CN110823543A - 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法 - Google Patents

一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法 Download PDF

Info

Publication number
CN110823543A
CN110823543A CN201911079879.2A CN201911079879A CN110823543A CN 110823543 A CN110823543 A CN 110823543A CN 201911079879 A CN201911079879 A CN 201911079879A CN 110823543 A CN110823543 A CN 110823543A
Authority
CN
China
Prior art keywords
point
envelope
piston rod
calculating
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911079879.2A
Other languages
English (en)
Other versions
CN110823543B (zh
Inventor
张旭东
张进杰
江志农
茆志伟
王瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201911079879.2A priority Critical patent/CN110823543B/zh
Publication of CN110823543A publication Critical patent/CN110823543A/zh
Application granted granted Critical
Publication of CN110823543B publication Critical patent/CN110823543B/zh
Priority to US17/088,863 priority patent/US11231038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/01Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/86Detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

本发明涉及一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法。活塞杆是往复机械的核心运动部件之一,一旦发生松动、断裂等故障易导致恶性事故。往复机械的运行负荷与故障均会导致活塞杆运行状态的改变,从活塞杆运行数据中提取故障特征需排除往复机械运行负荷的影响。首先,发明根据三角形相似定理计算出轴心位置,得到轴心位置分布;然后,采用改进的离散点包络方法与信息熵评估方法,从活塞杆轴心位置分布中提取特征;再然后,采用流形学习方法进行特征降维后构建负荷敏感特征集;最后,训练神经网络构建负荷识别分类器,实现了往复机械运行负荷的自动识别。应用实际往复压缩机活塞杆数据验证了本发明的优越性。

Description

一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷 识别方法
技术领域
本发明涉及一种往复机械的负荷识别方法。
背景技术
变负荷工况下故障监测诊断一直是难点问题。负荷变化通常导致机械结构动态特性改变,使振动、位移等信号中的故障特征受到干扰。活塞杆是往复机械核心运动部件,易发生紧固元件松动、裂纹甚至断裂故障。针对往复机械故障监测诊断的研究报道已经较多,也有开展活塞杆轴心轨迹的研究报道。例如,利用声发射技术对活塞杆进行在线监测,实现了事故的早期预警;利用基于X方向、Y方向的活塞杆轴心位置轨迹的故障诊断分析方法,可实现往复机械活塞组件、活塞杆的潜在故障早期预警;利用谐波小波对活塞杆轴心轨迹进行提纯,提取振动能量、固有频率与轨迹包络面积等特征,用于故障诊断。
目前,针对变负荷工况下活塞杆运动特征提取的研究鲜有报道。当工况改变与故障同时发生时,活塞杆运行状态改变的根本原因需要明确,应针对负荷影响与故障影响分别进行特征挖掘,避免故障误判。因此,变负荷状态下的活塞杆瞬态运动特性研究很重要。针对前述问题,本发明提出了一种基于活塞杆轴心轨迹离散点分布轮廓包络与信息熵的特征提取方法,挖掘不同负荷工况下的活塞杆轴心轨迹特征,构建负荷敏感特征参数集,并训练负荷识别模型。
发明内容
本发明的目的在于为往复机械的负荷识别提供一种简单有效的方法,发明基于轴心轨迹数据,提取包络特征和信息熵特征,构成负荷敏感特征集,用于往复机械的负荷识别。本发明具备计算简单、适应性强、识别准确率高等特点。
本发明的目的通过以下技术方案实现:本发明首先根据活塞杆沉降和偏摆数据计算出轴心位置;然后,利用改进的离散点分布轮廓包络方法提取轴心分布包络特征,再计算轴心分布的信息熵特征,将包络特征与信息熵特征组成初始特征集;最后,利用流形学习方法从初始特征集中提取负荷敏感特征,构建最终特征集,利用负荷敏感特征集训练神经网络识别分类器。
一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法,其特征在于,包括以下步骤:
第一步,设置不同的负荷状态Load={0,d,2d,3d,…,wd},w=0,1,2,…,其中d为负荷梯度,总工况数为(w+1),利用往复机械在线监测系统,通过水平方向的电涡流位移传感器(偏摆传感器)和竖直方向的电涡流位移传感器(沉降传感器)分别采集相应负荷状态下的活塞杆原始偏摆位移Xm={x1,x2,x3,…,xm}和活塞杆原始沉降位移Ym={y1,y2,y3,…,ym},m为采样点数;得到原始数据集XYn={(Xm,Ym)1 T,(Xm,Ym)2 T,…,(Xm,Ym)n T}T,n为数据组数;
第二步,利用公式(1)去除原始信号Xm和原始信号Ym的平均值,得到X′m={x′1,x′2,x′3,…,x′m}和Y′m={y′1,y′2,y′3,…,y′m};原始数据集变为XY′n={(X′m,Y′m)1 T,(X′m,Y′m)2 T,…,(X′m,Y′m)n T}T
Figure BDA0002263626800000021
式中,Fm为活塞杆原始偏摆或沉降位移;F′m为去掉平均值之后的活塞杆偏摆或沉降位移;
以偏摆传感器测量的水平方向为X轴,以沉降传感器测量的垂直方向为Y轴,建立平面直角坐标系,初始时刻活塞杆轴心位置记为O0(a0,b0),某一时刻活塞杆轴心位置记为Om(am,bm),活塞杆半径记为R,则该时刻活塞杆圆周与X轴交点为JX(R+x′m,0),与Y轴交点为JY(0,R+y′m);设点Om和点JX连线与X轴所成夹角为θ,点Om和点JY连线与点Om所在与X轴平行的直线所成夹角为
Figure BDA0002263626800000023
根据三角形相似定理,推导出公式(2),公式(3),联立两个公式求解活塞杆不同时刻的轴心位置Om(am,bm),构成轴心位置分布集O={O1(a1,b1),O2(a2,b2),O3(a3,b3),…,Om(am,bm)};
Figure BDA0002263626800000022
Figure BDA0002263626800000031
公式(2)(3)中j=1,2,3,…,m;
第三步,利用改进的离散点轮廓包络方法计算轴心位置分布O={O1(a1,b1),O2(a2,b2),O3(a3,b3),…,Om(am,bm)}的包络特征Bao,改进的离散点轮廓包络方法具体步骤如下:
3.1、根据轴心位置分布O,通过寻找水平方向X上的最小值点al与最大值点ar,竖直方向Y上的最小值点bd与最大值点bu,确定轴心位置分布的4个极限位置,分别记为Ol(al,bl),Or(ar,br),Od(ad,bd),Ou(au,bu),以四个极限位置点所成四边形内部为内侧,外部为外侧;
3.2、分别以上述轴心极限位置为起点,以逆时针方向,遍历各时刻轴心位置,以斜率最小原则,提取轴心位置轮廓凸集包络;
计算极限位置点Od和Or之间的凸集包络,具体计算方法如下:
(1)将点Od和点Or所成线段记为L1,则其斜率α1表示为:
Figure BDA0002263626800000032
(2)假设线段L1外侧的所有普通轴心位置点集为P={p1(a1,b1),p2(a2,b2),p3(a3,b3),…},计算点Od与P中任意一点所组成线段的斜率,记为K={β123,…};当存在多个点斜率相同的情况时,计算相应点与点Od之间的距离,记为D={dis1,dis2,dis3,…};在点集P中寻找点p′(ap,bp),使得点p′满足以下条件:
β′=min K且β′≤α1且dis′=max D (5)
式(5)中,β′为点p′与点Od所成线段的斜率,dis′为点p′与点Od之间的距离;
所得p′点即为凸集包络中的包络点;
(3)用凸集包络点p′替换点Od;将点p′和点Or所成线段记为L′1,其斜率记为α′1;进行下一轮迭代,寻找新的凸集包络点;
(4)重复步骤(1)(2)(3),当最新凸集包络点与点Or距离为0时,停止迭代,得到极限点Od和极限点Or之间轴心位置分布轮廓的凸集包络,记为B′dr={p′1,p′2,p′3,…};
计算极限点Or和点Ou之间,点Ou和点Ol之间,点Ol和点Od之间的凸集包络B′ru、B′ul、B′ld,最终得到全部轴心位置分布的凸集包络点集Btu={Od,B′dr,Or,B′ru,Ou,B′ul,Ol,B′ld};
(5)由公式(6)计算轴心位置轮廓凸集包络形成的面积S1,式中,c1为凸集包络点数;
Figure BDA0002263626800000041
3.3、根据步骤3.2得到的凸集包络,计算轴心位置分布的凹集包络;
计算极限点Od和极限点Or之间的凹集包络,取凸包络B′dr={p′1,p′2,p′3,…},以逆时针方向,逐个对B′dr中连续两个凸集包络点p′1(ap1,bp1)和p′2(ap2,bp2)进行如下计算:
(1)将点p′1(ap1,bp1)和点p′2(ap2,bp2)所成线段记为L2,线段L′斜率α2表示为:
Figure BDA0002263626800000042
(2)假设线段L2内侧的所有普通轴心位置点集为Q={q1(a1,b1),q2(a2,b2),q3(a3,b3),…},计算点p′1与Q中任意一点所组成线段的斜率,记为K′={β′1,β′2,β′3,…};当存在多个点斜率相同的情况时,计算相应点与点p′1之间的距离,记为D′={dis′1,dis′2,dis′3,…};在点集Q中寻找点q′(aq,bq),使得点q′满足以下条件:
β″=min K′且β″≥α2且dis″=min D′ (8)
式(8)中,β″为点q′与点p′1所成线段的斜率,dis″为点q′与点p′1之间的距离;
所得q′点即为凹集包络中的包络点;
(3)以凹集包络点q′代替点p′2,将点p′1和点q′所成线段记为L′2,线段L′2斜率记为α2;进行下一轮迭代,寻找新的凹集包络点;
(4)重复步骤(1)(2)(3),直至最新凹集包络点与点p′1之间的距离不超过M,停止迭代,最终得到极限点Od和极限点Or之间轴心位置分布轮廓的凹集包络,记为B″dr={q′1,q′2,q′3,…};
M初始值为全部轴心位置点的平均距离,联立公式(9)(10),计算M;
Figure BDA0002263626800000051
Figure BDA0002263626800000052
计算极限点Or和点Ou之间,点Ou和点Ol之间,点Ol和点Od之间的凹集包络B″ru、B″ul、B″ld,得到全部轴心位置分布的凹集包络点集Bao={Od,B″dr,Or,B″ru,Ou,B″ul,Ol,B″ld};
(5)由公式(11)计算轴心位置轮廓上述包络形成的面积S2,式中,c2为凹集包络点数;
Figure BDA0002263626800000053
3.4、判断步骤3.3中得到的凹集包络点集Bao是否为活塞杆轴心位置分布包络特征;
(1)由公式(12)计算S2与S1的相对误差E,当E≤5%时,终止计算,步骤3.3中得到的凹集包络点集Bao即为活塞杆轴心位置分布的包络特征;
Figure BDA0002263626800000054
(2)当E>5%时,距离M缩小50%,用S2替换S1,重复步骤3.3,获得新的凹集包络点集B′ao和凹集包络面积S2';由公式(13)计算S2'与S2的相对误差E′;重复上述步骤,直至E′≤5%,停止迭代,最后一次迭代时,步骤3.3中所得到的B′ao即为活塞杆轴心位置分布的包络特征;
Figure BDA0002263626800000061
第四步,计算轴心位置分布O的信息熵特征:由公式(14)计算轴心位置分布O中各点坐标的算术平方根值,得到Sm={s1,s2,s3,…,sm};然后,利用公式(15)计算轴心位置分布O的信息熵特征Sh,与包络特征组成初始特征集T={Bao,Sh};
Figure BDA0002263626800000062
第五步,利用T-SNE对初始特征集进行无监督降维,提取负荷敏感特征。假设初始特征集T为1×Col维特征,给定困惑度为30,学习率为1e-5,设置标签Labels={0,1,2,…,w},分别对应(w+1)种工况,将初始特征集T输入到T-SNE算法中进行无监督降维,最终得到1×2维的负荷敏感特征集T′={t1,t2};
第六步,首先,将在线监测系统采集的(w+1)种不同工况数据分为训练数据集和测试数据集;然后,利用前述步骤对训练和测试数据进行处理,分别得到最终的训练集Train_T′和测试集Test_T′;最后,根据不同型号往复机械设置BP神经网络神经元个数为20~30,学习率为0.0005~0.001,训练精度为0.0001~0.0005,最大迭代次数为70~100,将数据集Train_T′输入BP神经网络进行训练,得到能区分往复机械(w+1)种负荷工况的分类器,利用测试集Test_T′对BP神经网络分类器进行测试。
附图说明
图1方法流程图
图2轴心位置示意图
图3往复压缩机活塞杆沉降和偏摆波形
图4轴心位置分布
图5改进方法计算的包络特征
图6负荷敏感特征
图7传统包络方法计算的包络特征
具体实施方式
为了更好地了解本发明的技术方案,以下结合往复压缩机活塞杆数据以及附图对本发明的具体实施方式作进一步的详细说明。
第一步,利用往复压缩机在线监测系统分别获取0%,20%,50%,60%,70%,80%,90%,100%工况下的活塞杆偏摆数据Xm和沉降数据Ym,得到原始数据集XYn={(Xm,Ym)1 T,(Xm,Ym)2 T,…,(Xm,Ym)n T}T,n为数据组数,本发明n=500,波形如图3,将8种负荷的原始数据分为训练集和测试集,其中每种负荷的训练集400组数据,测试集100组数据;
第二步,去除原始信号Xm和原始信号Ym的平均值,得到X′m={x′1,x′2,x′3,…,x′m}和Y′m={y′1,y′2,y′3,…,y′m},根据三角形相似定理,求解活塞杆轴心位置,得到轴心位置分布集O={O1(a1,b1),O2(a2,b2),O3(a3,b3),…,Om(am,bm)},轴心分布如图4;
第三步,利用改进的离散点轮廓包络方法计算轴心位置分布O的包络特征Bao,如图5;
第四步,计算轴心位置分布信息熵特征Sh,与包络特征组成初始特征集T={Bao,Sh}
第五步,给定困惑度为30,学习率为1e-5,利用流形学习从T中提取负荷敏感特征,构建负荷敏感特征集T′={t1,t2},如图6;
第六步,利用第二步~第五步对训练集和测试集数据进行处理,分别得到最终的训练特征集Train_T′和测试特征集Test_T′;最后,设置BP神经网络神经元为30,学习率为0.001,训练精度为0.0001,最大迭代次数为100,将数据集Train_T′输入BP神经网络进行训练,得到能区分往复压缩机8种负荷工况的分类器,利用测试集Test_T′对BP神经网络分类器进行测试,并且与使用传统包络方法提取包络特征(如图7)的方法进行对比,结果表1。
表1神经网络识别准确率(测试数据100组/工况)

Claims (1)

1.一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法,其特征在于,包括以下步骤:
第一步,设置不同的负荷状态Load={0,d,2d,3d,…,wd},w=0,1,2,…,其中d为负荷梯度,总工况数为(w+1),利用往复机械在线监测系统,通过水平方向的电涡流位移传感器和竖直方向的电涡流位移传感器分别采集相应负荷状态下的活塞杆原始偏摆位移Xm={x1,x2,x3,…,xm}和活塞杆原始沉降位移Ym={y1,y2,y3,…,ym},m为采样点数;得到原始数据集XYn={(Xm,Ym)1 T,(Xm,Ym)2 T,…,(Xm,Ym)n T}T,n为数据组数;
第二步,利用公式(1)去除原始信号Xm和原始信号Ym的平均值,得到X′m={x′1,x′2,x′3,…,x′m}和Y′m={y′1,y′2,y′3,…,y′m};原始数据集变为XY′n={(X′m,Y′m)1 T,(X′m,Y′m)2 T,…,(X′m,Y′m)n T}T
Figure FDA0002263626790000011
式中,Fm为活塞杆原始偏摆或沉降位移;F′m为去掉平均值之后的活塞杆偏摆或沉降位移;
以偏摆传感器测量的水平方向为X轴,以沉降传感器测量的垂直方向为Y轴,建立平面直角坐标系,初始时刻活塞杆轴心位置记为O0(a0,b0),某一时刻活塞杆轴心位置记为Om(am,bm),活塞杆半径记为R,则该时刻活塞杆圆周与X轴交点为JX(R+x′m,0),与Y轴交点为JY(0,R+y′m);设点Om和点JX连线与X轴所成夹角为θ,点Om和点JY连线与点Om所在与X轴平行的直线所成夹角为
Figure FDA0002263626790000012
根据三角形相似定理,推导出公式(2),公式(3),联立两个公式求解活塞杆不同时刻的轴心位置Om(am,bm),构成轴心位置分布集O={O1(a1,b1),O2(a2,b2),O3(a3,b3),…,Om(am,bm)};
Figure FDA0002263626790000013
Figure FDA0002263626790000021
公式(2)(3)中j=1,2,3,…,m;
第三步,利用改进的离散点轮廓包络方法计算轴心位置分布O={O1(a1,b1),O2(a2,b2),O3(a3,b3),…,Om(am,bm)}的包络特征Bao,改进的离散点轮廓包络方法具体步骤如下:
3.1、根据轴心位置分布O,通过寻找水平方向X上的最小值点al与最大值点ar,竖直方向Y上的最小值点bd与最大值点bu,确定轴心位置分布的4个极限位置,分别记为Ol(al,bl),Or(ar,br),Od(ad,bd),Ou(au,bu),以四个极限位置点所成四边形内部为内侧,外部为外侧;
3.2、分别以上述轴心极限位置为起点,以逆时针方向,遍历各时刻轴心位置,以斜率最小原则,提取轴心位置轮廓凸集包络;
计算极限位置点Od和Or之间的凸集包络,具体计算方法如下:
(1)将点Od和点Or所成线段记为L1,则其斜率α1表示为:
(2)假设线段L1外侧的所有普通轴心位置点集为P={p1(a1,b1),p2(a2,b2),p3(a3,b3),…},计算点Od与P中任意一点所组成线段的斜率,记为K={β123,…};当存在多个点斜率相同的情况时,计算相应点与点Od之间的距离,记为D={dis1,dis2,dis3,…};在点集P中寻找点p′(ap,bp),使得点p′满足以下条件:
β′=minK且β′≤α1且dis′=maxD (5)
式(5)中,β′为点p′与点Od所成线段的斜率,dis′为点p′与点Od之间的距离;
所得p′点即为凸集包络中的包络点;
(3)用凸集包络点p′替换点Od;将点p′和点Or所成线段记为L′1,其斜率记为α′1;进行下一轮迭代,寻找新的凸集包络点;
(4)重复步骤(1)(2)(3),当最新凸集包络点与点Or距离为0时,停止迭代,得到极限点Od和极限点Or之间轴心位置分布轮廓的凸集包络,记为B′dr={p′1,p′2,p′3,…};
计算极限点Or和点Ou之间,点Ou和点Ol之间,点Ol和点Od之间的凸集包络B′ru、B′ul、B′ld,最终得到全部轴心位置分布的凸集包络点集Btu={Od,B′dr,Or,B′ru,Ou,B′ul,Ol,B′ld};
(5)由公式(6)计算轴心位置轮廓凸集包络形成的面积S1,式中,c1为凸集包络点数;
3.3、根据步骤3.2得到的凸集包络,计算轴心位置分布的凹集包络;
计算极限点Od和极限点Or之间的凹集包络,取凸包络B′dr={p′1,p′2,p′3,…},以逆时针方向,逐个对B′dr中连续两个凸集包络点p′1(ap1,bp1)和p′2(ap2,bp2)进行如下计算:
(1)将点p′1(ap1,bp1)和点p′2(ap2,bp2)所成线段记为L2,线段L′斜率α2表示为:
Figure FDA0002263626790000032
(2)假设线段L2内侧的所有普通轴心位置点集为Q={q1(a1,b1),q2(a2,b2),q3(a3,b3),…},计算点p′1与Q中任意一点所组成线段的斜率,记为K′={β′1,β′2,β′3,…};当存在多个点斜率相同的情况时,计算相应点与点p′1之间的距离,记为D′={dis′1,dis′2,dis′3,…};在点集Q中寻找点q′(aq,bq),使得点q′满足以下条件:
β″=minK′且β″≥α2且dis″=minD′ (8)
式(8)中,β″为点q′与点p′1所成线段的斜率,dis″为点q′与点p′1之间的距离;
所得q′点即为凹集包络中的包络点;
(3)以凹集包络点q′代替点p′2,将点p′1和点q′所成线段记为L′2,线段L′2斜率记为α2;进行下一轮迭代,寻找新的凹集包络点;
(4)重复步骤(1)(2)(3),直至最新凹集包络点与点p′1之间的距离不超过M,停止迭代,最终得到极限点Od和极限点Or之间轴心位置分布轮廓的凹集包络,记为B″dr={q′1,q′2,q′3,…};
M初始值为全部轴心位置点的平均距离,联立公式(9)(10),计算M;
Figure FDA0002263626790000041
Figure FDA0002263626790000042
计算极限点Or和点Ou之间,点Ou和点Ol之间,点Ol和点Od之间的凹集包络B″ru、B″ul、B″ld,得到全部轴心位置分布的凹集包络点集Bao={Od,B″dr,Or,B″ru,Ou,B″ul,Ol,B″ld};
(5)由公式(11)计算轴心位置轮廓上述包络形成的面积S2,式中,c2为凹集包络点数;
Figure FDA0002263626790000043
3.4、判断步骤3.3中得到的凹集包络点集Bao是否为活塞杆轴心位置分布包络特征;
(1)由公式(12)计算S2与S1的相对误差E,当E≤5%时,终止计算,步骤3.3中得到的凹集包络点集Bao即为活塞杆轴心位置分布的包络特征;
Figure FDA0002263626790000044
(2)当E>5%时,距离M缩小50%,用S2替换S1,重复步骤3.3,获得新的凹集包络点集B′ao和凹集包络面积S2';由公式(13)计算S2'与S2的相对误差E′;重复上述步骤,直至E′≤5%,停止迭代,最后一次迭代时,步骤3.3中所得到的B′ao即为活塞杆轴心位置分布的包络特征;
Figure FDA0002263626790000045
第四步,计算轴心位置分布O的信息熵特征:由公式(14)计算轴心位置分布O中各点坐标的算术平方根值,得到算术平方根集Sm={s1,s2,s3,…,sm};然后,利用公式(15)计算轴心位置分布O的信息熵特征Sh,与包络特征组成初始特征集T={Bao,Sh};
Figure FDA0002263626790000051
Figure FDA0002263626790000052
第五步,利用T-SNE对初始特征集进行无监督降维,提取负荷敏感特征;假设初始特征集T为1×Col维特征,给定困惑度为30,学习率为1e-5,设置标签Labels={0,1,2,…,w},分别对应(w+1)种工况,将初始特征集T输入到T-SNE算法中进行无监督降维,最终得到1×2维的负荷敏感特征集T′={t1,t2};
第六步,首先,将在线监测系统采集的(w+1)种不同工况数据分为训练数据集和测试数据集;然后,利用前述步骤对训练和测试数据进行处理,分别得到最终的训练集Train_T′和测试集Test_T′;最后,根据不同的往复机械设置BP神经网络神经元个数为20~30,学习率为0.0005~0.001,训练精度为0.0001~0.0005,最大迭代次数为70~100,将数据集Train_T′输入BP神经网络进行训练,得到能区分往复机械(w+1)种负荷工况的分类器,利用测试集Test_T′对BP神经网络分类器进行测试。
CN201911079879.2A 2019-11-07 2019-11-07 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法 Active CN110823543B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911079879.2A CN110823543B (zh) 2019-11-07 2019-11-07 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法
US17/088,863 US11231038B2 (en) 2019-11-07 2020-11-04 Load identification method for reciprocating machinery based on information entropy and envelope features of axis trajectory of piston rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911079879.2A CN110823543B (zh) 2019-11-07 2019-11-07 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法

Publications (2)

Publication Number Publication Date
CN110823543A true CN110823543A (zh) 2020-02-21
CN110823543B CN110823543B (zh) 2020-09-04

Family

ID=69553053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911079879.2A Active CN110823543B (zh) 2019-11-07 2019-11-07 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法

Country Status (2)

Country Link
US (1) US11231038B2 (zh)
CN (1) CN110823543B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709567A (zh) * 2020-06-09 2020-09-25 西安交通大学 基于螺杆压缩机滑动轴承轴心轨迹的润滑油剩余寿命预测方法及系统
CN113959385A (zh) * 2021-10-27 2022-01-21 中信戴卡股份有限公司 一种轮毂安装面检测装置及其反馈、调整方法
CN114001641A (zh) * 2021-11-10 2022-02-01 国家石油天然气管网集团有限公司 往复式压缩机组活塞杆轴心位置离散点轮廓快速包络方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607402B (zh) * 2021-08-13 2023-08-25 浙江师范大学 一种柱塞泵柱塞副油膜测试装置、方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129697A (zh) * 2010-01-19 2011-07-20 北京大学 一种文本图像压缩方法
US20130046714A1 (en) * 2011-08-16 2013-02-21 The Boeing Company Evaluating the health status of a system
CN104165686A (zh) * 2014-06-17 2014-11-26 中州大学 一种基于二元经验模态分解的转子轴心轨迹提纯方法
CN105588720A (zh) * 2015-12-15 2016-05-18 广州大学 基于声信号形态分量分析的滚动轴承故障诊断装置及方法
CN105784350A (zh) * 2016-01-27 2016-07-20 北京博华信智科技股份有限公司 一种基于活塞杆振动动态能量指数的故障报警方法
CN106096066A (zh) * 2016-08-17 2016-11-09 盐城工学院 基于随机近邻嵌入的文本聚类方法
CN108645620A (zh) * 2018-07-26 2018-10-12 北京工业大学 一种基于信息熵和多尺度形态学的滚动轴承早期故障诊断方法
CN109447099A (zh) * 2018-08-28 2019-03-08 西安理工大学 一种基于pca降维的多分类器融合方法
CN109543626A (zh) * 2018-11-27 2019-03-29 济南大学 一种机械装备旋转部件轴心轨迹识别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844290B2 (en) * 2017-03-28 2020-11-24 Uop Llc Rotating equipment in a petrochemical plant or refinery
US11232862B2 (en) * 2017-08-18 2022-01-25 Bayer Healtcare Llc System, method, and computer program product for predictive maintenance
US10838375B2 (en) * 2017-12-12 2020-11-17 Distech Controls Inc. Inference server and environment controller for inferring via a neural network one or more commands for controlling an appliance
CN110954312B (zh) * 2020-02-19 2020-11-20 北京化工大学 一种基于无键相整周期信号的往复机械故障诊断方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129697A (zh) * 2010-01-19 2011-07-20 北京大学 一种文本图像压缩方法
US20130046714A1 (en) * 2011-08-16 2013-02-21 The Boeing Company Evaluating the health status of a system
CN104165686A (zh) * 2014-06-17 2014-11-26 中州大学 一种基于二元经验模态分解的转子轴心轨迹提纯方法
CN105588720A (zh) * 2015-12-15 2016-05-18 广州大学 基于声信号形态分量分析的滚动轴承故障诊断装置及方法
CN105784350A (zh) * 2016-01-27 2016-07-20 北京博华信智科技股份有限公司 一种基于活塞杆振动动态能量指数的故障报警方法
CN106096066A (zh) * 2016-08-17 2016-11-09 盐城工学院 基于随机近邻嵌入的文本聚类方法
CN108645620A (zh) * 2018-07-26 2018-10-12 北京工业大学 一种基于信息熵和多尺度形态学的滚动轴承早期故障诊断方法
CN109447099A (zh) * 2018-08-28 2019-03-08 西安理工大学 一种基于pca降维的多分类器融合方法
CN109543626A (zh) * 2018-11-27 2019-03-29 济南大学 一种机械装备旋转部件轴心轨迹识别方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YAO WANG: "Performance analysis and optimization of reciprocating compressor with stepless capacity control system under variable load conditions", 《INTERNATIONAL JOURNAL OF REFRIGERATION》 *
党露: "往复式压缩机拉缸故障多参数统计监测诊断方法", 《机电工程》 *
江志农: "一种基于流形学习和KNN算法的柴油机工况识别方法", 《噪声与振动控制》 *
王蒙: "变负荷工况下空压机气量调节系统参数影响研究", 《机械强度》 *
赵志宏: "基于振动信号的机械故障特征提取与诊断研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709567A (zh) * 2020-06-09 2020-09-25 西安交通大学 基于螺杆压缩机滑动轴承轴心轨迹的润滑油剩余寿命预测方法及系统
CN111709567B (zh) * 2020-06-09 2023-05-02 西安交通大学 基于螺杆压缩机滑动轴承轴心轨迹的润滑油剩余寿命预测方法及系统
CN113959385A (zh) * 2021-10-27 2022-01-21 中信戴卡股份有限公司 一种轮毂安装面检测装置及其反馈、调整方法
CN114001641A (zh) * 2021-11-10 2022-02-01 国家石油天然气管网集团有限公司 往复式压缩机组活塞杆轴心位置离散点轮廓快速包络方法
CN114001641B (zh) * 2021-11-10 2023-09-19 国家石油天然气管网集团有限公司 往复式压缩机组活塞杆轴心位置离散点轮廓快速包络方法

Also Published As

Publication number Publication date
US11231038B2 (en) 2022-01-25
CN110823543B (zh) 2020-09-04
US20210140431A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
CN110823543B (zh) 一种基于往复机械活塞杆轴心轨迹包络与信息熵特征的负荷识别方法
CN113032502B (zh) 一种基于改进轨迹段dbscan聚类的船舶异常检测方法
CN109324604A (zh) 一种基于多源信号的智能列车综合故障分析方法
CN109785301B (zh) 一种基于图像处理的钢轨波磨周期评估方法
CN111311567A (zh) 对轨道线路图像进行扣件和钢轨病害识别的方法
CN110736999B (zh) 基于激光雷达的铁路道岔检测方法
CN111539152A (zh) 一种基于两级孪生卷积神经网络的滚动轴承故障自学习方法
CN103927553B (zh) 基于多尺度微纹理和对比度联合分布的煤岩识别方法
CN113032378A (zh) 一种基于聚类算法和模式挖掘的船舶行为模式挖掘方法
CN114861741B (zh) 一种基于轮对横移量的蛇行状态识别方法
CN114714145A (zh) 一种刀具磨损状态的格拉姆角场增强对比学习监测方法
Wen et al. A new method for identifying the ball screw degradation level based on the multiple classifier system
CN114800041A (zh) 一种刀具状态监测方法及其监测装置
Yafei et al. Fault diagnosis of axial piston pump based on extreme-point symmetric mode decomposition and random forests
CN113487555B (zh) 一种基于点云网格化的输电线路隐患点快速检测方法
CN108760268B (zh) 一种基于信息熵的立磨运行数据阶跃故障诊断方法
CN104457644B (zh) 轨道几何检测数据中非脉冲异常数据的检测方法及装置
CN116681912A (zh) 铁路道岔的轨距检测方法及装置
CN113255771B (zh) 基于多维异构差异分析的故障诊断方法及系统
CN114943258A (zh) 基于dtw和小样本学习的故障诊断方法及系统
CN113516123B (zh) 一种针对轮胎压印字符的检测识别方法
CN110533075B (zh) 一种多模型电力线分割方法
CN113705738A (zh) 一种工程装备轴承退化评估方法
Guo et al. A Hybrid clustering method for bridge structure health monitoring
CN109253883A (zh) 一种基于增量搜索聚类的旋转机械滚动轴承智能诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant