CN110829533B - 一种控制简单且无自恢复效应误差的精确电池均衡电路 - Google Patents

一种控制简单且无自恢复效应误差的精确电池均衡电路 Download PDF

Info

Publication number
CN110829533B
CN110829533B CN201911117552.XA CN201911117552A CN110829533B CN 110829533 B CN110829533 B CN 110829533B CN 201911117552 A CN201911117552 A CN 201911117552A CN 110829533 B CN110829533 B CN 110829533B
Authority
CN
China
Prior art keywords
battery
circuit
equalization
buck
boost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911117552.XA
Other languages
English (en)
Other versions
CN110829533A (zh
Inventor
彭发祥
王浩宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN201911117552.XA priority Critical patent/CN110829533B/zh
Publication of CN110829533A publication Critical patent/CN110829533A/zh
Application granted granted Critical
Publication of CN110829533B publication Critical patent/CN110829533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,包括电池组、半桥逆变电路、倍压电路、控制单元及采集单元。本发明在整合传统电池组到电池单体和单体到单体均衡结构优点的基础上,利用均衡电流随着电池电压收敛而减小的电路优势,具有控制简单、均衡路径长度短、主动元器件数目少、稳定性好、自动且高精度均衡等特点。

Description

一种控制简单且无自恢复效应误差的精确电池均衡电路
技术领域
本发明涉及一种电池均衡电路。
背景技术
在电动汽车和储能系统等应用中,通常需要将低压电池串联以满足其电压和功率需求。然而,由于生产工艺问题将导致电池单体之间一致性较差,并且经过长期的充放电后,电池的不一致性会越加严重。这造成电池组内部电池单体的电压不均衡,进而导致部分单体的过充或耗尽,这严重限制了电池组的性能和使用寿命。因此,引入电池均衡电路来转移缓解电池单体的不一致,从而达到延长电池组使用寿命和提高旧电池组性能的目的。
目前,常见的均衡电路结构主要有电池串到电池(string-to-cell,S2C)和电池到电池(Cell-to-cell,C2C)两类。其中,利用C2C均衡电路一般采用可实现两个相邻电池单体之间的电量传递,具有良好的电路扩展性。然而,对于具有大量电池单体的电池组而言,这类C2C均衡电路所需元器件数目巨大,实现成本高。类似的,S2C均衡电路采用共享一个均衡单元的思路来降低主动功率器件数目和建立直接的均衡路径,但也离不开多主动开关数目的多路复用网络,控制复杂,电路体积大。一般地,为了提高均衡速度,现有均衡方法常采用恒均衡电流的控制策略,以实现均衡速度的可控。然而由于电池的自恢复效应的影响,恒流均衡存在较大的均衡误差。为了提升均衡准确度,不得不对电池模型进行复杂的状态估计和建模,基于电池初始状态和均衡电流大小等因素对恒流均衡进行补偿以消除误差,这显著增加了控制系统的复杂度、稳定性低,难以大规模应用。
发明内容
本发明的目的是:提供一种新的结构来实现主动器件数目少、控制简单及精度高的电池均衡。
为了达到上述目的,本发明的技术方案是提供了一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,包括电池组、半桥逆变电路、倍压电路、控制单元及采集单元,其中:
电池组由n个电池模块串联形成,将n个电池模块分别定义为电池模块M1、M2、…、Mn;每个电池模块包括串联的m个电池单体,每个电池单体与由控制单元控制的两级结构的Buck-Boost均衡单元相连;
采集单元,用于采集电池组中每个电池单体的参数信息,将采集到的参数信息发送给控制单元;
半桥逆变电路的输入端并联在电池组的两端,输出端连接到倍压电路;
倍压电路由n个由被动元件构成的整流单元级联而成,各整流单元的一侧分别连接有电容,所有电容并联耦合在一起,半桥逆变电路的输出端连接到电容公共耦合端,各整流单元的另一侧并联在相对应的电池模块的正负两极,以实现半桥逆变电路副边均衡电流的整流再分配到各个电池模块,建立起各个电池模块的均衡路径;
半桥逆变电路及单体均衡器仅由控制单元输出的一对互补50%占空比及固定开关频率的PWM信号驱动,半桥逆变电路再驱动倍压电路,利用电容耦合的倍压电路及50%占空比Buck-Boost均衡单元在电压均衡过程中的电流收敛特性,消除电池自恢复效应带来的均衡误差,以实现自动精确的电池模块和电池单体间的电压均衡。
优选地,所述整流单元由一个能量传输电容和两个半桥二极管构成。
优选地,每个所述整流单元的两个半桥二极管通过滤波电容并联在相对应的电池模块的正负两极。
优选地,每个电池模块包括2k个所述电池单体,k≥1,每两个相邻的所述电池单体定义为一个电池单体对,则两级结构的Buck-Boost均衡单元包括第一级Buck-Boost均衡电路及第二级Buck-Boost均衡电路,其中:每个电池单体对与由两个开关器件一及一个电感一以基本Buck-Boost拓扑的形式串并联构成的第一级Buck-Boost均衡电路相连,每相邻两个电池单体对进一步与由两个开关器件二及一个电感二以基本Buck-Boost拓扑的形式串并联构成的第二级 Buck-Boost均衡电路相连;开关器件一及开关器件二由所述控制单元控制。
本发明具有如下有益效果:
本发明通过采集单元实时监测每个单体电池电压,判断需要均衡的电池或电池模块,仅需一对互补50%占空比及固定开关频率的PWM信号,驱动半桥逆变和 Buck-Boost均衡单元,利用电容耦合的倍压电路及50%占空比Buck-Boost电路在电压均衡过程中的电流收敛特性,无需复杂的电池状态估计和建模算法,即可消除电池自恢复效应带来的均衡误差,以实现自动精确的电池模块和单体间的电压均衡。引入由被动元件构成的倍压电路来建立模块均衡路径,仅需半桥逆变电路所包含的两个主动开关即可实现所有模块的均衡,显著降低主动器件数目,提高系统稳定性,也缓解了用倍压电路来均衡电池单体的低效率问题。同时,每个电池模块中,引入基于双向Buck-Boost的两级单体均衡结构,保证较好电路可扩展性的同时,提供更多的均衡路径。
本发明在整合传统电池组到电池单体和单体到单体均衡结构优点的基础上,利用均衡电流随着电池电压收敛而减小的电路优势,具有控制简单、均衡路径长度短、主动元器件数目少、稳定性好、自动且高精度均衡等特点。
附图说明
图1为本发明提出的复合型电池均衡电路;
图2为本发明的具体实施电路图;
图3(a)及图3(b)为电池模块均衡电路的等效图,图3a)中开关器件SL断开、SH闭合;图3(b)中开关器件SL闭合、SH断开;
图4(a)及图4(b)为电池单体均衡电路单元的等效图,图4(a)中开关器件S1闭合、S2断开;图4(b)中开关器件S1断开、S2闭合;
图5为均衡控制逻辑框图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明仅需要固定占空比及开关频率的控制信号,利用所提出电路结构在均衡过程中的均衡电流收敛特性,无需复杂的电池状态估计和建模算法,以实现自动且精确的电压均衡,这可显著降低准确均衡的控制复杂度。同时,结合复合式设计思路以保证自动精确均衡的同时,实现较少主动器件数目和较好电路可扩展性。
如图1所示,对于一个由n个电池模块M1、M2、…、Mn串联而成的电池组,本发明采用的一个技术方案是:提出一种整合电池到电池(C2C)与电池串到电池模块(string-to-module,S2M)均衡结构的高精度复合式层级结构。对于一个如图1所示的具有n个电池模块的电池组,本发明的复合结构主要分为三个部分:半桥逆变电路,倍压电路及两级结构的单体均衡器。其中,半桥逆变电路作为模块均衡单元,其输入端并联在整个电池组的两端,其输出端连接到倍压电路的电容公共耦合端,用以驱动倍压电路,从而建立整个电池组到电池模块的均衡路径。倍压电路由一个电容和两个半桥二极管构成的整流单元级联而成,各整流单元左侧通过并联电容的耦合在一起,右侧则并联在相应电池模块的正负两极,以实现半桥逆变电路副边均衡电流的整流再分配到各个电池模块,建立起各个电池模块的均衡路径。两级单体均衡器由基于双向Buck-Boost变换器的三个均衡单元(EU, EqualizerUnit)构成,用于实现相邻电池单体/组的均衡。
图2展示了本发明提出的具有2个电池模块M1、M2和8节电池单体的复合均衡电路的实例图,其中,每个电池模块由4节电池单体串联而成。以电池模块 M1为例,其由4节电池单体Cell1至Cell4串联而成。
具体连接关系描述如下:场效应管SL和SH的源漏极串联,场效应管SH的漏极连接到整个串联电池组的正极,场效应管SL的源极连接到整个串联电池组的负极。电感Lr和Lm由双绕组变压器的漏感和励磁电感实现。变压器副边绕组下端连接到能量传输电容C1和C2的公共连接端,上端连接到倍压电路中整流单元的级联中点。在倍压电路中,由一个能量传输电容(C1或C2)和两个二极管(D1和D2或D3和D4)构成的整流单元级联而成,其中电容左端连接到变压器副边绕组下端这一公共耦合节点,右端连接到二极管整流半桥中点。同时由两个二极管 (D1和D2或D3和D4)构成的二极管整流半桥通过滤波电容(Cf1和Cf2)并联在电池模块正负两极。因此对于n个电池模块需要n个能量传输电容(C),2n个整流二极管(D)和n个滤波电容(Cf)。在由每四节电池单体串联构成的电池模块中,共有6个开关和3个电感,以基本双向Buck-Boost拓扑的形式串并联构成两级单体均衡结构,电感L1、场效应管S1、场效应管S2构成第一级单体均衡结构,同样地,电感L2、场效应管S3、场效应管S4构成第一级单体均衡结构,电感L3、场效应管S5、场效应管S6构成第二级单体均衡结构。均衡过程中,模块均衡和单体均衡单元的等效电路图分别如图3(a)、图3(b)、图4(a)、图4 (b)所示。模块均衡单元开关频率设为200kHz,单体均衡器的开关频率设为 200kHz,控制逻辑见图5。由采集单元测量8节电池单体的端电压,无需进行电池开路电压估计,在电流收敛均衡过程中控制单元判断每节电池单体/模块的端电压是否在预设范围,若某单体电池/模块不在预设范围,则控制单元启动产生互补50%占空比及频率固定的PWM信号,启动模块/单体间的均衡。当被均衡电池/模块端电压均满足所设定的电压范围时,均衡过程结束。

Claims (4)

1.一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,包括电池组、半桥逆变电路、倍压电路、控制单元及采集单元,其中:
电池组由n个电池模块串联形成,将n个电池模块分别定义为电池模块M1、M2、…、Mn;每个电池模块包括串联的m个电池单体,每个电池单体与由控制单元控制的两级结构的Buck-Boost均衡单元相连;
采集单元,用于采集电池组中每个电池单体的参数信息,将采集到的参数信息发送给控制单元;
半桥逆变电路的输入端并联在电池组的两端,输出端连接到倍压电路;
倍压电路由n个由被动元件构成的整流单元级联而成,各整流单元的一侧分别连接有电容,所有电容并联耦合在一起,半桥逆变电路的输出端连接到电容公共耦合端,各整流单元的另一侧并联在相对应的电池模块的正负两极,以实现半桥逆变电路副边均衡电流的整流再分配到各个电池模块,建立起各个电池模块的均衡路径,其中,在倍压电路中,每个电池模块有一个能量传输电容、两个整流二极管和一个滤波电容,能量传输电容左端连接到半桥逆变电路中的变压器副边绕组下端这一公共耦合节点、右端连接到二极管整流半桥中点,变压器副边绕组上端连接到二极管整流半桥的级联中点,由两个流二极管构成的二极管整流半桥通过滤波电容并联在电池模块正负两极;
半桥逆变电路及单体均衡器仅由控制单元输出的一对互补50%占空比及固定开关频率的PWM信号驱动,半桥逆变电路再驱动倍压电路,利用电容耦合的倍压电路及50%占空比Buck-Boost均衡单元在电压均衡过程中的电流收敛特性,消除电池自恢复效应带来的均衡误差,以实现自动精确的电池模块和电池单体间的电压均衡。
2.如权利要求1所述的一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,所述整流单元由一个能量传输电容和两个半桥二极管构成。
3.如权利要求2所述的一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,每个所述整流单元的两个半桥二极管通过滤波电容并联在相对应的电池模块的正负两极。
4.如权利要求1所述的一种控制简单且无自恢复效应误差的精确电池均衡电路,其特征在于,每个电池模块包括2k个所述电池单体,k≥1,每两个相邻的所述电池单体定义为一个电池单体对,则两级结构的Buck-Boost均衡单元包括第一级Buck-Boost均衡电路及第二级Buck-Boost均衡电路,其中:每个电池单体对与由两个开关器件一及一个电感一以基本Buck-Boost拓扑的形式串并联构成的第一级Buck-Boost均衡电路相连,每相邻两个电池单体对进一步与由两个开关器件二及一个电感二以基本Buck-Boost拓扑的形式串并联构成的第二级Buck-Boost均衡电路相连;开关器件一及开关器件二由所述控制单元控制。
CN201911117552.XA 2019-11-15 2019-11-15 一种控制简单且无自恢复效应误差的精确电池均衡电路 Active CN110829533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911117552.XA CN110829533B (zh) 2019-11-15 2019-11-15 一种控制简单且无自恢复效应误差的精确电池均衡电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911117552.XA CN110829533B (zh) 2019-11-15 2019-11-15 一种控制简单且无自恢复效应误差的精确电池均衡电路

Publications (2)

Publication Number Publication Date
CN110829533A CN110829533A (zh) 2020-02-21
CN110829533B true CN110829533B (zh) 2024-03-29

Family

ID=69555462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911117552.XA Active CN110829533B (zh) 2019-11-15 2019-11-15 一种控制简单且无自恢复效应误差的精确电池均衡电路

Country Status (1)

Country Link
CN (1) CN110829533B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956799A (zh) * 2014-05-19 2014-07-30 山东大学 一种基于多副边变压器的电池组均衡电路及其实现方法
CN105247757A (zh) * 2013-05-28 2016-01-13 国立研究开发法人宇宙航空研究开发机构 并用转换器及多段倍压整流电路且具有均衡功能的充放电器
WO2016008253A1 (zh) * 2014-07-16 2016-01-21 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
CN105609887A (zh) * 2016-01-08 2016-05-25 南京航空航天大学 基于串联电池组的分层式均衡电路系统及混合控制方法
CN109672246A (zh) * 2019-01-16 2019-04-23 西南交通大学 基于Buck_Boost单元的反激式多路均衡电路及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM289925U (en) * 2005-11-09 2006-04-21 Sino American Electronic Co Lt Smart-type battery charger with equalizer circuit
JP6465358B2 (ja) * 2015-07-22 2019-02-06 日本蓄電器工業株式会社 電圧均等化回路システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247757A (zh) * 2013-05-28 2016-01-13 国立研究开发法人宇宙航空研究开发机构 并用转换器及多段倍压整流电路且具有均衡功能的充放电器
CN103956799A (zh) * 2014-05-19 2014-07-30 山东大学 一种基于多副边变压器的电池组均衡电路及其实现方法
WO2016008253A1 (zh) * 2014-07-16 2016-01-21 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
CN105609887A (zh) * 2016-01-08 2016-05-25 南京航空航天大学 基于串联电池组的分层式均衡电路系统及混合控制方法
CN109672246A (zh) * 2019-01-16 2019-04-23 西南交通大学 基于Buck_Boost单元的反激式多路均衡电路及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Faxiang Peng et al..An LLC-Based Highly Efficient S2M and C2C Hybrid Hierarchical Battery Equalizer.《IEEE TRANSACTIONS ON POWER ELECTRONICS》.2019,第35卷(第6期),第5928-5937页. *

Also Published As

Publication number Publication date
CN110829533A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110707783B (zh) 基于LLC和Buck-Boost的复合型层级电池均衡电路
US20200169097A1 (en) Modularization system and method for battery equalizers based on multi- winding transformers
CN107968452A (zh) 一种锂离子动力电池组的主被动混合均衡系统及方法
CN210123897U (zh) 电池均衡电路
CN112202218B (zh) 基于双极性t型双谐振开关电容变换器的均衡电路及控制方法
Moghaddam et al. A battery equalization technique based on Ćuk converter balancing for lithium ion batteries
CN104377778A (zh) 基于LCL谐振变换的Adjacent-Cell-to-Cell均衡电路及实现方法
CN112086698A (zh) 一种退役动力电池梯次利用的主动均衡电路及方法
CN112688375B (zh) 基于多绕组变压器的均衡输出系统
CN109617161B (zh) 一种准谐振交错开关电容电池均衡电路及其控制方法
CN109066846A (zh) 一种模块化电池间均衡电路结构与方法
CN114744698A (zh) 一种集成环流抑制和荷电状态均衡电路的并联电池簇拓扑
CN110707780B (zh) 一种基于变压器的交错式电池均衡电路结构
CN105811529A (zh) 一种混合均衡拓扑结构的均衡电路
CN110445205B (zh) 一种直流电源均衡管理系统及控制方法
CN110829533B (zh) 一种控制简单且无自恢复效应误差的精确电池均衡电路
CN216904379U (zh) 一种基于开关电容和Buck-Boost单元的自动电压均衡电路
CN106786989B (zh) 一种动力锂电池均衡方法及装置
CN212323065U (zh) 一种退役动力电池梯次利用的主动均衡电路
CN110649336A (zh) 一种具有完备均衡支路的电压均衡电路及控制方法
CN115117970A (zh) 主动均衡电路、设备及车用电池
CN105978100B (zh) 一种电池双向均衡电路、系统以及均衡方法
CN205846773U (zh) 一种电池双向均衡电路、系统
CN203933086U (zh) 一种电池均衡装置
CN210403957U (zh) 一种具有完备均衡支路的电压均衡电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant