials characterised by an active (lasing) ion rare earth dysprosium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/161Solid materials characterised by an active (lasing) ion rare earth holmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1615Solid materials characterised by an active (lasing) ion rare earth samarium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/171Solid materials amorphous, e.g. glass chalcogenide glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/172Solid materials amorphous, e.g. glass selenide glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/173Solid materials amorphous, e.g. glass fluoride glass, e.g. fluorozirconate or ZBLAN [ ZrF4-BaF2-LaF3-AlF3-NaF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/177Solid materials amorphous, e.g. glass telluride glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/178Solid materials amorphous, e.g. glass plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/175Solid materials amorphous, e.g. glass phosphate glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gyroscopes (AREA)
  • Lasers (AREA)

Abstract

本发明题为“在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪”。本发明提供了一种固态环形激光陀螺仪,该固态环形激光陀螺仪包括:激光器块,所述激光器块包括具有光学闭环路径的谐振环腔;多个反射镜结构,安装在该块上并包括反射闭环路径周围的光束相应的多层反射镜;和泵浦激光器组件,该泵浦激光器组件通过反射镜结构中的一个反射镜结构与闭环路径光学通信。多层反射镜的一个或多个包含稀土掺杂增益层,该稀土掺杂增益层可操作以在闭环路径中产生反向传播光束的双向光学放大。在一些实施方案中,该增益层包含掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,该玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。另选地,该增益层除二氧化硅之外可包含掺杂到玻璃状主体材料中的钕掺杂剂。

Description

在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪
背景技术
环形激光陀螺仪通常包含具有多个互连通道的固体电介质材料块,这些通道被布置成闭环以形成谐振腔,其中反射镜位于每个通道的交叉处。在一些实施方式中,激光气体包含在谐振腔内,并且电势施加到激光气体以在谐振腔中产生反向传播的激光束。在其他实施方式中,固态增益介质被添加到谐振腔中的反射镜中的一个以产生反向传播的激光束,而不使用激光气体。例如,可以使用几个半波长的掺钕二氧化硅来产生用于谐振腔的激光增益介质。
发明内容
一种固态环形激光陀螺仪包括:激光器块,该激光器块包括具有光学闭环路径的谐振环腔;多个反射镜结构,所述多个反射镜结构分别安装在所述激光器块上,该反射镜结构中的每一个反射镜结构包括与光学闭环路径光学通信的相应多层反射镜,每个多层反射镜被定位并成角度以反射光学闭环路径周围的光束;和泵浦激光器组件,所述泵浦激光器组件通过反射镜结构中的一个反射镜结构与闭环路径光学通信。一个或多个多层反射镜包含稀土掺杂的增益层。增益层可操作以在光学闭环路径中产生反向传播光束的双向光学放大。泵浦激光器组件被配置成将光束注入稀土掺杂增益层中。在一些实施方案中,稀土掺杂的增益层包含掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。另选地,稀土掺杂的增益层可包含或掺杂到玻璃状主体材料中除二氧化硅之外的钕掺杂剂。
附图说明
通过参考附图的以下描述,本发明的特征对于本领域的技术人员将变得显而易见。应当理解,附图仅示出了典型的实施方案,并且因此不应认为是限制本发明的范围,将通过使用附图以附加特征和细节来描述本发明,其中:
图1是根据一个实施方案的可以用稀土增益掺杂材料实现的固态环形激光陀螺仪的示意图;以及
图2是根据一个实施方案的增益反射镜结构的示意图,该增益反射镜结构可用于固态环形激光陀螺仪中的双向光学放大。
具体实施方式
在以下具体实施方式中,对实施方案进行了充分的描述,以使本领域的技术人员能够实践本发明。应当理解,在不脱离本发明的范围的情况下可利用其他实施方案。因此,以下详细描述不应被视为具有限制意义。
本文公开了一种在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪。
如上所述,已知钕(Nd)掺杂的二氧化硅(SiO2)可用于为固态环形激光陀螺仪的谐振腔产生激光增益介质。虽然已经充分研究了这种激光增益介质,但是可以选择其他有源增益掺杂剂以实现相同的目的,以及用于有源增益掺杂剂的其他玻璃状主体。
在一些实施方案中,除钕掺杂的二氧化硅之外的,掺杂有源增益介质的稀土可用作固态增益介质。在一些实施方案中,增益介质可以包含掺杂到除二氧化硅之外的其他玻璃基质中的钕,诸如适合于离子束溅射沉积的玻璃基质。
激光增益介质可以被制造成薄膜增益反射镜,该薄膜增益反射镜为环形激光陀螺仪的谐振腔中的光束提供双向光学放大。当谐振腔的光学闭环路径中的增益超过损耗时,两个反向传播的光束围绕路径行进并且可用于测量旋转。
可以通过首先将交替的电介质材料层沉积到高度抛光的基板上以形成多层电介质反射镜来构造薄膜增益反射镜。此后,在多层电介质反射镜的顶部上沉积单层稀土掺杂的玻璃状主体材料以形成增益反射镜。在各种实施方案中,通过使交替的电介质材料层的厚度等于反向传播的激光束的四分之一光学波长,可以将电介质反射镜调谐到激光束波长。增益反射镜的厚度可以是激光束的半个光学波长的整数,以便最大化增益层内的激光强度以获得最大增益。
增益反射镜的玻璃状主体材料中的稀土离子负责光束的光学放大。光束的频率对旋转敏感,并且可以使用光束组合光学系统和检测器来测量与旋转成比例的光束频率的差异。
本固态环形激光陀螺仪具有消除通常在谐振腔中包含激光气体的环形激光陀螺仪中发现的磨损机制的益处,并且制造成本更低。
下文结合附图描述了各种实施方案的更多细节。
图1示出了根据一个实施方案的可以用稀土增益掺杂材料实现的固态环形激光陀螺仪100。环形激光陀螺仪100包括激光器块110,该激光器块具有光学闭环路径112形式的谐振环腔,该光学闭环路径具有基本上三角形的形状。虽然图1的实施方案将激光器块110示出为具有三个钝角的三角形,但应理解,这是非限制性实施例,并且其他实施方案可包括具有不同形状的激光器块。
多个反射镜结构114、116和118在各拐角115、117和119的每一个处分别安装在激光器块110上。反射镜结构114、116和118中的每一个具有相应的高反射多层反射镜120、122和124,它们在闭环路径112中的通道的交叉处定位并适当地成角度,以将来自一个通道的光反射到另一个通道中。在一个实施方案中,多层反射镜120、122和124是多层电介质反射镜。
多层反射镜中的至少一个形成为包括稀土掺杂增益介质的薄膜增益反射镜,增益反射镜可操作以在闭环路径112中产生双向光学放大。例如,稀土掺杂的增益层128可以形成在多层反射镜120上以产生增益反射镜,如图1所示。在其他实施方案中,稀土掺杂的增益层可以形成在一个或多个其他多层反射镜结构122、124上。增益层可以由稀土掺杂的玻璃材料的薄的无定形膜形成,该无定形膜可以使用常规沉积技术沉积在多层反射镜上。以下参照图2描述增益反射镜结构和组成的进一步细节。
包括光源132和聚焦光学器件134的泵浦激光器组件130通过反射镜结构114与闭环路径112光学通信。例如,光源132可包括激光二极管、发光二极管(LED)、超发光LED或LED阵列。
包括一个或多个光电探测器142的读出设备140通过反射镜结构116与闭环路径112光学通信。处理单元150与读出设备140可操作地通信。
当通过泵浦激光器组件130将光束注入到稀土掺杂的增益层128时,注入的光束需要以对增益层128具有吸收性的特定波长或波长发射,从而提供激发能量以实现粒子数反转以维持激光。这导致闭环路径112内的一对反向传播光束160通过从多层反射镜120、122和124反射沿相同光路行进。
环形激光陀螺仪100的旋转使得反向传播光束160的有效路径长度改变,从而在两个光束之间产生频率差,这可以用于确定角速率。例如,当光信号信息从闭环路径112耦合到读出设备140时,电压信号的输出通过读出设备140发送到处理单元150。根据电压信号确定反向传播光束160之间的频率差异,因此可以获得旋转信息。
关于与环形激光陀螺仪的激光器块相关联的物理结构和电子电路的未示出的其他细节被认为是本领域普通技术人员的知识,因此在此不再描述。
图2示出了根据一个实施方案的增益反射镜结构200,该增益反射镜结构可用于双向光学放大,诸如在固态环形激光陀螺仪中。增益反射镜结构200包括基板210,诸如高度抛光的玻璃基板。在基板210上形成多层反射镜叠层220,诸如高反射率多层电介质反射镜。多层反射镜叠层220可以通过沉积更高和更低折射率材料的交替层来形成,例如,每个折射率材料的厚度为光学波长的四分之一。在一个实施方案中,可以通过标准薄膜沉积技术沉积交替的二氧化钛(TiO2)和二氧化硅层以形成多层反射镜叠层220。
在多层反射镜叠层220上形成稀土掺杂增益层230。可以通过将稀土掺杂的玻璃状主体材料的薄膜沉积到多层反射镜叠层220的外层上来形成增益层230。在一个实施方案中,增益层230的厚度形成为例如整数个半光学波长。例如,可以采用离子束溅射沉积工艺来形成增益层230。
可用于形成增益层230的合适的稀土掺杂剂的非限制性实施例包含铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、和镥(Lu)。可用于形成增益层230的玻璃状主体材料的非限制性实施例包含二氧化硅,二氧化钛,氧化钽(Ta2O5)、氧化铝(Al2O3)、氧化锆(ZrO2)、硅酸盐玻璃、磷酸盐玻璃、氟硅酸盐玻璃、非氧化物玻璃,诸如氟化物玻璃等。也可以使用适合于离子束溅射沉积的其他玻璃状主体材料。
在一些实施方案中,除了二氧化硅之外,将钕掺杂到其他玻璃状主体材料中以形成增益层。例如,可以将钕掺杂到其他玻璃状主体材料中,诸如二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃,诸如氟化物玻璃。
在一些其他实施方案中,将除钕之外的稀土掺杂剂被掺杂到玻璃状主体材料中以形成增益层。例如,除了钕之外的稀土掺杂剂可以被掺杂到二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃中,诸如氟化物玻璃。
示例性实施方案
实施例1包括一种固态环形激光陀螺仪,该固态环形激光陀螺仪包括:激光器块,该激光器块包括具有光学闭环路径的谐振环腔;多个反射镜结构,该多个反射镜结构分别安装在激光器块上,反射镜结构中的每个反射镜结构包括与光学闭环路径光学通信的相应多层反射镜,每个多层反射镜被定位并成角度以反射光学闭环路径周围的光束;和泵浦激光器组件,该泵浦激光器组件通过反射镜结构中的一个反射镜结构与光学闭环路径光学通信;其中多层反射镜中的一个或多个反射镜包含稀土掺杂增益层,该增益层可操作以在光学闭环路径中产生反向传播光束的双向光学放大;其中泵浦激光器组件被配置成将光束注入到稀土掺杂增益层中;其中稀土掺杂增益层包含:掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,其中玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃;或除二氧化硅之外的掺杂到玻璃状主体材料中的钕掺杂剂。
实施例2包括实施例1所述的环形激光陀螺仪,其中稀土掺杂剂包含铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、或镥。
实施例3包括实施例1所述的环形激光陀螺仪,其中当稀土掺杂增益层包含掺杂到玻璃状主体材料中的除二氧化硅之外的钕掺杂剂时,玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。
实施例4包括实施例1-3中任一项所述的环形激光陀螺仪,其中多层反射镜包括多层电介质反射镜。
实施例5包括实施例4所述的环形激光陀螺仪,其中多层电介质反射镜包含交替的高折射率和低折射率电介质材料层。
实施例6包括实施例1-5中任一项所述的环形激光陀螺仪,其中泵浦激光器组件包括:光源,该光源包括激光二极管、发光二极管(LED)、超发光LED或LED阵列;以及与光学闭环路径进行光学通信的聚焦光学器件。
实施例7包括实施例1-6中任一项所述的环形激光陀螺仪,其中来自泵浦激光器组件的光束具有可操作以在稀土掺杂剂中产生粒子数反转以便产生光学放大的波长和强度。
实施例8包括增益反射镜结构,该增益反射镜结构包括:基板;基板上的多层反射镜叠层;和多层反射镜叠层上的稀土掺杂增益层,其中稀土掺杂增益层包含:掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,其中玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃;或除二氧化硅之外的掺杂到玻璃状主体材料中的钕掺杂剂;其中增益反射镜可操作,以在光学闭环路径中产生反向传播光束的双向光学放大。
实施例9包括实施例8所述的增益反射镜结构,其中基板包含抛光的玻璃材料。
实施例10包括实施例8-9中任一项所述的增益反射镜结构,其中多层反射镜叠层包括多层电介质反射镜。
实施例11包括实施例10所述的增益反射镜结构,其中多层电介质反射镜包含交替的高折射率和低折射率的电介质材料层。
实施例12包括实施例8所述的增益反射镜结构,其中稀土掺杂剂包含铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、或镥。
实施例13包括实施例8所述的增益反射镜结构,其中当稀土掺杂增益层包含掺杂到玻璃状主体材料中的除二氧化硅之外的钕掺杂剂时,玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。
实施例14包括固态环形激光陀螺仪,该固态环形激光陀螺仪包括:激光器块,该激光器块包括具有基本三角形形状的光学闭环路径的谐振环腔;第一反射镜结构、第二反射镜结构和第三反射镜结构,反射镜结构中的每个分别安装在激光器块的拐角并具有与光学闭环路光学通信的相应多层电介质反射镜,每个多层电介质反射镜被定位并成角度以反射光学闭环路径周围的光束;泵浦激光器组件,该泵浦激光器组件通过反射镜结构之一与光学闭环路径光学通信;其中一个或多个反射镜结构包括增益反射镜,该增益反射镜包括在多层电介质反射镜上的稀土掺杂增益层,增益反射镜可操作以产生光学闭环路径中反向传播光束的双向光学放大;其中泵浦激光器组件被配置成将光束注入稀土掺杂增益层中;其中稀土掺杂增益层包含:掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,其中玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃;或掺杂到除二氧化硅之外的玻璃状主体材料中的钕掺杂剂。
实施例15包括实施例14所述的环形激光陀螺仪,其中稀土掺杂剂包含铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、或镥。
实施例16包括实施例14所述的环形激光陀螺仪,其中当稀土掺杂增益层包含掺杂到玻璃状主体材料中的除二氧化硅之外的钕掺杂剂时,玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。
实施例17包括实施例14-16中任一项所述的环形激光陀螺仪,其中多层电介质反射镜包含交替的高折射率和低折射率的电介质材料层。
实施例18包括实施例14-17中任一项所述的环形激光陀螺仪,其中来自激光器组件的光束具有可操作以在稀土掺杂剂中产生粒子数反转以便产生光学放大的波长和强度。
实施例19包括实施例14-18中任一项所述的环形激光陀螺仪,该环形激光陀螺仪还包括:读出设备,该读出设备包括与光学闭环路径光学通信的一个或多个光电探测器;其中,读出设备可操作以从光学闭环路径接收光学信号信息,并输出对应于光学信号信息的电压信号。
实施例20包括实施例19所述的环形激光陀螺仪,该环形激光陀螺仪还包括:处理单元,该处理单元与读出设备可操作地通信;其中处理单元可操作以接收来自读出设备的电压信号;其中处理单元可操作以确定来自电压信号的反向传播光束之间的频率差以获得旋转信息。
本发明可以其他具体形式体现,而不脱离其基本特性。所述实施例在所有方面将被视为仅是说明性的而非限制性的。因此,本发明的范围由所附权利要求书而不是前述说明书指出。在权利要求的等价性的含义和范围内的所有变化都将涵盖在其范围内。

Claims (3)

1.一种固态环形激光陀螺仪,包括:
激光器块,所述激光器块包括具有光学闭环路径的谐振环腔;
多个反射镜结构,所述多个反射镜结构分别安装在所述激光器块上,所述反射镜结构中的每一个反射镜结构包括与所述光学闭环路径光学通信的相应多层反射镜,每个多层反射镜被定位并成角度以反射所述光学闭环路径周围的光束;和
泵浦激光器组件,所述泵浦激光器组件通过所述反射镜结构中的一个反射镜结构与所述光学闭环路径光学通信;
其中所述多层反射镜中的一个或多个反射镜包含稀土掺杂增益层,所述增益层可操作以在所述光学闭环路径中产生反向传播光束的双向光学放大;
其中所述泵浦激光器组件被配置成将光束注入到所述稀土掺杂增益层中;
其中所述稀土掺杂增益层包含:
掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,其中所述玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃;或
除二氧化硅之外的掺杂到玻璃状主体材料中的钕掺杂剂。
2.根据权利要求1所述的环形激光陀螺仪,其中:
所述稀土掺杂剂包含铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、或镥;或
当所述稀土掺杂增益层包含掺杂到玻璃状主体材料中的除二氧化硅之外的钕掺杂剂时,所述玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃。
3.一种增益反射镜结构,包括:
基底;
所述基板上的多层反射镜叠层;和
稀土掺杂增益层,所述稀土掺杂增益层在所述多层反射镜叠层上,其中所述稀土掺杂的增益层包含:
掺杂到玻璃状主体材料中的除钕之外的稀土掺杂剂,其中所述玻璃状主体材料包含二氧化钛、氧化钽、氧化铝、氧化锆、硅酸盐玻璃、磷酸盐玻璃、亚碲酸盐玻璃、氟硅酸盐玻璃或非氧化物玻璃;或
除二氧化硅之外的掺杂到玻璃状主体材料中的钕掺杂剂;
其中所述增益反射镜可操作,以在光学闭环路径中产生反向传播光束的双向光学放大。
CN201910653953.0A 2018-08-17 2019-07-19 在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪 Pending CN110836667A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/104,806 US10739137B2 (en) 2018-08-17 2018-08-17 Solid state ring laser gyroscope using rare-earth gain dopants in glassy hosts
US16/104,806 2018-08-17

Publications (1)

Publication Number Publication Date
CN110836667A true CN110836667A (zh) 2020-02-25

Family

ID=67544080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910653953.0A Pending CN110836667A (zh) 2018-08-17 2019-07-19 在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪

Country Status (3)

Country Link
US (1) US10739137B2 (zh)
EP (1) EP3611809A1 (zh)
CN (1) CN110836667A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476633B2 (en) 2020-07-20 2022-10-18 Honeywell International Inc. Apparatus and methods for stable bidirectional output from ring laser gyroscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295146A (en) * 1992-04-10 1994-03-15 Polaroid Corporation Solid state gain mediums for optically pumped monolithic laser
US6392791B1 (en) * 1999-10-25 2002-05-21 University Of Alabama In Huntsville Optical system and method for performing a defined function on an optical beam having at least one of a minimized volume or reduced operating temperature
US20030152115A1 (en) * 2002-01-24 2003-08-14 Np Photonics, Inc., A Corporation Of Delaware Rare-earth doped phosphate-glass single-mode fiber lasers
US20040202222A1 (en) * 2001-05-30 2004-10-14 Jean Paul Pocholle Solid state laser gyro comprising a resonator block
CN102253449A (zh) * 2011-03-25 2011-11-23 北京航空航天大学 一种稀土掺杂玻璃基三维有源耦合谐振环结构的构建方法
CN103236630A (zh) * 2013-05-05 2013-08-07 山东海富光子科技股份有限公司 一种使用稀土掺杂石英光纤作增益介质的单频光纤激光器
US20170373458A1 (en) * 2016-06-23 2017-12-28 Theodore John Podgorski Gain mirror for solid state ring laser rotation sensors

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548501A (en) 1978-01-03 1985-10-22 Raytheon Company Laser gyroscope system
US4225826A (en) 1978-02-03 1980-09-30 The University Of Rochester Laser apparatus
US4222668A (en) 1978-02-23 1980-09-16 Rockwell International Corporation Ferrimagnetic Faraday elements for ring lasers
US4609267A (en) 1980-12-22 1986-09-02 Seiko Epson Corporation Synthetic resin lens and antireflection coating
FR2655461B1 (fr) 1989-12-01 1992-11-27 Thomson Csf Source optique miniature et procede de realisation.
US5363192A (en) 1991-06-28 1994-11-08 Honeywell Inc. Mode-locked active gyro solid state lasers
US5319727A (en) 1992-12-28 1994-06-07 Honeywell Inc. Ion-beam deposited, gain enhanced ring resonators
US5408492A (en) 1993-05-21 1995-04-18 Smiths Industries Aerospace & Defense Systems, Inc. Solid medium optical ring laser rotation sensor
US5513039A (en) 1993-05-26 1996-04-30 Litton Systems, Inc. Ultraviolet resistive coated mirror and method of fabrication
US6101032A (en) 1994-04-06 2000-08-08 3M Innovative Properties Company Light fixture having a multilayer polymeric film
US5548602A (en) 1994-06-30 1996-08-20 Honeywell Inc. Method and structure for reflecting 633 nm radiation while eliminating 650 nm radiation in ring laser gyro mirrors
US5646780A (en) 1994-08-24 1997-07-08 Honeywell Inc. Overcoat method and apparatus for ZRO2 mirror stacks
DE19504373C2 (de) 1995-02-10 2000-06-15 Daimler Chrysler Ag Diodengepumpter Festkörper-Ringlaserkreisel
US5574738A (en) 1995-06-07 1996-11-12 Honeywell Inc. Multi-gigahertz frequency-modulated vertical-cavity surface emitting laser
FR2751796B1 (fr) 1996-07-26 1998-08-28 Commissariat Energie Atomique Microlaser soilde, a pompage optique par laser semi-conducteur a cavite verticale
US5843235A (en) 1996-09-11 1998-12-01 Honeywell Inc. Apparatus for forming a deposited curver coating on a substrate and mirror
US6143358A (en) 1998-10-01 2000-11-07 Nanofilm, Ltd. Hydrophobic thin films on magnesium fluoride surfaces
US6256434B1 (en) 1999-07-13 2001-07-03 Time-Bandwidth Products Ag Method and dielectric and/or semiconductor device for influencing the dispersion of electromagnetic radiation
US6643305B2 (en) 2000-04-07 2003-11-04 The United States Of America As Represented By The Secretary Of The Navy Optical pumping injection cavity for optically pumped devices
US6625193B2 (en) 2001-01-22 2003-09-23 The Boeing Company Side-pumped active mirror solid-state laser for high-average power
US6810060B2 (en) 2001-02-13 2004-10-26 The Boeing Company High-average power active mirror solid-state laser with multiple subapertures
US7145165B2 (en) 2001-09-12 2006-12-05 Honeywell International Inc. Tunable laser fluid sensor
US7760432B2 (en) 2002-04-25 2010-07-20 Honeywell International Inc. Photochromic resistant materials for optical devices in plasma environments
US7027477B2 (en) 2002-08-30 2006-04-11 Spectra Physics Inc. Expansion matched thin disk laser and method for cooling
GB2399941A (en) 2003-03-24 2004-09-29 Univ Strathclyde Vertical cavity semiconductor optical devices
US7477674B2 (en) 2005-11-14 2009-01-13 The Boeing Company High-gain solid-state laser
JP2008218568A (ja) 2007-03-01 2008-09-18 Denso Corp レーザ装置
JP5027584B2 (ja) 2007-07-27 2012-09-19 ミネベア株式会社 半導体リングレーザジャイロ
FR2937739B1 (fr) 2008-10-28 2010-11-19 Thales Sa Gyrolaser a milieu amplificateur a etat solide et a cavite optique en anneau
US8379680B1 (en) 2009-08-10 2013-02-19 The Boeing Company Direct cooling of thin disk lasers
US20110274133A1 (en) 2010-05-05 2011-11-10 Honeywell International Inc. Systems and methods for improved ring laser gyroscope devices through mix ratio optimization
WO2012145534A1 (en) 2011-04-20 2012-10-26 Logos Technologies, Inc. A flexible driver laser for inertial fusion energy
US20190245319A1 (en) 2016-05-26 2019-08-08 Compound Photonics Limited Solid-state laser system
US20190324175A1 (en) 2018-04-18 2019-10-24 Honeywell International Inc. Methods for enhancing the durability and manufacturability of multilayer interference mirrors
US20200059062A1 (en) 2018-08-17 2020-02-20 Honeywell International Inc. Systems and methods for end pumped laser mirror stack assemblies
US20200056889A1 (en) 2018-08-17 2020-02-20 Honeywell International Inc. Enhanced solid-state gain medium for ring laser gyroscopes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295146A (en) * 1992-04-10 1994-03-15 Polaroid Corporation Solid state gain mediums for optically pumped monolithic laser
US6392791B1 (en) * 1999-10-25 2002-05-21 University Of Alabama In Huntsville Optical system and method for performing a defined function on an optical beam having at least one of a minimized volume or reduced operating temperature
US20040202222A1 (en) * 2001-05-30 2004-10-14 Jean Paul Pocholle Solid state laser gyro comprising a resonator block
US20030152115A1 (en) * 2002-01-24 2003-08-14 Np Photonics, Inc., A Corporation Of Delaware Rare-earth doped phosphate-glass single-mode fiber lasers
CN102253449A (zh) * 2011-03-25 2011-11-23 北京航空航天大学 一种稀土掺杂玻璃基三维有源耦合谐振环结构的构建方法
CN103236630A (zh) * 2013-05-05 2013-08-07 山东海富光子科技股份有限公司 一种使用稀土掺杂石英光纤作增益介质的单频光纤激光器
US20170373458A1 (en) * 2016-06-23 2017-12-28 Theodore John Podgorski Gain mirror for solid state ring laser rotation sensors

Also Published As

Publication number Publication date
US10739137B2 (en) 2020-08-11
EP3611809A1 (en) 2020-02-19
US20200056888A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US5290730A (en) Wavelength conversion waveguide and fabrication method
US10054735B2 (en) Method and apparatus for producing crystalline cladding and crystalline core optical fibers
US6141475A (en) Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same
US5457570A (en) Ultraviolet resistive antireflective coating of Ta2 O5 doped with Al2 O3 and method of fabrication
CN110836667A (zh) 在玻璃状主体中使用稀土增益掺杂剂的固态环形激光陀螺仪
Orera et al. Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2 (c)-CaZrO3 erbium doped system
CN110838672A (zh) 用于端面泵浦激光镜叠堆组件的系统和方法
JP6137044B2 (ja) 磁気光学材料及び磁気光学デバイス
US10907966B2 (en) Solid state ring laser gyroscope having a primary cavity and a pumping cavity
JPH10209550A (ja) 光導波路及びそれを用いた1.5μm帯光増幅器
KR20070004016A (ko) 도파관 구조물 및 이를 포함하는 조명 장치
JP3277494B2 (ja) 増幅用光ファイバ及びこれを用いた1.3μm帯用光ファイバ増幅器
JP2755280B2 (ja) 光増幅用希土類ドープ光ファイバ
JP2608104B2 (ja) 光ファイバレーザ装置
EP1304774B1 (en) Low phonon energy gain medium and its method of fabrication
USRE38489E1 (en) Solid microlaser passively switched by a saturable absorber and its production process
JP3371343B2 (ja) 光増幅用フッ化物ガラスおよび光ファイバ
CN112595306A (zh) 具有有源体布拉格光栅的环形激光陀螺仪
JP2005012008A (ja) 光ファイバレーザ
JP2007507084A (ja) 固体レーザー媒質
US11385057B2 (en) Extra thick ultraviolet durability coating
JP2665572B2 (ja) 能動媒質からなる光導波路を含む光源とその製造方法
KR102022976B1 (ko) 형광 장수명 특성을 갖는 능동소자용 불소인산염계 유리
JP6187379B2 (ja) 磁気光学材料及び磁気光学デバイス
US20080192332A1 (en) Waveguide Amplifier in a Sputtered Film of Erbium-Doped Gallium Lanthanum Sulfide Glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination